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Abstract: Polyolefin is the most widely used and versatile commodity polymer. In this work, three types
of polyolefin-based elastomers (PBEs) were adopted to toughen a high-flow polypropylene to improve
its overall performance. The chain microstructures of these PBEs, including ethylene/1-octene (E/O)
random copolymer from Dow Chemical′s polyolefin elastomer (POE), olefin block copolymers (OBCs)
of E/O from Dow, and ethylene/propylene random copolymer from ExxonMobil’s propylene-based
elastomer, were elucidated by GPC, 13C NMR, TREF, and DSC techniques. The mechanical, thermal
and optical properties, and morphology analysis of the PP/PBE blends were also studied to investigate
the toughening mechanism of these PBEs. The results showed that all three types of PBEs can effectively
improve the Izod impact strength of the PP/PBE blends by the addition of the rubber compositions, at
the cost of the stiffness. PBE-1 and PBE-2 were found to have a great stiffness–toughness balance with
about 1700 MPa of flexural modulus, about 110 ◦C of HDT and 3.6 kJ/m2 of impact strength on the
prepared PP/PBE blends by forming separated rubber phase and refined spherulite crystals. As a result,
the OBC with alternating hard and soft segments could achieve a similar toughening effect as the E/P
random copolymer. Surprisingly, no obvious rubber phase separation was observed in the PP/PBE-4
blend, which might be due to the good compatibility of the E/P random chains with the isotactic PP;
therefore, the PP/PBE blend obtains great toughness performance and optical transparency with the
highest Izod impact strength of 4.2 kJ/m2 and excellent transparency.

Keywords: polypropylene; polyolefin-based elastomer; polyolefin elastomer (POE); olefin block
copolymer (OBC); propylene-based elastomer; toughening effect

1. Introduction

Polyolefins are the most widely used and versatile commodity polymers, and their properties vary
from plastic to elastomer [1–4]. Since the discovery of Ziegler-Natta catalysts for olefin polymerization
in the 1950s, the production of polyolefins with various chain microstructures and properties has
continuously grown with rapid development of catalyst technology combined with polymerization
process innovation [5–14].

Polypropylene is undoubtedly one of the most robust material fields in the polyolefin production
and consumption market globally [15–18], with a current annual demand of about 56 million tons
in 2016 [19]. They are used in a wide range of applications ranging from packaging to lightweight
engineering plastics for automobile, electrical and electronics, construction, medical, equipment, and
facilities industries [20,21]. China now possesses the largest market share in PP production of above
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22 million tons. Due to rapid market expansion of takeout for dining box and automobile industries in
China, the high-flow homo polypropylene market has also witnessed a dramatic increase to about
above 600 kilotons annually in the recent few years.

Although the high-flow homo polypropylene with high melting index (typically above 50 g/10 min)
and good processability possesses high flexural modulus, the impact strength is relatively low compared
to the ethylene/propylene copolymer and easily suffers from brittle fracture [22]. In order to solve this
problem, two approaches are typically adopted to improve the overall performance of the polymer.
One alternative is to introduce an extra operation line for the incorporation of a small amount of
ethylene into the isotactic chain in the PP production facility, and the other method is to make
post-modifications of the high-flow polypropylene by blending elastomer with PP, and glass fibers for
automobiles [23–25].

The Polyolefin-based elastomers (PBEs) have received considerable attention because of their low
density, recycling potential, better chemical resistance, processing advantages, and good resilience
without permanent deformation. Unlike rubber, they do not require vulcanization. In addition, the
low cost together with the wide availability of ethylene, propylene and α-olefin monomers makes the
polyolefin-based elastomers more desirable. The ethylene/1-octene random copolymers (POEs) are a
typical class of PBEs, and they are produced by Dow Chemical′s constrained geometry catalyst (CGC)
metallocene catalysts in a solution process. Due to the single-site nature of CGC, they have a much
narrower short chain branching (SCB) distribution than the Ziegler-Natta catalysts. In contrast, Exxon
has developed the propylene-based ethylene/propylene elastomers using metallocene catalysts by the
Exxpol™ technology.

Recently, ethylene/1-octene multiblock copolymer (OBC) has been commercialized successfully
using Dow Chemical′s chain shuttling polymerization technique. The chain shuttling polymerization
employs two post-metallocene catalysts screened by high through-put technology and a chain shuttling
agent, and the two catalysts have totally different incorporation abilities of α-olefin, thus producing
different chain block, soft and hard PE segments, by a chain shuttling agent (diethyl zinc), and the
produced chains are composed of at least two alternating soft and hard segments [8,26]. This type of
multiblock chain structure gives the materials better elasticity at high temperature than their random
counterparts [27].

In this work, a comparative analysis on the microstructures of these polyolefin-based elastomers
was made by GPC, 13C NMR and TREF techniques. Then the toughening effects of these PBEs in the
PP/PBE blends were investigated to evaluate the overall performance and toughening mechanism.
A stiffness–balance–transparency relationship among the PP/PBE blends was established by the
mechanical and thermal properties and the crystalline and rubber phase structure analysis.

2. Materials and Method

2.1. Materials

High-flow homopolypropylene (H9018H) provided by Lanzhou Petrochemical Company
(PetroChina, Lanzhou, China) was employed in this work. Three types of polyolefin-based elastomers
(PBE) for toughening were used to blend with homo-PP, including one POE sample, two OBC samples
and one propylene-based elastomer sample. The POE (ENGAGE 8200) was purchased from a distributor
of Dow Chemical (SCG Chemicals, Bangkok, Thailand) and two OBCs (INFUSE 9100 and 9500) were
purchased from Dow Chemical (Midland, Michigan, USA) as pellets, and the PBE (Vistamaax 6202)
was purchased from ExxonMobil Company (Singapore) as pellets. Engage 8200 is an ethylene/1-octene
random copolymer produced by constrained geometry catalyst (CGC) technique from Dow Chemical
and designated as PBE-1. Infuse 9100 and 9500 are ethylene/1-octene multiblock copolymers produced
by Dow Chemical′s Chain Shuttling Polymerization technique [5,6], and are designated as PBE-2 and
PBE-3, respectively. Vistamaxx 6202, designated as PBE-4, is an ethylene/propylene random copolymer
produced by ExxonMobil′s metallocene catalyst technique.
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2.2. Sample Preparation

The PP/POE, PP/OBC and PP/PBE (90/10 weight percent for all samples) blends were extruded at
190 ◦C using a twin screw extruder (ZSE-34, LEISTRTIZE, Wiesbaden, Germany). The roller speed
was 80 rpm and the feed speed was set as 20%. Standard testing specimens for notched Izod impact,
flexural and tensile tests were prepared by an UN-100 Injection machine (Liuzhou Injection Molding
Machinery, Liuzhou, China) at an injection temperature of 200 ◦C, mold temperature of 40 ◦C and
injection pressure of 25 MPa. The PP testing samples were also prepared in the same procedure
for comparison.

2.3. Characterization

2.3.1. Mechanical Test

The notched Izod impact test was conducted on 23 ◦C and on a 92T Pendulum impact tester
(TINIUS OLSEN, Philadelphia, PA, USA) with a hamper energy of 2.0103 kJ/m2 according to GB/T
1843-2008. An Instron 5566 universal testing machine (Instron, Norwood, MA, USA) was used to test
the tensile and flexural performances at room temperature (23 ◦C) according to standards of GB/T
1040.1-2006 and GB/T 9341-2008, respectively. The melting index was conducted on a CEAST 7028
(CEAST, Turin, Italy) according to GBT 3682, and the heat distortion temperature is tested on XRW-300
(Jingjianjiance, Chende, China) according to GB/T 1634.1-2004. Before the test, all test specimens were
kept in 23 ◦C for 24 h, and the test result was an average value.

2.3.2. GPC and 13C NMR Analysis

Gel permeation chromatography (GPC) was conducted in a GPC-IR instrument (Polymer Char,
Valencia, Spain) using 1,2,4-trichlorobenzene as a solvent at 135 ◦C with a sampling concentration of
3 mg/mL and a sampling rate of 1.0 mL/min. 13C NMR spectra of samples were performed on a Bruker
(Breika, Massachusetts, USA) 500 MHz at 120 ◦C using o-C6H4Cl2/o-C6D4Cl2 (50% v/v) as a solvent
in a 10-mm tube. The spectra of the quantitative 13C NMR were obtained with a 74◦ flip angle, an
acquisition time of 1.5 s, and a delay of 4.0 s.

2.3.3. DSC and XRD Analysis

Differential scanning calorimetry (DSC) measurements were performed on a DSC 214 Polyma
instrument (NETZSCH, Selb, Germany). In order to eliminate the heat history of the sample, a 7-mg
sample was heated from room temperature to 200 ◦C under nitrogen protection at a heating rate of
30 ◦C /min, then cooled to 30 ◦C at a cooling rate of 20 ◦C /min. The melting curves were obtained
when heating the samples to 200 ◦C at the same heating rate once again, and crystallization curves were
recorded when cooling the samples to 30 ◦C. Wide-angle X-ray diffraction (WXRD) was performed on
a D8 ADVANCE diffractometer (Bruker, Karlsruher, Germany) using a 1-mm-thick sheet of samples.
The samples were scanned at 40 ◦C and 4◦/min under Cu-Kα irradiation (λ = 0.154 nm).

2.3.4. TREF

Temperature rising elution fractionation (TREF) was carried out in a model 200+ instrument
(Polymer Char, Spain). Standard Conditions were used in all analyses with 40 mg in 20 mL of
1,2,4-trichlorobenzene (TCB), 0.3 mL analysis sample volume, crystallization rate of 0.5 ◦C/min, and
elution rate of 1 ◦C/min.

2.3.5. Morphology Observation

Isothermal crystallization was observed using a polarized optical microscope, (DM2500P, Leica,
Weztlar, Germany). The specimens for SEM observation were prepared by the cryogenic fracture of the
injection molded bars under liquid nitrogen for 15 min and then etched in xylene at room temperature
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for 24 h for rubber phase removal. The fracture surface morphology was observed on a ULTRA plus
field-emission electron microscope (FESEM, Zeiss, Oberkochen, Germany), after being coated with a
thin layer of gold-palladium in vacuum.

3. Results and Discussion

3.1. Polyolefin-Based Elastomers

The high temperature GPC was used to determine their molecular weights (Mw and Mn) and
polydispersity index (PDI). We can see from the GPC elution curves (Figure 1) that the ethylene/1-octene
random copolymer (PBE-1) has the longest elution time which means it has the lowest average
molecular weight compared to other elastomers. The average molecular weight of the propylene-based
ethylene/propylene copolymer (PBE-4) is close to that of PBE-1. Due to the single-site nature of
metallocene catalysts, PBE-1 and PBE-4 have a narrower molecular weight distribution (close to 2)
compared to conventional Z-N catalysts. The olefin multiblock copolymers PBE-2 and PBE-3 have
shorter elution times and, therefore, have a much higher molecular weight. Via the chain shuttling
polymerization techniques in a continuous process, the molecular weight distributions of PBE-2 and
PBE-3 can also obtain narrow distribution close to Schulz-Flory distribution (Mw/Mn = 2) compared to
other multi-sites Z-N catalysts, with 2.9 and 2.7 of PDI, respectively [8,28,29]. The molecular weight
and PDI data are listed in Table 1.
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Table 1. Characteristics of the used polyolefin-based elastomers.

Entry Sample Mol% a Comon. Mw
b (kg/mol) Mn (kg/mol) PDI

1 PBE-1 12.2 (1-octene) 74.2 31.7 2.3
2 PBE-2 18.2 (1-octene) 178.2 62.1 2.9
3 PBE-3 15.1 (1-octene) 138 51.6 2.7
4 PBE-4 16.5 (ethylene) 89.2 38.7 2.3

a Molar fraction of comonomers in elastomers determined by NMR; b Determined by GPC.

As shown in Table 1, comonomers content in the polyolefin-based elastomers do not vary much,
roughly from 12% to 18%, with 12.2% 1-octene in the ethylene/1-octene random copolymer (PBE-1),
18.2% and 15.1% 1-octene in the olefin multiblock copolymers PBE-2 and PBE-3, respectively, and
16.5% ethylene in the propylene-based ethylene/propylene copolymer (PBE-4). The microstructure
differences of the PBEs could be more clearly exhibited from the 13C NMR results in Figure 2 and
Table 2. Table 2 provides the sequence fractions of the polyolefin-based elastomers obtained from the
13C NMR spectra [30–33]. From the NMR results, there is no OOO triad sequence detected in PBE-1,
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PBE-2 and PBE-3. Only a small amount of OO diad sequence about 0.8% exist in ethylene/1-octene
copolymers PBE-1 and PBE-3, and PBE-2 has about 1.6% OO diad sequence.
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Table 2. The triad and diad distributions of ethylene/1-octene and ethylene/propylene copolymers
obtained by 13C NMR.

Sample EEE
(%)

EEO +
OEE/EEP
+ PEE (%)

OEO/PEP
(%)

EOE/EPE
(%)

EOO +
OOE/EPP
+ PPE (%)

OOO/PPP
(%) EE (%)

EO +
OE/EP
+ PE (%)

OO/PP
(%)

PBE-1 66.05 20.66 1.62 10.08 1.59 0 76.38 22.82 0.80
PBE-2 54.27 21.76 6.03 14.67 3.27 0 65.15 33.12 1.63
PBE-3 60.26 20.54 3.41 14.25 1.54 0 70.53 28.7 0.77
PBE-4 0.03 4.25 11.31 2.76 25.13 56.52 2.15 28.77 69.08

Along the NMR, TREF is a useful tool to compare the molecular chain microstructure of these
PBEs. As seen from the TREF curves (Figure 8a), the PBE-1 and PBE-4 are typical ethylene/1-octene or
ethylene/propylene random copolymers with a major soluble peak, while PBE-2 and PBE-3 are typical
olefin block copolymer with characteristic multiblock peaks around 80–100 ◦C, which is different from
linear low density polyethylene (LLDPE) or high density polyethylene (HDPE), apart from the soluble
peaks. Comparing the two OBCs (PBE-2 and PBE-3), we found out that PBE-3 has higher soluble
fraction than PBE-2 with less 1-octene content, and that could be explained by a higher content of
multiblock peaks around 80–100 ◦C of PBE-2 observed in TREF curves.

3.2. PP/Polyolefin-Based Elastomer Blends

Three types of polyolefin-based elastomers including POE (PBE-1), OBC (PBE-2 and PBE-3) and
propylene-based ethylene-propylene copolymer (PBE-4) were used to blend with polypropylene.
The molecular structures of the three elastomers are shown in Figure 3. The molecular chain structure
of OBC consists of hard and soft segments with different lengths, while the whole molecular chain of
POE and propylene-based elastomer mainly consists of soft segments, which can be etched by xylene
in room temperature and shown as the rubber phase in the PP/PBE blend.
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To evaluate the overall performance of these PBEs, the mechanical and optical properties of the
PP and PP/PBE blends were tested, and the results are shown in Table 3. From Table 3, we can see
the three types of PBEs take a different blending effect on the PP/PBE blends. On one hand, all three
PBEs have a positive consequence on the toughening effect of the PP/PBE blends at the cost of the
stiffness of the blends. The flexural modulus of the PP is the highest at 1850 MPa, while the impact
strength is the lowest at 2.0 kJ/m2. Therefore, there is a need to toughen PP to improve the overall
performance of the final PP product. As seen from Figure 4, all of the four PBEs have efficiently
improved the toughness of PP blends. PBE-3 (OBC) raised the impact strength from 2.0 to 3.0 kJ/m2

with a 50% increase; PBE-1 (POE) and PBE-2 (OBC) increased the impact strength to 3.6 kJ/m2, an 80%
increase; and PBE-4 increased the impact strength to 4.2 kJ/m2, a dramatic 110% increase. The different
toughening effects could be due to the different molecular chain structures as seen in Figure 3.

Table 3. Mechanical analysis results of the PP and PP/PBE blends.

Entry f Sample
Melting

Index
g/10 min

Flexural
Modulus

MPa

Tensile
Yield

Stress MPa

Elongation
at Break

%

Impact
Strength
kJ/m2

HDT
◦C

Haze
(1 mm

Sheet) %

Xc,
WAXD

%

5 PP 73 1850 37.8 8.1 2.0 119 71 63.6
6 PP/PBE-1 53 1690 35.5 14.1 3.6 112 83 60.9
7 PP/PBE-2 53 1680 35.5 10.2 3.6 109 98 59.3
8 PP/PBE-3 55 1750 36.8 9.3 3.0 113 99 62.1
9 PP/PBE-4 54 1350 33.0 12.7 4.2 96 57 58.8
f PP/PBE (1/2/3/4) samples were mixed and melting extruded on PP to PBE (1/2/3/4) weight ratio 90:10, respectively.
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As for the overall performance of the final PP product, the balance between stiffness and toughness
needs to be taken into consideration. Despite the excellent toughening effect of PBE-4, the flexural
modulus and the heat distortion temperature decreased rapidly at the same time. It would not be
sufficient for use as a heat-resistant food container with 1540 MPa of flexural modulus and 96 ◦C of
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HDT. By the same token, the 3.0 kJ/m2 of impact strength for PBE-3 might not be good enough for
impact resistance. The PBE-1 and PBE-2 have a good balance between stiffness and toughness with
about 1700 MPa flexural modulus, about 110 ◦C HDT and 3.6 kJ/m2 impact strength, which would be
suitable for the use mentioned above.

The tensile yield stress of the PBEs has a similar trend to the flexural modulus on the PP/PBE
blends as seen in Table 3. The increases of the elongation at break are mainly due to the addition of the
polyolefin-based elastomers containing soft segment molecular chains.

On the other hand, the optical properties sometimes also need to be taken into account for the
appearance aspect. The haze results are list in Table 3. Although PBE-1 and PBE-2 have a great
stiffness–toughness balance on the final PP/PBE blends, the optical properties, especially the haze,
increased notoriously from 71% to 83% and 98% respectively, causing bad transparency. Furthermore,
the PBE-3 also has a similar influence on the PP/PBE-3 blend as it has the same type of elastomer as
PBE-2 (OBC), resulting in an opaque appearance with 99% of haze. In contrast, PBE-4 has the best
effect on the transparency of the PP/PBE blends, decreasing the haze from 71% to 57%, despite leading
to bad stiffness.

The transparency comparison can be clearly illustrated from the digital photos of the PP/PBE
blends in Figure 5. The text can be read from the 2-mm PP sheet, it is illegible from the PP/PBE-1 sheet,
and it is hard to identify for the PP/PBE-2 sheet, while the PP/PBE-4 provided a higher resolution
for the text. For this reason, the PP/PBE-4 blends would be an excellent material for transparent and
impact-resistant use, if not used in relatively high temperatures.
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3.3. XRD Analysis

Wide angle X-ray diffraction analysis were conducted to analyze the PP crystal type and content.
From Figure 6, the typical diffuse peaks of α crystal of PP can be observed with the 2θ of 14.1◦, 16.8◦ and
18.6◦, which are attributed to the (110), (040) and (130) crystal faces, respectively, and these peaks also
appears in the other four PP/PBE blends indicating that the major PP crystal type is α crystal. The tiny
characteristic peaks of β crystal could be seen in PP and the four PP/PBE blends with slight peaks either
around 16.1◦ or 21.1◦, which contribute to the (300) and (301) crystal faces, respectively, indicating
that PP and the PP/PBE blends contain slight β crystals. The peak around 20.5◦ is unobserved, which
shows that the γ crystal in PP and PP/PBE blends could be neglected.
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The relative crystallinity index from WAXD of PP and the PP/PBE blends were calculated in
Table 3. The crystallinity of PP is 63.6%, followed by PP/PBE-3 of 62.1%, PP/PBE-1 of 60.9%, PP/PEB-2
of 59.3%, and PP/PBE-4 of 58.8%. The stiffness (Flexural modulus and HDT) of PP and PP/PBE blends
are roughly in accordance with the crystallinity of the polymers. It would make sense that crystal
content is linear to stiffness with α formation as a major crystal. The polyoelfin-based elasomers used
in the PP/PBE blends make the PP spherulite size smaller as seen in the polarized optical microscope,
and thus decrease the crystallinity of PP; we will discuss the factor of crystal size in the morphology
section later.

3.4. DSC Analysis

As is well known, the thermal properties are strongly related with the crystallinity of the materials
and their microstructure. The DSC thermal analysis was carried out to exhibit the melting and
crystalline behavior. As seen from Figure 7a., the melting curve of PP/PBE-2 has two peaks. The peak
around 166 ◦C is attributed to the melting peak of the isotactic homo-PP, and the other distinctive peak
is due to the crystalline part of OBC containing both hard and soft segments in the molecular chain,
with the melting peak around 117 ◦C for the PP/PBE-2 blend. However, only one peak was visible in
the PP/PBE-3; the absence of the minor peak around 120 ◦C from the characteristic melting peak of
OBC might be due to the relatively low content of the soft-hard segment alternating OBC chain (see the
evidence from TREF results). From Figure 7b, a slightly shift to the right or a higher temperature range
of the starting point of crystallization temperature Tc (onset) can be noticed with the PP/PBE blends
compared to PP, signifying that the nucleating speed of the PP spherulite increased and crystal size
became smaller when the polyolefin-based elastomers were used.
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The melting temperature Tm, crystallization temperature Tc and the melting enthalpy of PP and
the PP/PBE blends from DSC analysis results are shown in Table 4. The crystallization peak of PP and
the PP/PBE blends are around 126 ◦C, and the melting endothermic enthalpy of the PP/PBE blends
diminishes in contrast to PP. The melting endothermic enthalpy ∆Hm can be used to calculate the
relative crystallinity Xc, thus the value of ∆Hm is a direct indication of the degree of crystallinity with
the highest Xc for the PP/PBE-3 and the lowest Xc for PP/PBE-4. This melting enthalpy comparison of
these materials is similar to the trend in the XRD results.

Table 4. DSC analysis results.

Sample Tc (Peak) ◦C Tc (Onset) ◦C Tm (Peak) ◦C ∆Hm J/g

PP 126.2 130.7 165.3 151.4
PP/PBE-1 126.8 131.3 165.7 134.4
PP/PBE-2 126.7 131.4 165.8 129.3
PP/PBE-3 126.1 130.8 167.1 139.9
PP/PBE-4 126.2 131.1 165.9 128.9

3.5. TREF Analysis

To explore the microstructure of the polyolefin-based elastomers and the toughened PP/PBE
blends, the TREF technique was adopted to characterize the Chemical Composition Distribution
(CCDs) of these materials. As reasoned before, Figure 8a shows the TREF analysis of three types
of polyolefin-based elastomers (PBE-1/PBE-2 and PBE-3/PBE-4). In the POE (PBE-1) curve, only a
soluble fraction peak appears, which is attributed to the ethylene/1-octene (E/O) random copolymer.
While in addition to the SF peak, extra peaks in the higher temperature range (80–100 ◦C) exist in the
curves of OBCs (PBE-2 and PBE-3). The CCDs of SF in OBC are supposed to be similar with the SF in
the POE and basically consist of an ethylene/1-octene random copolymer (soft segment); the CCDs
in the higher temperature are due to the molecular chain with alternating hard and soft segments
produced by the chain shuttling polymerization technology. The hard segment is composed of a
polyethylene chain with a trace 1-octene comonomer, if any scattered in the chain, and the soft segment
as mentioned above is composed of an ethylene/1-octene random copolymer. Obviously, the chemical
composition and CCDs vary in the two OBCs, and PBE-2 contains harder–softer segment alternating
molecular chains. From the impact test results, we can reasonably infer that the hard–soft segment
alternating molecular chains could possess as excellent a toughening effect as the ethylene/1-octene
random molecular chain [34].
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The third type of PBE is a propylene-based propylene/ethylene copolymer, and most
propylene/ethylene (P/E) copolymer chains are soluble, which indicates that the PBE-4 consists
basically of the E/P random copolymer. As seen in Table 5 of the TREF analysis results, PBE-4 contains
93.5% soluble fraction, and only a small part of the fractions in 58, 64 and 73 ◦C might be ascribed to
higher molecular chain regularity of PPPP (mmm) sequence distribution, which could be discovered
in a 46.5 ppm small peak in the 13C NMR of PBE-4 [32,33]. At the same time, the PPPPP (mmmm)
sequence in 21.8 ppm in the 13C NMR is not observed, which is in compliance with the absence of a
peak around 120 ◦C of isotactic PP of TREF analysis.

From Figure 8b, we can identify the highly isotactic homo-polypropylene around 122 ◦C in PP and
the PP/PBE blends. Except for the highly isotactic PP of 87% in the homo-PP, there is a small peak of SF
of 3.1% (see Table 5) for atactic PP, and other CCDs with less regularities of PP chain structures around
52, 66 and 89 ◦C are also listed in Table 5, despite not obviously being in these zones. The PP/PBE-1
blend has 12.6% of SF, and this value is high above the SF from PP, which is attributed to the atactic PP
and E/O random copolymer from POE. Similarly, part of the SF of the PP/PBE-2 and PP/PBE-3 blends
belong to the soluble E/O random copolymer. Moreover, the peak at 88 ◦C in the PP/PBE-2 blends
and peaks at 87 and 93 ◦C in the PP/PBE-3 blends are mainly due to the alternating hard and soft
segments from PBE-2 and PBE-3, respectively. As for the PP/PBE-4 blends, the E/P random copolymer
compositions account for the increased soluble fraction.

Table 5. TREF analysis results.

Sample Item Soluble
Fraction (SF) Peak 1 Peak 2 Peak 3 Peak 4

PBE-1 T/◦C - - - -
Area/% 100 - - - -

PBE-2 T/◦C - - 87.7 -
Area/% 34.1 - - 65.9 -

PBE-3 T/◦C - 86.0 94.6 -
Area/% 60.1 - 33.2 6.7 -

PBE-4 T/◦C 58.0 64.0 73.3 94.1
Area/% 93.5 3.9 1.1 0.8 0.8

PP T/◦C 52.2 65.9 89.3 122.0
Area/% 3.1 4.3 3.1 2.5 87.0

PP/PBE-1 T/◦C 51.2 66.3 93.2 122.1
Area/% 12.6 1.7 1.4 2.5 81.8

PP/PBE-2 T/◦C 50.1 73.5 88.1 121.5
Area/% 6.3 1.5 1.9 13.6 76.6

PP/PBE-3 T/◦C 60.8 86.9 93.5 121.7
Area/% 9.8 1.9 6.9 2.5 78.9

PP/PBE-4 T/◦C 53.1 67.6 86.8 121.6
Area/% 10.6 3.0 1.5 1.3 83.5

3.6. Morphology Analysis

In order to evaluate the toughening and optical effects of these polyolefin-based elastomers on
the PP/PBE blends, polarized optical microscope (POM) and scanning electron microscope (SEM)
analysis would be quite effective for the investigation of the crystal and rubber size. As shown in
Figures 9 and 10, the spherulite size of PP is the biggest among these materials, and the spherulite
size could be up to 10 µm; and there are seldom rubber phases in the PP matrix (the formed holes by
xylene etching as seen from the SEM images), which leads to its poor impact performance. When these
polyolefin-based elastomers were used to modify PP, the crystal size of their PP/PBE blends became
smaller, and the rubber phase can be observed evidently in the PP/PBE-1, PP/PBE-2 and PP/PBE-3
blends. That is the main reason for toughening the PP matrix.
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It would be beneficial to have a smaller crystal size for light transmission of these materials,
however, the large size of the rubber in the PP/PBE-1, PP/PBE-2 and PP/PBE-3 blends, meanwhile,
hinders the transmission of light. Generally, when the rubber size is above the wavelength of the visible
spectroscopy (roughly 400–800 nm), the transmittance of the materials will drop and the haze will rise.
In the PP/PBE-3 blend, the rubber size is up to about 2 µm, and the haze of the blend climbs to 99%.

Surprisingly, the rubber phase by xylene etching can be rarely observed in the PP/PBE-4 blend with
less than 200 nm rubber apertures scarcely scattered in the cross section. This explains why the PP/PBE
blend has better transparency for visible spectroscopy with a smaller crystal size. Furthermore, as can
be inferred, the propylene-based E/P copolymer has good compatibility with the isotactic homo-PP
molecular chain, forming no apparent phase separation; therefore, this great compatibility also results
in a distinctive toughening effect.

4. Conclusions

The molecular chain structures of the polyolefin-based elastomers were thoroughly studied by
GPC, 13C NMR, TREF, and DSC techniques. Despite the different microstructures, all three types
of PBEs can effectively improve the toughness of the PP/PBE blends by the addition of the rubber
compositions. PBE-1 and PBE-2 have great stiffness–toughness balance with about 1700 MPa of flexural
modulus, about 110 ◦C of HDT and 3.6 kJ/m2 of impact strength on the prepared PP/PBE blends
by forming separated rubber phase and refined spherulite crystals. The toughening mechanism of
the PBEs were further investigated by TREF, DSC, XRD, POM, and SEM. The results showed that
the rubber size has a significant influence on stiffness and optical properties of the PP/PBE blends.
The PBE-2 with alternating hard and soft segments could achieve a similar toughening effect as the E/P
random copolymer (PBE-1) when a similar sized rubber phase was formed. Unexpectedly, no obvious
rubber phase was observed in the PP/PBE-4 blend. Due to the excellent compatibility of the E/P random
chains with the isotactic PP, the PP/PBE blend obtained great toughness performance and optical
transparency with the highest Izod impact strength of 4.2 kJ/m2 and excellent transparency. This is
significantly important for the research and development of high-performance novel PP products with
great stiffness–toughness balance or transparent and impact-resistant PP for industrial applications.
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