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Abstract

Purpose: To develop a robust tool for quantitative in situ pathology that allows visualization of heterogeneous tissue
morphology and segmentation and quantification of image features.

Materials and Methods: Tissue excised from a genetically engineered mouse model of sarcoma was imaged using a
subcellular resolution microendoscope after topical application of a fluorescent anatomical contrast agent: acriflavine. An
algorithm based on sparse component analysis (SCA) and the circle transform (CT) was developed for image segmentation
and quantification of distinct tissue types. The accuracy of our approach was quantified through simulations of tumor and
muscle images. Specifically, tumor, muscle, and tumor+muscle tissue images were simulated because these tissue types
were most commonly observed in sarcoma margins. Simulations were based on tissue characteristics observed in pathology
slides. The potential clinical utility of our approach was evaluated by imaging excised margins and the tumor bed in a
cohort of mice after surgical resection of sarcoma.

Results: Simulation experiments revealed that SCA+CT achieved the lowest errors for larger nuclear sizes and for higher
contrast ratios (nuclei intensity/background intensity). For imaging of tumor margins, SCA+CT effectively isolated nuclei
from tumor, muscle, adipose, and tumor+muscle tissue types. Differences in density were correctly identified with SCA+CT
in a cohort of ex vivo and in vivo images, thus illustrating the diagnostic potential of our approach.

Conclusion: The combination of a subcellular-resolution microendoscope, acriflavine staining, and SCA+CT can be used to
accurately isolate nuclei and quantify their density in anatomical images of heterogeneous tissue.
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Introduction

Optical microscopy is a powerful technique to obtain high-

resolution images of tissue histology in real-time at the point-of-

care, without the need for fixing, sectioning, and staining. Various

optical microscopy techniques including reflectance and fluores-

cence [1–3], Raman [4], confocal [5,6], and optical coherence

tomography [7,8] have been used to exploit intrinsic sources of

contrast in thick tissues. Additionally, fluorescence microscopy has

been combined with vital fluorescent stains such as acridine

orange (AO) [9–11], acriflavine [12,13], and DAPI [14] to

visualize micro-anatomical features in skin [9], breast [14], ovarian

[11], oral [12], and esophageal [13] cancers. All of these

technologies enable rapid and completely non-destructive visual-

ization of tissue histology.

Robust methods for segmentation and quantitative analysis are

essential to enable automated and rapid surveillance of tissue

pathology, particularly when images are collected in near real

time. There are three important criteria that have to be considered

in the selection of an appropriate image analysis strategy. (1) If the

background patterns and intensities vary greatly between images

(i.e. if images are heterogeneous), will a method still be able to
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isolate features of interest, such as tumor nuclei? (2) Can the

method resolve overlapping nuclei when attempting to character-

ize nuclear size or density? (3) Does the method require human

intervention and supervision, thus introducing subjective bias and

complexity into the analysis?

Many approaches for cell or cell nuclei segmentation exist. A

summary of the advantages and disadvantages of commonly used

approaches for nuclei segmentation in microscopy is included in

Table 1. Global thresholding approaches work well when cell

nuclei do not overlap and background intensities are evenly

distributed, and its use in isolating cell nuclei is well established in

the literature [11,12,14,15]. However, it is also broadly recognized

that global thresholding has many shortcomings, specifically that it

has limited utility in heterogeneous images in which background

intensities vary greatly. While global thresholding takes intensity

information into account, it does not incorporate geometric

information, such as the expected size or shape of nuclei. Thus,

in an effort to take geometry into account, many groups have

developed techniques that combine global and local image

information, such as adaptive window thresholding or local

maxima detection [15–21], active contours [22–25], watershed

segmentation [21,26,27], high pass filtering [28], and the circle

transform [29]. In adaptive window thresholding or local maxima

detection, regions or windows of the image are examined

separately and the nuclei within each region are identified based

on intensity information through either finding maximum

intensities or applying a threshold [15–21]. For heterogeneous

images, the window size and threshold within each window should

ideally vary across images and patients in order to effectively

segment nuclei which are surrounded by various structures, such

as muscle, adipose tissue, or other types of connective tissue.

Tuning so many parameters on an image by image basis quickly

can become unmanageable and introduce subjective bias into the

quantification of nuclear size and density. Active contours, such as

snakes, find the boundary of a feature by minimizing an ‘‘energy’’

function associated with the current contour that measures the

contour’s curvature and enclosed area [22–25]. However,

choosing or defining the energy function can be a complex

process, and segmentation results are highly sensitive to this

choice. Additionally, active contours require human intervention

and supervision through manually guiding the outlining of features

or selecting a pixel in the interior of each structure (e.g. tumor

nucleus) to be extracted. In images that contain large collections of

nuclei, this segmentation approach can quickly become unwieldy.

Furthermore, due to the complexity of this computational

technique, it is difficult to know when an optimal solution has

been achieved. In watershed segmentation methods, an image is

partitioned into regions separated by watershed lines. While

watershed segmentation can identify overlapping nuclei, it is

vulnerable to a well-recognized phenomenon called over-segmen-

tation, in which homogeneous regions are segmented into multiple

different regions erroneously [21,26,27]. These effects can be

somewhat mitigated via an involved parameter tuning process

requiring significant human intervention or through variations to

the watershed transform, such as viscous watershed [30];

generally, this is an area of active ongoing research. Furthermore,

there are many regions in an image that are segmented via

watershed methods that are not meaningful for our purpose of

isolating nuclei within heterogeneous images. For example in

heterogeneous images, the improper segmentation of background

elements such as adipose or connective tissue can mistakenly be

identified as nuclei, leading to incorrect quantitation of nuclear

size and density. High pass filtering is a technique that is

commonly used to isolate edges in images, and can be used to

segment small features such as nuclei [28]. While high pass

filtering is simple to implement and easy to tune, it is highly

sensitive to noise present in an image. Lastly, the circle transform

can be used to detect approximately circular objects of a specified

range of radii within an image [29]. While this technique is simple

and can identify overlapping nuclei, it assumes that objects are

approximately circular and is sensitive to small variation in

background intensity. Because of this sensitivity to small variations

in the background, the circle transform, in isolation, is a

suboptimal approach for heterogeneous images.

Despite the diversity of approaches, segmentation of cells and

cell nuclei remains a challenge due to the complexity of images

that have varying levels of contrast and non-uniform background

heterogeneity, as well as overlapping nuclear features. To address

this important need, a computational technique is described here

that leverages morphologic information inherent in monochrome

images of fluorescently-stained microanatomy to separate and

quantify the presence of distinct tissue types in a heterogeneous

image. In combination with fluorescence microendoscopy and the

contrast agent, acriflavine [31,32] the utility of this technique in

the visualization of tissue histology in tumor margins is demon-

strated. More specifically, the model-based approach decomposes

tissue histology images into mathematically discrete components.

First, sparse component analysis (SCA) [33] is used to separate cell

nuclei, fibrous components, and adipose components. Second, the

circle transform (CT) [29] is applied to the deconstructed image to

quantify the size and density of overlapping features of interest, in

this case, nuclei as a means to identify the presence of residual

disease in a tumor margin. While the CT is sensitive to small

variation in the background, this effect is mitigated by first using

SCA to remove the background. This manuscript describes a

methodology that systematically evaluates the potential of an

image processing approach or combination of approaches, for a

specific biomedical problem. The image processing approach

chosen here is SCA followed by the CT, and the specific indication

is the ability to isolate nuclei from heterogeneous tumor margin

images. The rationale for selecting SCA is that it can segment

different types of structures (nuclei, muscle, and adipose tissue) in

complex heterogeneous images. The CT was chosen to isolate

nuclei because it can distinguish overlapping circular nuclei and is

easy to tune. It should be noted that the combination of SCA+CT

is not the only solution to this complex problem; however, it is a

well-justified approach to analyzing images from heterogeneous

tissues and certainly could be adapted to include other methods if

they can benefit the overall approach. Unlike image processing

techniques which rely solely on intensity information (and are thus

susceptible to calibration errors), SCA incorporates geometric

information through the property of sparsity. This leads to a highly

flexible approach that requires tuning a very small number of

parameters, can resolve overlapping nuclei, and does not require

human intervention or supervision. Additionally, this technique

does not discard image content but rather retains all of the image

information inherent in the image to preserve spatial relationships

between tissue types, which are essential for proper interpretation

of the images. Any clinical application in which one needs to assess

the pathological state of disease at the point of care (during a

procedure) could benefit from this combination of approaches

[34–36].

Our purpose is to demonstrate that SCA+CT can accurately

isolate and quantify information within an image with a single

stain both on the excised margin and more importantly, on the

intact tumor bed. The sensitivity of the SCA+CT approach to

variations in nuclear size, density and background heterogeneity is

demonstrated through simulations. The quantitative attributes of
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this strategy are demonstrated by comparing the output of

monochrome fluorescence images of tissue sections to that derived

from histology. The clinical utility of this approach to detect

residual disease is examined by imaging excised margins as well as

the tumor bed in vivo in a cohort of mice after surgical resection of

a sarcoma [37,38].

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Duke University Institutional

Animal Care and Use Committee (Protocol Number: A134-10-

05). All surgery was performed under isoflurane gas anesthesia,

and all efforts were made to minimize suffering.

Mice and Sarcoma Generation
The generation of the temporally- and spatially-restricted

genetically engineered mouse model of sarcoma was performed

as described by Kirsch et al [37]. Briefly, mice were anesthetized

using isoflurane and soft tissue sarcomas were generated by

intramuscular injection of a calcium phosphate precipitate of Ad-

Cre (Gene Transfer Vector Core, University of Iowa) in to the

proximal portion of the medial or lateral gastrocnemius muscle

[37]. Mice were on a mixed 129 SvJae/C57/Bl6 background for

these studies. Tumors were excised as described by Mito et al [34].

Mouse genotypes used to generate sarcomas included LSL-

KrasG12D/+;Trp53Flox/Flox [37] and Braf Ca/+;Trp53 Flox/Flox [39].

Imaging System and Contrast Agent
A fluorescence microendoscope device that has previously been

described in detail [12] was used to collect images of acriflavine

stained tissues. The system contained a 455 nm light emitting

diode (Luxeon V Star, LXHL-LR5C), excitation filter (Semrock,

FF01-452/45-25) dichroic mirror (Chroma 485 DCLP), emission

filter (Semrock, FF01-550/88-25), CCD camera (Point Grey

Research, GRAS-14S5), and coherent fiber bundle (Sumitomo,

IGN-08/30). The fiber bundle was composed of 30,000 fibers

giving a circular field of view of approximately 750 mm in

diameter. The resolution of the system was 4.4 mm. For both ex vivo

and in vivo studies, images were produced by placing the fiber

bundle in contact with the acriflavine stained tissue surface.

Acriflavine (0.01% w/v, Sigma-Aldrich) dissolved in phosphate

buffered saline (PBS) was topically applied to all ex vivo and in vivo

specimens immediately prior to imaging.

Ex vivo Imaging of Excised Tissue Margins
Seven mice were euthanized immediately prior to surgical

tumor resection. Within ten minutes of euthanasia, the tumor was

excised from the leg. Seven tumors were excised, six of which were

imaged directly (bulk tissue imaging) and one of which was used

for serial tissue sectioning (tissue section imaging).

For tissue section imaging, the excised tissue was flash frozen in

liquid nitrogen, imbedded in optimal cutting temperature com-

pound (Tissue-Tek), serially sectioned, and mounted on glass

slides. Alternating 50 mm and 5 mm sections were cut with a Leica

cryostat with 1–2 sections discarded between to allow for cryostat

adjustment. 3–5 drops (0.15–0.25 mLs) of acriflavine was topically

applied to the 50 mm sections, and after 30 seconds, the tissue

sections were raster-scanned with the fiber probe in 1 mm

increments to create mosaics. The alternating 5 mm sections were

submitted for standard hematoxylin and eosin (H&E) staining.

For bulk tissue imaging, the tissue was laid flat and 3–5 drops

(0.15–0.25 mLs) of acriflavine were topically applied. 30 seconds

following the application of acriflavine, the distal end of the fiber

bundle was placed in contact with the tissue and images were

acquired from several discrete sites on the tissue (3 to 5 sites per

specimen). Each imaged site was inked with a 1 mm dot to

facilitate pathologic co-registration. The tissue was fixed, paraffin-

embedded and sectioned. En face sections of inked regions were

taken below the inked surface. The H&E stained slides were

reviewed separately by three pathologists. For each H&E slide, the

tissue was diagnosed as tumor, muscle, adipose, or any combina-

tion thereof. A total of eight tumor images, thirteen muscle images,

six tumor+muscle images, and one adipose image were acquired

from six animals.

In vivo Imaging of the Resected Tumor Cavity
For the in vivo study, surgeries were performed under isoflurane

gas anesthesia. Buprenorphine and Bupivacaine were delivered for

peri-operative analgesia. A total of two animals were included in

the in vivo study. After induction with isoflurane anesthesia and

analgesic treatment, the grossly apparent soft tissue sarcoma was

surgically removed. Post-resection, 3–5 drops (0.15–0.25 mLs) of

0.01% (w/v) acriflavine dissolved in PBS was topically applied to

the resection cavity. 30 seconds following the application of

acriflavine, the distal end of the fiber bundle was placed in contact

with the tissue and images were acquired. The tumor bed was

raster scanned to create mosaics of the margin by systematically

moving the probe in 1 mm increments across the entire tumor

bed. Next, the surface of the excised specimen that mirrored the

tumor bed was inked to orient the specimen and facilitate

pathological assessment of the resected margin. The most

superficial section was submitted for H&E processing and

Table 1. Nuclei segmentation methods.

Method Advantages Disadvantages

Global thresholding Simple, easy to tune Requires uniform background intensity

Adaptive thresholding Simple Requires varying window size across image and adjusting threshold
within each window

Active contours Can find object outlines in complex images Requires defining complex energy function and human intervention and
supervision

Watershed segmentation Can identify overlapping nuclei Results in over segmentation

High pass filter Simple, easy to tune Sensitive to noise

Circle transform Simple, can identify overlapping nuclei Sensitive to small variations in background intensity

doi:10.1371/journal.pone.0066198.t001
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evaluation by three pathologists. If the section contained tumor,

the margin was diagnosed as pathologically positive. If the section

did not contain tumor, the margin was considered pathologically

negative. Additionally, the mice were monitored for local

recurrence at the excision site for up to 120 days.

Generation of Simulated Sarcoma Images
Tumor, muscle, and tumor+muscle tissue images were simulat-

ed because these tissue types were most commonly observed in

sarcoma margins. All simulated nuclei were drawn the same way

using MATLAB (2009a, Mathworks Inc., Natick, MA). Specifi-

cally, random locations were selected within each region. Then the

fspecial command was used to create a disk of a specified radius at

each location. The disk was then blurred with a Gaussian filter

that had a standard deviation of 1.1 pixels. The blurring step was

done to simulate the gradual falloff in intensity seen in nuclei

imaged experimentally. Muscle was simulated as longitudinal

fibers, and tumor+muscle was simulated as tumor nuclei on top of

the longitudinal fibers, which was the weighted addition of the two

components. Specifically, for the tumor+muscle simulations the

nuclei phantom was multiplied by a weighting factor and added to

the muscle phantom. The ratios between tumor nuclei and the

underlying muscle were chosen based on observations from

experimental images and were varied from 1.2–1.8. The contrast

ratios represent the maximum nuclei intensity divided by the

maximum muscle intensity. See methods S1 for more details.

Sparse Component Analysis and Circle Transform
(SCA+CT)

All processing of the images was performed using MATLAB

(2009a, Mathworks Inc., Natick, MA). Images were preprocessed

to remove the rim of the fiber bundle and the fiber core pattern

superimposed onto each image. For more details see methods S1

and Fig. S1. Tissue components (nuclei, muscle fibers, and the

outline of adipose cells) were separated computationally using a

sparse component analysis (SCA) method. Let y denote the

preprocessed image data, modeled as

y~xnucleizxmusclezxadiposezw ð1Þ

where xnuclei, xmuscle, and xadipose denote the true nuclei, muscle,

and adipose components respectively, and w accounts for noise

and small deviations from the model. The key assumption was that

each tissue component has a different ‘‘sparsifying’’ basis or

dictionary in which the expansion coefficients were nearly all zero,

with only a few large coefficients. (For instance, an image of

muscle fibers was relatively smooth, so it could be accurately

approximated using a superposition of a small number of Fourier

basis functions.) If the sparsifying dictionaries were sufficiently

dissimilar, then the sparsity could be exploited to uniquely identify

the different tissue components.

The pixel basis was used for the nuclei dictionary to capture the

small and spatially isolated nuclei. The discrete cosine transform

(DCT), a variant of the Fourier transform, basis was used to

describe muscle components with periodic fiber structures.

Specifically the DCT was performed on the entire image (not in

blocks) to capture globally smooth muscle features. Mathemati-

cally, xmuscle~Fhmuscle, where F was a matrix representation of

the DCT, and hmuscle was a vector of the DCT coefficients; most

elements of hmuscle were zero. The curvelet dictionary was used to

represent the curvilinear outlines of adipose cells [40]. Adipose

tissue can be described as localized piecewise smooth features, and

therefore curvelets are well suited to capture adipose features.

Specifically, curvelets, which are similar to wavelets, have

dictionary elements corresponding to different scales and locations

throughout an image and is relatively dissimilar to both the pixel

and DCT bases [40]. Let C denote the curvelet transform matrix

so that xadipose~Chadipose, where hadipose was a sparse curvelet

coefficient vector.

The sparse coefficient vectors were estimated by solving a

regularized least-squares inversion [33]:

x̂xnuclei,ĥhmuscle,ĥhadipose

� �
~

argmin
xnuclei, hmuscle, hadipose

1

2
y{(xnucleizFhmusclezChadipose)
�� ��2

2

ztnuclei xnucleik k1ztmuscle hmusclek k1ztadipose hadipose

�� ��
1

x̂xmuscle~F ĥhmuscle

x̂xadipose~Cĥhadipose

x̂xapprox~x̂xnucleizx̂xmusclezx̂xadipose

ð2Þ

where argmin
x

f (x) returned the value of x (the argument) that

minimized f, xk k2
2~

P
i x2

i (the ‘2 norm) and xk k1~
P

i Dxi D (the

‘1 norm), where xi was the ith component of x. The ‘2 term in

Eqn. 2 ensured that the approximation x̂xapprox was a good fit to

the observed data, while the ‘1 terms promoted sparsity in the

variables xnuclei, hmuscle, and hadipose. The regularization para-

meterstnuclei, tmuscle, and tadipose were positive weights that

controlled the balance between data fidelity and sparsity in the

reconstruction. These parameters were selected using an empirical

method described in methods S1. To solve this minimization

problem, the Gradient Projection for Sparse Reconstruction

(GPSR) algorithm was used [41]. After SCA was applied to

isolate nuclei, the nuclear size and density were quantified by

computing the circle transform [29] on x̂xnuclei to detect approx-

imately circular objects (i.e., nuclei). This methodology, which is

referred to as SCA+CT, was applied to analyze all images in this

study. Example images and code are available at http://hdl.

handle.net/10161/6378.

Statistical Analysis
Wilcoxon rank sums (non-parametric, two-tailed, alpha = 0.95)

were used to determine whether quantitative image parameters

were significantly different between tumor and muscle and

between tumor+muscle and muscle tissue types for the bulk tissue

image set. A significance level of p,0.05 was considered to reject

the null hypothesis for all analyses. The n for each statistical

analysis is listed in the respective figure legend. Receiver operating

characteristic (ROC) curves and the area under the curve (AUC)

were calculated for nuclear density using a web-based tool [42].

The Youden index, which is a frequently used summary measure

for ROC curves, was calculated for each ROC curve, and the

associated sensitivity and specificity is reported [43].

Results

Illustration of Challenges Associated with Nuclei
Segmentation in Heterogeneous Tissue

First to illustrate the challenges associated with isolating nuclei

in heterogeneous tissue, an image was created with four different

tissue types present, including tumor, muscle, adipose, and

Segmentation of Heterogeneous Microscopy Images
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tumor+muscle tissues. Due to the small field of view of the

fluorescence microendoscope (0.63 mm2) it was not possible to

capture all four tissue types in a single image. Therefore, in order

to illuminate the challenges associated with isolating nuclei from

different tissue types, the original image shown in Fig. 1 was

created by blending different regions of a tumor, muscle, adipose,

and tumor+muscle image together. As can be seen, there are

inherent challenges in segmenting nuclei from each of these

regions with a single approach. Specifically, the goal is to isolate

the large amount of nuclei from the tumor and tumor+muscle

regions without capturing any of the background and to isolate the

nuclei from the adipose region that are located on the edges of the

adipocytes. To illustrate the ability of SCA to meet these goals, the

original image was put through SCA to yield the spatial, DCT,

and curvelet outputs. From the spatial output we can see that

nuclei are correctly isolated throughout the tumor and tumor+
muscle regions, as well as in the adipose region. Lastly, SCA does

not discard image content but rather retains all of the image

information inherent in the image. For example, the curvilinear

structures present in the original image, particularly in the adipose

region, are isolated in the curvelet output. This information can be

used to properly interpret images. To illustrate this point the nuclei

isolated in the spatial output were false colored green and then

overlaid onto the curvelet output. As can be seen, the nuclei in the

adipose region are spatially co-registered with the outline of the

adipocytes. This information could be used diagnostically to

indicate that these nuclei are associated with benign adipose tissue,

not with malignant tissue.

Sensitivity of SCA+CT to Background Heterogeneity,
Nuclear Size and Density

In order to determine the accuracy and sensitivity of SCA+CT

to quantify nuclear size and density, a series of simulated images

were generated in which the size and density of nuclei could be

varied in the presence of background tissue heterogeneity. Tumor

was simulated as randomly dispersed circular nuclei (xnuclei,

Fig. 2a), muscle was simulated as longitudinal fibers (xmuscle,

Fig. 2b), and tumor+muscle was simulated as tumor nuclei on top

of the longitudinal fibers, which was the weighted addition of the

tumor and muscle components (Fig. 2c). These simulations were

based on characteristics observed in H&E stained histological

sections of the same tissue (Fig. 2d–f). Specifically, nuclei were

simulated with diameters ranging from 4–15 mm (4–18 pixels) and

densities from 60–900 nuclei/0.25 mm2. These values were

selected based on the biologically expected ranges. The simulated

nuclei in Fig. 2g were added to the simulated muscle image to

yield the tumor+muscle simulated image y (original, Fig. 2h)

which was the input image into SCA. The outputs of SCA include

the spatial (x̂xnuclei), DCT (x̂xmuscle), and curvelet (x̂xadipose) compo-

nent estimates, whose summation was denoted as the approxima-

tion (x̂xapprox) of the original image. Next, CT was applied to x̂xnuclei

Figure 1. Illustration of challenges associated with nuclei segmentation in heterogeneous tissue. The original image was created by
blending different regions of a tumor (T), muscle (M), adipose (A), and tumor+muscle (T+M) image together. This image was put through SCA to yield
the spatial, DCT, and curvelet outputs. Then, the spatial image was false colored green and laid on top of the curvelet image to yield to spatial
curvelet overlay. This illustrates how the nuclei are spatially co-registered with some of the features isolated in the curvelet output. This information
could be used diagnostically to indicate that these nuclei are associated with benign adipose tissue, not with malignant tissue.
doi:10.1371/journal.pone.0066198.g001
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to isolate overlapping nuclei for accurate quantitation of size and

density. A zoomed in area in the upper right hand corner of the

spatial image (x̂xnuclei) is shown with CT applied to yield SCA+CT

(Fig. 2h). All subsequent images were analyzed with SCA+CT.

A set of simulated images with varying contrast ratios was used

to examine the influence of background heterogeneity on the

ability of SCA+CT to quantify nuclear size and density (Fig. 3a).

Nuclei from each image were isolated with SCA (Fig. 3b) and

quantified with CT (Fig. 3c). The percent error was calculated by

comparing the densities calculated from the simulated images in

Fig. 3c to the original densities in the tumor simulation, and can

be seen in Fig. 3d. As seen, the overall error decreases as contrast

increases. The highest errors are observed on the left hand side of

each image, which corresponds to the area with the smallest

nuclei. Because CT is based on local gradients, it is unable to

distinguish nuclei that are smaller than 5 pixels in diameter.

Trends Observed in Nuclear Size and Density Quantified
using SCA+CT

Images captured from frozen tissue sections mounted on glass

slides were used to facilitate more direct comparison of the

SCA+CT to hematoxylin and eosin (H&E) stained micrographs.

For this experiment, the excised tissue was frozen, sectioned

serially, and mounted on glass slides. Alternating 50 mm thick and

5 mm thick sections were cut. The 50 mm thick section was imaged

with the fluorescence microendoscope, and the proceeding 5 mm

thick section was stained with H&E and imaged with a standard

transmission microscope. This protocol was followed so that

optimal images could be acquired of both the H&E stained tissue

and the acriflavine stained tissue. Fig. 4b contains a panel of

representative fluorescence microendoscopy (FM) images and the

corresponding H&E en face section micrograph (Fig. 4a). The

approximate locations where FM images were collected are

indicated by squares in the H&E section. The tissue types in the

H&E section generally correspond with the tissue types observed

in the FM images; however features do not match up perfectly

because these panels were acquired from different tissue slices.

Nuclei in the panel of images were isolated with SCA+CT

(Fig. 4d) as described previously. The SCA+CT panel (Fig. 4d) is

shown as an overlay in which nuclei isolated through SCA+CT are

overlaid onto the original image. Nuclei that are greater than

8 mm in diameter are false colored red, while those that are equal

Figure 2. Image simulations used to evaluate SCA. Simulations of tumor (a), muscle (b), and tumor+muscle (c) were mimicked after
observations seen in H&E sections (d–f). (g) To better understand how well SCA can capture nuclei of various sizes and densities, a single simulated
image was created that contained a variety of sizes and densities. The red box indicates the most commonly seen nuclear sizes and densities in our
data. The outputs of SCA for a tumor+muscle simulation are shown (h). The colorbar shows the gray level intensities, which vary from 0 to 1. In this
case, the curvelet image appears blank because no adipose is present in the original image. A zoomed in area of the upper right hand corner of the
original image is shown. The same area in the spatial image is shown with CT applied to yield SCA+CT. Scale bar 50 mm.
doi:10.1371/journal.pone.0066198.g002
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to or less than 8 mm are false colored green. The cutoff of ‘8 mm’

was chosen because two distinct peaks were observed in the

histogram of nuclear diameters shown in Fig. 4e. Specifically, one

peak was located at approximately 5 mm and the other was located

at approximately 10 mm, while 8 mm appeared to be located at the

dip between these two peaks. This two-color scheme is used

throughout the remainder of the manuscript to highlight the

bimodal distribution observed in Fig. 4e. The images with false

colored nuclei were contrast-stretched in order to enable increased

visibility of the false colored nuclei. The contrast of the original

panel was adjusted in Fig. 4c to match the SCA+CT overlay in

Fig. 4d in order to enable direct visual comparison. As seen,

SCA+CT isolates nuclei that visually correspond to the locations

of nuclei observed in the H&E micrograph (gold standard). Next,

the nuclear size and density for images in the panel that contained

mostly tumor tissue (3, 6, 9), mostly muscle tissue (1, 4, 7), and a

mixture of tumor+muscle tissue (2, 5, 8) were quantified using

SCA+CT (Fig. 4e, f). The size or nuclear diameter results are

plotted a histograms or probability distribution functions (pdfs) to

show the small differences seen in nuclear size between groups.

The vertical dotted red line corresponds to the 8 mm diameter

cutoff, and the horizontal color bars show the mean and standard

deviation for each variable. The density results are shown are

boxplots. For all boxplots shown in this work, the red line

corresponds to the median and the edges of the box correspond to

the 25th and 75th percentiles. The whiskers correspond to the

most extreme data points not considered outliers, and outliers are

plotted individually. Because there are only 3 images in each

group, no statistical analysis was performed; however, a general

decreasing trend in nuclear density from tumor to tumor+muscle

to muscle tissue can be observed. This trend is observed for both

smaller nuclei (green) and larger nuclei (red). However, there

appears to be larger differences between tumor and muscle as well

as tumor+muscle and muscle for the smaller nuclei (green).

Comparison of Nuclear Size and Density in Positive and
Negative Excised Tumor Margins

SCA+CT was applied to ex vivo FM images from the margins of

freshly excised tumors, and representative images are shown in

Fig. 5a–d. Fig. 5a contains an H&E micrograph (column 1) of

tumor and the corresponding FM image (column 2). The nuclei

from these images were isolated using SCA+CT, which can be

Figure 3. SCA performance varies with nuclear size, nuclear density, and background contrast. (a) The image simulation with various
nuclear sizes and densities was added to the muscle simulation with varying weights or ratios to create a tumor+muscle simulation. The ratios are
reported as the (max tumor nuclei intensity/max muscle intensity). The spatial output from SCA is shown in (b). The nuclear density was calculated by
applying CT to the images in (b) to yield the images in (c). Red boxes indicate the most commonly seen nuclear size, nuclear density, and contrast
ratio observed in our data. The percent error was calculated and is shown as a contour plot in (d). The colorbar indicates the percent error (%).
doi:10.1371/journal.pone.0066198.g003
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seen in column 4. The images in column 4 were contrast-stretched

in order to enable increased visibility of the false colored nuclei.

The contrast of the original panel was adjusted in column 3 to

match the SCA+CT overlay in column 4 in order to enable direct

visual comparison. Additionally, the approximation, spatial, DCT,

and curvelet outputs for these representative images are shown in

Fig. S2. The SCA+CT processed tumor image shows a dense,

disorganized collection of nuclei, which is characteristic of

malignant tissue. Fig. 5b–d contain images of tumor+muscle,

muscle, and adipose respectively. The SCA+CT processed

tumor+muscle image contains a slightly less dense collection of

nuclei than is seen in the tumor image, which is characteristic of

residual tumor, while the SCA+CT processed muscle image

contains few nuclei, as is characteristic of muscle or fibrous tissue.

In adipose tissue, nuclei are located at the periphery of the

adipocytes. In the adipose image in Figure 5D, SCA+CT correctly

isolates evenly spaced nuclei that are located on the border of the

adipocytes. Probability density functions and boxplots of the

differences observed in nuclear size (Fig. 5e) and density (Fig. 5f)
respectively were calculated for a cohort of 8 tumor, 6

tumor+muscle, and 13 muscle images. Additionally, because the

combination of using both nuclear size and density could have

higher diagnostic power; the density of the smaller nuclei (green)

and the larger nuclei (red) were also calculated and are shown in

Fig. 5g and Fig. 5h respectively. Significant differences are seen

between tumor and muscle images for the total density

(p = 0.0016), density of the smaller nuclei (green, p = 0.0023), and

the density of the larger nuclei (red, p = 0.0053). The statistical

differences between the tumor+muscle and muscle images are not

significant for the total nuclear density, the density of the smaller

nuclei (green), or the density of the larger nuclei (red); however, the

difference appears the greatest for the smaller nuclei (green).

Additionally, a ROC curve was generated using the total density,

density of the smaller nuclei (green), and density of the larger

nuclei (red) as classifiers, which resulted in an AUC of 0.844,

0.843, and 0.734 respectively (Fig. 5i). The sensitivity and

specificity associated with the Youden index for each classifier is

73%/80%, 73%/80%, and 77%/60% respectively.

Quantification of Nuclear Size and Density from Images
of the Resected Tumor Cavity

Panels of in vivo FM images captured from positive and negative

tumor margins were analyzed with SCA+CT (Fig. 6a–b). In this

case, two independent endpoints were measured. First, a

pathological diagnosis of the excised margin was obtained, which

yielded the clinical endpoint of pathologically positive (Path+) and

negative (Path2) margins. Additionally, mice were monitored for

local recurrence at the excision site for 120 days to distinguish

between mice that recurred locally (LR+) and mice that did not

recur locally (LR2). FM image panels of a LR+/Path+ and a

LR2/Path2 margin were captured in vivo by translating the

probe over the resection cavity. SCA+CT is able to isolate nuclei

from each panel, regardless of the presence of background. While

the density of each image in the panel could be quantified and

plotted, it is crucial to be sensitive to small pockets of residual

disease, which are characteristic of positive tumor margins. Thus,

the highest density regions in Fig. 6a and Fig. 6b were identified

and are shown in Fig. 6c and Fig. 6d respectively. The total

density, density of the smaller nuclei (green), and density of the

larger nuclei (red) in these regions are shown in Fig. 6e. Large

differences in the total density and density of the smaller nuclei

(green) are observed between LR+/Path+ and LR2/Path2

margins, while the larger nuclei (red) yields a small difference

between the margins.

Discussion

FM imaging of acriflavine stained tissue combined with an

algorithm that leverages sparse component analysis and circle

transform (SCA+CT) provides a rapid, non-destructive and

automated strategy for quantitative pathology of thick tissues with

non-uniform background heterogeneity. Unlike nuclear stains

such as DAPI, acriflavine stains connective tissue, such as skeletal

muscle and the outline of adipose cells, in addition to nuclei. Thus

in addition to being able to detect increased nuclear size and

density, which are traditional hallmarks of carcinogenesis, it is also

possible to place nuclei within the context of the entire histological

landscape, which is illustrated in the spatial curvelet overlay in

Fig. 1 [44,45]. The nuclei in the adipose region of the image are

spatially co-registered with the adipocyte outlines captured in the

curvelet bin. This information could be used to indicate whether a

nucleus is associated with benign tissue such as adipose or with

malignant tissue. While the focus of this manuscript was to

systematically evaluate the potential of SCA+CT to quantify

nuclear density for tumor margin assessment, there is the potential

to incorporate the context information illustrated in Fig. 1 in

future work. This combination of approaches provides a powerful

alternative to complicated and time-intensive immunohistochem-

istry techniques, which require fixing, sectioning, and staining and

which can only be performed on the excised margin. Further, the

ability to implement this technology to detect residual disease in

the tumor cavity (in vivo) is likely to be more predictive of local

recurrence.

SCA+CT achieved the lowest errors for higher contrast ratios

and larger nuclear sizes. Fig. 3 reveals that circle transform (CT)

may have a lower limit to the size of nuclei that it is able to detect.

More specifically, CT has difficulty identifying nuclei whose

diameter is less than 5 pixels. While tissue simulations provided

insight into the performance of SCA+CT and how it varies with

nuclear size, density, and contrast, we did not include variation in

the shape of our nuclei, which could bias the output of the circle

transform. Additionally, SCA+CT correctly isolates nuclei in ex

vivo images and shows consistently increased density in tumor and

tumor+muscle images compared to images containing muscle

(Fig. 4, 5). Furthermore, slightly larger differences in density were

seen between tumor+muscle and muscle images in the smaller

range of nuclear size (,8 mm diameter, green nuclei), suggesting

that using a combination of nuclear size and density information

Figure 4. SCA+CT applied to a panel of tissue section images illustrates trends in nuclear density. The specific locations where
fluorescence microendoscopy (FM) images (Original, (b)) were collected are indicated by squares in the H&E section (H&E, (a)). Nuclei were isolated
and quantified by using SCA+CT, which is illustrated in (d). For SCA+CT, nuclei are overlaid onto the original image. Nuclei that are greater than 8 mm
in diameter are false colored red, while those that are equal to or less than 8 mm are false colored green. The contrast of the original panel was
adjusted in (c) to match the SCA+CT overlay in (d) in order to enable direct visual comparison. Scale bar 200 mm. The diameter (e), total density (f),
density of the smaller nuclei (green, (g)) and density of the larger nuclei (red, (h)) were quantified for the 3 tumor images (images 3,6, 9), 3 muscle
images (images 1,4,7), and 3 tumor+muscle images (images 2,5,8). For diameter, the parenthetical values indicate the number of nuclei whose
diameter were quantified. For density, the parenthetical values indicate the number of images in which the density was calculated. In (e) the vertical
dotted red line corresponds to an 8 mm diameter, and the horizontal color bars show the mean and standard deviation for each variable.
doi:10.1371/journal.pone.0066198.g004
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Figure 5. SCA+CT yields differences between ex vivo tissue types. Representative H&E images (column 1) of tumor, tumor+muscle (T+M),
muscle, and adipose tissue and their corresponding fluorescence microendoscopy (FM) image (column 2) are shown (a)–(d) respectively. Nuclei were
isolated and quantified by using SCA+CT and were overlaid onto the original image, which is illustrated in column 4. Nuclei that are greater than
8 mm in diameter are false colored red, while those that are equal to or less than 8 mm are false colored green. In column 3, the contrast of the
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may achieve higher contrast between tumor+muscle and muscle

tissue images. For both the total density and density of the smaller

nuclei (green) in Fig. 5, the AUC was approximately 0.84 and the

corresponding sensitivity and specificity were 73% and 80%

respectively. It is difficult to comment on the clinical acceptability

of the performance of our method for several reasons. First, the

73% and 80% sensitivity and specificity is an estimate of our

methods performance when applied to distinguish between a small

cohort of positive and negative images acquired from a preclinical

model. To achieve a better estimate, we plan to image and analyze

a larger cohort of preclinical sarcoma margins as part of our future

efforts. Second, at this time intraoperative techniques for margin

assessment, such as intraoperative frozen sectioning, are not widely

used or accepted across clinics or institutions. Thus, it is difficult to

compare our method to another clinical method. Standard of care

includes visual inspection of the lesion by the surgeon and post-

operative histopathology of the excised margin. In soft-tissue

sarcoma, although reported rates of positive margins range from

10–18%, the local recurrence rates are higher (13–31%), which

could in part be due to incomplete sampling of the large tissue

samples in post-operative pathology, which underestimates the

true positive margin rate and the potential influence of adjuvant

radiation therapy [46,47]. Lastly, when used to image and

quantify the micro histology of the resection cavity, SCA+CT

shows higher nuclear density in the LR+/Path+ margin than the

LR2/Path2 margin (Fig. 6). The ability to implement this

technology directly within the resection cavity allows for the

detection of residual disease directly in the cavity rather than

inferring indirectly from the excised tumor margin, which may be

more predictive of eventual recurrence probability.

While SCA+CT is optimized in a sarcoma margin model with a

fluorescence microendoscope, the proposed strategy for perform-

ing in situ quantitative pathology lends itself easily to other types of

morphological imaging. Specifically, in this manuscript the impact

of contrast is investigated in Fig. 3 to essentially emulate different

contrast ranges that would be true of different microscopy

techniques. SCA+CT can isolate nuclei even at ratios of 1.2

(max tumor nuclei intensity/max background intensity). As

mentioned previously, Fig. 3 reveals that circle transform (CT)

may have a lower limit to the size of nuclei that it is able to detect

(less than 5 pixels). While this is potentially beneficial in that CT

will not pick up small artifacts or aberrations, it could also miss

nuclei if the pixel size is too large (and the resolution is too low).

Taken together, the analytical methodology described here may be

generalized to different imaging techniques and staining ap-

proaches as long as certain conditions are met. Specifically,

conditions include situations in which images have components or

sources that can be represented sparsely in a given basis (for

example nuclei in the pixel basis, muscle in a frequency basis) and

the elements of one basis cannot be sparsely represented in any of

original panel was adjusted to match the SCA+CT overlay in column 4. Scale bar 200 mm. The nuclear size (e), total density (f), density of the smaller
nuclei (green, (g)), and density of the larger nuclei (red, (h)) were calculated for a cohort of 8 tumor, 6 T+M, and 13 muscle images. For diameter, the
parenthetical values indicate the number of nuclei whose diameter was quantified. For density, the parenthetical values indicate the number of
images in which the density was calculated. In (e) the vertical dotted red line corresponds to an 8 mm diameter, and the horizontal color bars show
the mean and standard deviation for each variable. Significant differences are seen between tumor and muscle images for total density and the
density of the smaller nuclei (green). (i) An ROC curve was generated using total density, density of the smaller nuclei (green), and density of the
larger nuclei (red) as classifiers. The area under the curve (AUC) for each of the classifiers is 0.84, 0.84, and 0.73 respectively.
doi:10.1371/journal.pone.0066198.g005

Figure 6. Differences observed between in vivo margins. Fluorescence microendoscopy (FM) image panels of a local recurrence positive (LR+)/
pathology positive (Path+) (a) and a local recurrence negative (LR2)/pathology negative (Path2) (c) margin were captured in vivo by translating the
probe over the resection cavity. The nuclei from these images were isolated with SCA+CT, and nuclei were overlaid onto the original image. Nuclei
that are greater than 8 mm in diameter are false colored red, while those that are equal to or less than 8 mm are false colored green. Scale bar 200 mm.
The highest density regions seen in (a) and (b) were identified and are shown in (c) and (d) respectively. The total density, density of the smaller
nuclei (green), and density of the larger nuclei (red) in these regions were quantified and are shown in (e).
doi:10.1371/journal.pone.0066198.g006
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the other bases. Additionally, while standard Gaussian noise

models are assumed in the development of the SCA+CT

algorithm, the fundamental ideas can be easily extended to

photon noise models common in fluorescence, confocal, and

multiphoton microscopy [33,48–50].

In this study we did not focus on adipose tissue as our data set

primarily contained tumor and muscle tissues, which is charac-

teristic of sarcoma. Moving forward we plan to focus more on

adipose tissue, which may play a larger role in other heterogeneous

cancers, such as breast cancer, and explore how the information in

it may be used diagnostically. Additionally, we did not focus on

nuclear size quantification because our ability to delineate small

variations in nuclear size is limited by the resolution of the

fluorescence microendoscope. However, nuclear size may have

significant diagnostic value when examined in images that were

captured with a system that has higher resolution.

Fluorescence imaging of tissue micro-anatomy combined with a

specialized algorithm for delineation and quantification of nuclear

features is a means for rapid, non-destructive and automated

detection of microscopic residual disease in surgical tumor

margins. This strategy has the potential to be extended to other

tumors and organ sites with significant and non-uniform

background heterogeneity, can be seamlessly translated to the

in vivo setting, and ultimately may provide valuable quantitative

information to surgeons during a procedure.

Supporting Information

Figure S1 Image preprocessing. The original image of a

tumor+muscle site is shown in (a). (b) The image is first cropped to

remove the rim of the fiber bundle. (c) Next a low pass Gaussian

filter is applied to remove the fiber cores that are superimposed on

the image. The image displayed in (c) is the input into the sparse

decomposition algorithm.

(TIF)

Figure S2 SCA outputs from ex vivo tissue types. (a)–(d)

Representative high resolution images (column 1) of tumor,

tumor+muscle, muscle, and adipose tissue are shown in rows 1–

4 respectively. The approximation, spatial, DCT, and curvelet

outputs are shown in columns 2–5 respectively.

(TIF)

Methods S1 Description of additional methods.

(DOCX)
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