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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a worldwide
epidemic. It spreads very fast and hits people of all ages, especially patients with
underlying diseases such as diabetes. In this review, we focus on the influences of
diabetes on the outcome of SARS-CoV-2 infection and the involved mechanisms
including lung dysfunction, immune disorder, abnormal expression of angiotensin-
converting enzyme 2 (ACE2), overactivation of mechanistic target of rapamycin (mTOR)
signaling pathway, and increased furin level. On the other hand, SARS-CoV-2 may trigger
the development of diabetes. It causes the damage of pancreatic b cells, which is
probably mediated by ACE2 protein in the islets. Furthermore, SARS-CoV-2 may
aggravate insulin resistance through attacking other metabolic organs. Of note, certain
anti-diabetic drugs (OADs), such as peroxisome proliferator-activated receptor g (PPARg)
activator and glucagon-like peptide 1 receptor (GLP-1R) agonist, have been shown to
upregulate ACE2 in animal models, which may increase the risk of SARS-CoV-2 infection.
However, Metformin, as a first-line medicine for the treatment of type 2 diabetes mellitus
(T2DM), may be a potential drug benefiting diabetic patients with SARS-CoV-2 infection,
probably via a suppression of mTOR signaling together with its anti-inflammatory and anti-
fibrosis function in lung. Remarkably, another kind of OADs, dipeptidyl Peptidase 4 (DPP4)
inhibitor, may also exert beneficial effects in this respect, probably via a prevention of
SARS-CoV-2 binding to cells. Thus, it is of significant to identify appropriate OADs for the
treatment of diabetes in the context of SARS-CoV-2 infections.

Keywords: SARS-CoV-2 (2019-nCoV), COVID – 19, diabetes - quality of life, OADs, immunocellular response
1 INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2)-a novel b-coronavirus, has influenced over 100 million people. This SARS-CoV-2
strain has become the third most lethal pathogenic human coronavirus since SARS-CoV-1, which
was responsible for severe acute respiratory syndrome (SARS) in 2002 (1), and Middle-East
respiratory syndrome coronavirus (MERS-CoV), which was responsible for MERS in 2012 (2).
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The coronavirus belongs to a large family of single-stranded,
enveloped RNA viruses, which can be divided into four genera:
a-, b-, g- and d- coronavirus (3). All of the above 3 viruses belong
to the b-genus (1, 2, 4), sharing a structural analogy (4, 5).
Although the pathophysiological mechanisms and clinical
invasiveness of SARS-CoV-2 have not yet been fully
investigated, it probably, at least in part resembles SARS-CoV-
1 and MERS-CoV.

There are more and more studies demonstrating the
association between COVID-19 and diabetes, disclosing that
these two diseases appear to be bi-directional. Diabetes may
magnify the pathogenicity of SARS-CoV-2 because part of
pathological mechanisms of diabetes overlaps with COVID-19,
resulting in an increase in susceptibility and severity of COVID-
19 among diabetic patients. Investigation of the underlying
mechanisms would contribute to improve the clinic outcomes
of these patients. On the other hand, SARS-CoV-2 infection may
induce new onset diabetes, which could be possibly overlooked
by nonendocrinologists. Thus, this review focuses on the bi-
directional interaction between SARS-CoV-2 and diabetes and
the possible mechanisms. Moreover, some glucose lowering
agents may provide extra benefits for COVID-19 treatment,
which may disclose some new clues for the treatment of non-
diabetic patients with SARS-CoV-2 infection.
2 IMPACT OF PRE-EXISTING DIABETES
ON COVID-19 PROGRESSION

Emerging data indicates that patients with diabetes are at a
higher risk of SARS-CoV-2 infection. In one SARS-CoV-2 study,
which includes 1,099 patients from 552 hospitals in China, the
rate of diabetes was around 15%, including children and adults
(6). Diabetes was reported in 34.6% of the subjects with a
composite endpoint including intensive care unit admission,
requirement for ventilation, and death (7). Moreover, a study
with 5700 patients in New York City, USA, identified that one of
the most common comorbidities caused by SARS-CoV-2 was
diabetes, with a rate of 33.8% (8). Stokes et al. reported that, as of
May 30, 2020, in a population of about 1.3 million patients with
SARS-CoV-2 infection in the USA, around 30% of whom have
been suffering from diabetes (9). Of note, the exact rates of type 2
diabetes mellitus (T2DM) in patients with SARS-CoV-2
infection vary. The inconsistent rate can be attributed to the
diagnosis of both conditions, which depends on the testing
methods of SARS-CoV-2 (nasal test or pharyngeal test, nucleic
acids or antibodies), enrolled population (out-patient or
hospitalized patients), the severity of illness (mild or severe
symptom), sample sizes, and different locations.

In addition, diabetic patients are associated with a more
severe course of COVID-19, who account for a higher
proportion of intensive care unit (ICU)-admitted cases. A
retrospective cohort study of 7,337 patients with SARS-CoV-2
infection in China showed that subjects with T2DM had a
significantly higher mortality and morbidity of multiple organ
injury than the non-diabetic individuals (10). The authors
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further demonstrated that the in-hospital death rate was
significantly lower in the well-controlled blood glucose group
relative to the poorly controlled group (10). An analysis of a
randomly selected subset of fatal SARS-CoV-2 cases in Italy
revealed a high prevalence of diabetes, with a rate as high as
35.5% (11). A COVID-19 study in Pisa, Italy identified that the
mortality of SARS-CoV-2 patients was greater in hyperglycemia
subjects (about 39.4%) than in patients with normal glycemia
(about 16.8%) (12). The authors concluded that hyperglycemia
acts as an independent factor associated with severe prognosis in
hospitalized patients with SARS-CoV-2 infection (12). Lately, a
large study relevant to diabetic patients from the Chinese Center
for Disease Control and Prevention with 72,314 SARS-CoV-2
cases across the Mainland China also showed a higher fatality
rate in diabetic patients (7.3% vs. 2.3% overall) than regular
patients, second only to patients with cardiovascular diseases
(13). A meta-analysis based on six published clinical studies
further confirmed the negative influence of diabetes on SARS-
CoV-2 infection, that diabetic patients displayed 2.95-fold higher
risk of fatality after SARS-CoV-2 infection, compared to those
without diabetes (14). However, most of these studies did not
indicate whether the included patients were type 1 diabetes
mellitus (T1DM) or T2DM. In addition, stratified analyses
according to Hemoglobin A1c (HbA1c), insulin sensitivity,
b cell function, and c peptide level were limited.

Likewise, patients with SARS-CoV-2 infection display increased
risk of ketosis and hyperglycaemic emergencies. One observation
retrieved from the Chinese population described that 42 (6.4%) out
of 658 patients with SARS-CoV-2 infection presented with ketosis
on admission with no obvious fever or diarrhea, and 3 (20.0%) out
of the 15 COVID-19 cases with diabetic ketosis developed acidosis
(15). Of note, there was only one T1DM among these included
patients, indicating that it was T2DM rather than T1DM tended to
develop ketosis under the context of COVID-19. A recent
retrospective analysis characterized 35 T1DM and T2DM patients
with hyperglycaemic emergencies including diabetic ketoacidosis
(DKA), hyperosmolar hyperglycaemic state (HHS), and
hyperglycaemic ketosis in the context of SARS-CoV-2 from three
hospitals in north London in UK. They concluded that SARS-CoV-
2 is associated with the occurrence of hyperglycemia emergencies
with overrepresentation of T2DM in patients presenting with DKA
and long-lasting ketosis (16). Accordingly, ketone monitoring
becomes very important among diabetic patients in the COVID-
19 epidemics, especially in T2DMpatients. Howbeit, the sample size
of these studies was relatively small. Larger study population and
longer observation were needed.

3 POTENTIAL MECHANISMS OF
DIABETES ON COVID-19 PROGRESSION

The reasons for increased risk of coronaviral infection in diabetic
patients are not fully identified. Multifarious mechanisms are
possibly involved in the disease susceptibility and progression.
Particularly, previous investigations on SARS-CoV-1 andMERS-
CoV may provide evidence on the pathophysiology of SARS-
CoV-2 infection in patients with diabetes.
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3.1 Diabetes and Lung Dysfunction
Diabetes is associated with a change in lung physiology and
structure. It has been reported an increase of extracellular matrix
synthesis in the pulmonary alveolar wall in diabetic rat model,
resulting in a reduction of lung elasticity and a decrease in
alveolar space (17). Furthermore, Weynand et al. identified that
alveolar epithelial basal lamina in diabetic patients was
significantly thicker than that in healthy subjects. This result
reveals that hyperglycemia leads to the thickening of the
pulmonary microvascular wall (18), which potentially
participates in the damage of alveolar-capillary membrane, and
in turn, reduces the gas diffusion rate in diabetic patients (19).

The above structure changes in lung result in abnormalities of
pulmonary function including lung volume, pulmonary diffusing
capacity, pulmonary ventilation, bronchomotor tone, and
neuroadrenergic bronchial innervation (20). A prospective
study of 125 patients with T2DM revealed that absolute and
percentage-predicted lung function measures including forced
vital capacity (FVC), forced expiratory volume in 1 s (FEV1),
vital capacity (VC), and peak expiratory flow (PEF) were
significantly reduced after 7-year follow-up (21).

Accordingly, the impaired pulmonary function in patients
with pre-existing diabetes may partly explain the susceptibility
and poor outcomes of diabetic patients after SARS-CoV-2
infection (Figure 1).

3.2 Diabetes and Immune Dysfunction
Diabetes, even a short-term hyperglycemia, has been shown to
impair the balance of immune system (22). Although the
immunologic mechanisms induced by SARS-CoV-2 are not
fully elucidated, existing data derived from the close
counterparts SARS-CoV and MERS-CoV may bring some
enlightenment. Part of mechanisms of immune dysfunction
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between diabetes and COVID-19 may cross, including
impaired neutrophil function, pro-inflammatory inclination
and T cell imbalance under hyperglycemia.

3.2.1 Diabetes and Impaired Neutrophil Function
In the innate immune response, neutrophils play a crucial role in
chemotaxis and phagocytosis. Under hyperglycemia, neutrophil
dysfunction has been observed in both humans and rodents (23).
Possibly, acute hyperglycemia impairs the respiratory burst
capacity of neutrophils, the process by which immune cells
release toxic chemicals and kill pathogensr (24). Moreover,
hyperglycemia reduced neutrophil degranulation (25) and
impaired superoxide production from activated neutrophils (26).

Thus, impaired neutrophil function leads to an increase in
risk and severity of infections (Figure 1), suggesting that glucose
homeostasis in patients with SARS-CoV-2 infection may help to
stabilize the ability of neutrophils for a proper innate immune
response. Interestingly, a significant increase in neutrophil
counts was observed in patients with both diabetes and SARS-
CoV-2 infection (10, 12). Howbeit, few literature have described
the function of neutrophils under the context of SARS-CoV-2
infection, which requires further investigation.

3.2.2 Diabetes and Pro-Inflammatory State
It has been known that both diabetes and obesity cause a low
grade pro-inflammatory state in the body with increased
secretion of cytokines including interleukin (IL)-1, IL-6, IL-8
and tumor necrosis factor-a (TNF-a) (23). In diabetic and obese
patients, excess cytokines in circulation keep the immune system
in “threat” mode.

This hypercytokinemia seems to play a crucial role in the
development of pulmonary fibrosis (27, 28). Evidences show that
cytokine storm, also known as cytokine release syndrome (CRS),
FIGURE 1 | Potential mechanism of diabetes on the susceptibility and severity of COVID-19. ACE2, Angiotensin-converting enzyme 2; AMPK, Adenosine 5’-
monophosphate-activated protein kinase; IL, interleukin; mTOR, mechanistic target of rapamycin; RBD, receptor binding domain; SARS-CoV-2, severe acute
respiratory syndrome coronavirus 2; TD, transmembrane domain; Th17, T helper 17; TNF-a, tumor necrosis factor-a; Treg, regulatory T.
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might be involved in lung injury and increased mortality, thus
playing a major role in severe COVID-19 cases. Inflammatory
cytokines and chemokines, including IL-1b, IL-2, IL-4, IL-6, IL-
7, IL-10, IL-12, IL-17, TNF-a, interferon- g (IFNg), interferon
gamma- induced prote in 10 (IP10) and monocyte
chemoattractant protein-1 (MCP-1), were significantly elevated
in COVID-19 patients (29–34), some of which overlap with the
cytokine panel in diabetes.

Among those overlapped cytokines, IL-6 is of particular
interest and appears to be closely related to the occurrence of
severe SARS-CoV-2 infection. It is an important pleiotropic
cytokine, which is involved in acute inflammatory response
and lung injury (35). In addition, elevated levels of IL-6 were
observed in patients with SARS in 2004 and, in particular, were
positively correlated to disease severity (36). A retrospective,
multicentre cohort study in Wuhan in this epidemic found that
IL-6 levels were closely associated with the mortality in patients
with SARS-CoV-2 infection (34). Likewise, ICU patients with
severe pneumonia in another study also showed a significant
elevation in plasma level of IL-6 (37).

Importantly, serum levels of IL-6 in patients with diabetes
and SARS-CoV-2 infection were significantly higher than those
in non-diabetic patients (10, 38). This might be explained by that
the increased cytokine baseline level and pro-inflammatory state
observed in diabetic patients are further amplified by SARS-
CoV-2 infection (Figure 1), resulting in an aggressive
inflammatory response, even CRS.

3.2.3 Diabetes and T Cell Imbalance
It has been demonstrated that in patients with either T1DM or
T2DM, some “helpful” immune cells including certain subsets of
CD4+ and CD8+ T cells are decreased, while some
proinflammatory immune cells, such as T helper 17 (Th17)
cells, are increased (39). Data supports the concept that Th17/
regulatory T (Treg) cell mediated immune responses are
involved in the pathogenesis in obesity-related T2DM (39).

A previous evidence demonstrated that acute intracellular
bacterial infection in the diabetic host was associated with the
Th17/Treg-mediated immune imbalance, resulting in
exaggerated inflammatory cascades (40). In 2019, Kulcsar et al.
created a diabetic mouse model with the expression of human
dipeptidyl peptidase 4 (DPP4), which is identified as the cellular
binding site for MERS-CoV (41). These mice developed severe
infection and displayed a more prominent Th17 response with
increased levels of IL-17. Due to the viral homology between
SARS-CoV-2 and MERS-CoV, it is speculated that Th17/Treg-
mediated immune responses may play an essential role in the
aggravation of SARS-CoV-2 infection in diabetic patients.

It has been revealed that the pathological characteristics of
COVID-19 observed by postmortem pathology greatly resemble
those observed in SARS-CoV-1 and MERS-CoV infection (42).
In this SARS-CoV-2 case, pro-inflammatory T cells were
overactivated, manifested by increase of CCR4+CCR6+ Th17
cells and high cytotoxicity of CD8+ T cells (42). Notably, an
extensive multi-omics dataset demonstrated that the frequencies
of CD4+ T cells that can secrete Th17 cytokines, including IL17-
A and IL17-F, are increased in SARS-CoV-2 infected patients
Frontiers in Endocrinology | www.frontiersin.org 4
(43). Moreover, Pacha et al. indicated that the severity of disease
is positively correlated with plasma levels of IL-17 and other
Th17 cell-related cytokines (33). Specifically, Qin et al. identified
that patients with SARS-CoV-2 infection also show lower levels
of Treg cells, which are even lower in severe cases (44).

Thus, SARS-CoV-2 may affect circulating immune cells and
exacerbate the uncoordination of the innate immune system,
which are previously present in diabetic patients, and therefore,
resulting in a deluge of inflammatory cytokines and a further
damage of the organs (Figure 1).

3.3 Diabetes and mTOR Signaling
During the progression of T2DM, Adenosine 5’-monophosphate
(AMP)-activated protein kinase (AMPK) is inactivated, leading to
a chronic overactivation of mechanistic target of rapamycin
(mTOR) C1 (45), which has been associated with insulin
resistance and progression of diabetes-induced complications (46).

Increasing evidences also highlight mTOR as a key factor in
regulating the replication of viruses. Rapamycin, which is a
mTOR inhibitor, was found to be a potent inhibitor for the
RNA replication of hepatitis C virus (HCV) (47) and MERS-CoV
(48). In patients with severe H1N1 pneumonia, early adjuvant
treatment with corticosteroids and mTOR inhibitor effectively
blocked the expression of viral protein and the release of virion,
and therefore, significantly improved the prognosis of disease
(49). These findings disclose a potential anti-viral treatment for
the patients with SARS-CoV-2 infection through an inhibition of
the metabolic sensor mTOR.

It is known that stress-induced Regulated in Development
and DNA Damage Responses 1 (REDD1) negatively regulates
mTOR activity (50). Interestingly, IL-6, which is closely related
to the progression and severity of COVID-19, directly enhances
the activation of mTOR by reducing the expression of REDD1
(50). On the contrary, IL-37 performs its immunosuppressive
activity by targeting mTOR as well, suggesting that IL-37
administration may be a possible therapeutic strategy for
SARS-CoV-2 treatment (51). More importantly, a recent study
tested 16 repurposable anti-human coronavirus (HCoV) drugs,
that may provide a synergistic effect for the treatment of SARS-
CoV-2, by analyzing their drug-gene signatures and HCoV-
induced transcriptomics in human cell lines. Among these
candidates, Sirolimus, which consists of an mTOR inhibitor
and dactinomycin, may be a potential drug for COVID-19
treatment (52).

Thus, these findings suggest that the dysregulation of AMPK/
mTOR signaling in the setting of T2DM may be a plausible
explanation for the increased susceptibility of diabetic patients to
COVID-19 (Figure 1).

3.4 Diabetes and ACE2
Angiotensin-converting enzyme 2 (ACE2) is a transmembrane
glycoprotein which is expressed in organs throughout the whole
human body, mainly in lung, intestine, kidney, blood vessels, and
pancreas. The renin-angiotensin system (RAS) signaling
pathway comprises both ACE, which metabolizes angiotensin I
(Ang I) into angiotensin II (Ang II), and ACE2, which degrades
Ang II to Ang 1-7 peptide (53). It has been reported that both
October 2021 | Volume 12 | Article 731974
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SARS-CoV-1 and SARS-CoV-2 bind and gain entry to infected
cells through ACE2 (4, 54), so that increased expression of ACE2
may contribute to increased chances of SARS-CoV-2 infection.

However, the role of ACE2 in the crosstalk between COVID-
19 and diabetes is still a matter of debate, which may be largely
attributed to the inconsistent expression of ACE2 in different
tissues and stages of diabetes (Figure 1). The effect of
hyperglycemia on the expression of ACE2 in different organs
was investigated in non-obese diabetes (NOD) mouse models
with the increased expression of ACE2 in the serum, liver, and
pancreas (55). In rats with streptozotocin-induced diabetes, there
also showed an upregulation of ACE2 in isolated jejunal
enterocytes (56). In addition, in adipocytes from obese and
diabetic patients, an increased expression of ACE2 was also
observed, suggesting that adipose tissue is a viral reservoir and
could be a potential target for antiviral treatment (57). Recently,
a phenome-wide Mendelian randomization study has explored
and identified T2DM as a disease causally associated with
increased expression of ACE2 (58).

Surprisingly, Roca-Ho et al. has reported that the activity ratio of
ACE2/ACE in the lung was significantly decreased in the late-stage
of diabetes in NOD Mouse (55). Although a study from Wysocki
et al. has concluded that ACE2 expression was increased at the
posttranscriptional level in the renal cortex in diabetic mice (59),
ACE2 expression was shown to be decreased in the tubules in
individuals with overt diabetic nephropathy (60).

Remarkably, it remains controversial whether an increased
expression of ACE2 is responsible for the increased infectivity
and severity of COVID-19. Some authors even consider that
ACE2 plays a beneficial role in patients with COVID-19 (61, 62).
It was demonstrated that ACE2 protects murine lungs from
acute respiratory distress syndrome (ARDS) by decreasing
inflammation and vascular permeability (63, 64). Previous
studies have shown that the transmembrane spike (S)
glycoprotein of SARS-CoV-1 downregulates ACE2 by shedding
its ectodomain, an enzymatically active domain, and
transforming it to soluble ACE2 (sACE2) (65–68).
The biological function of sACE2 remains poorly investigated.
However, it is assumed that sACE2 may act as a competitive
interceptor for SARS-CoV-2 by inhibiting the binding of the S
protein to ACE2 (69). A recent study has shown that treatment
with clinical-grade human recombinant soluble ACE2
(hrsACE2) in vitro significantly inhibited the growth of SARS-
CoV-2 in the monkey kidney cells (70), indicating that sACE2
potentially prevents SARS-CoV-2 infection. Howbeit, whether
sACE2 plays a role in the disease progress in diabetic patients
with SARS-CoV-2 infection remains unknown.

Taken together, ACE2 not only serves as a portal entry for
SARS-CoV-2, but also plays a protective role against lung injury
in its soluble form. The contradictory function of ACE2,
especially, its role in the state with both diabetes and SARS-
CoV-2 requires further investigations.

3.5 Diabetes and Furin
Afore mentioned transmembrane S protein of coronavirus is
composed of two functional subunits: S1 region, which is
responsible for its binding to the host cell ACE2 receptor, and
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S2 region, which is responsible for fusion of the viral RNA and
cellular membranes. The S1 region could be cut and released by
proteases, following by the entry of virus into the cells (71). It was
previously discovered that MERS-CoV S protein can be activated
by furin, a common protease responsible for membrane fusion
(72). Likewise, it has been identified a furin cleavage site at the
S1/S2 boundary of SARS-CoV-2 (73), indicating that furin could
also cleave SARS-CoV-2 S protein (74) and possibly promote the
viral entry.

Interestingly, diabetic patients show increased levels of furin
(75). It may be driven by osteopontin, which is a cytokine-like
matrix-associated phosphoglycoprotein and is shown to be
elevated in diabetes (76). In addition, both T1DM and T2DM
are associated with higher levels of plasmin(ogen), a protease
enzyme that can cleave S protein of SARS-CoV-2 at furin site (77,
78). Thus, increased levels of furin and plasmin may aggravate
the viral infection through assisting their entry, fusion,
duplication, and release in cells.
4 COVID-19 MAY TRIGGER/WORSEN THE
DEVELOPMENT OF DIABETES

As described above, diabetes worsens SARS-CoV-2 infection
through mechanisms including impairing the pulmonary
structure and function, disturbing the immune function,
enhancing the expression of ACE2, overactivating the mTOR
signaling, and inducing the furin levels. However, interplay
between diabetes and COVID-19 appears to be bi-directional,
as new onset diabetes has been observed in patients with SARS-
CoV-2 infection (79). Multicenter regional data from North
West London reported that thirty children, aged 23 months to
16.8 years, displayed new onset T1DM in this season. In
comparison with the data from a typical year, it represents an
additional 12-15 new T1DM cases with an increase rate of 80%
during the COVID-19 pandemic (80).

These observations revealed a potential diabetogenic effect of
COVID-19. The so induced diabetes may be different from the
well-recognized notion of hyperglycemia induced by severe
illness-associated stress response. To address the issues about
the frequency, phenotype, and pathophysiology of SARS-CoV-2-
induced new onset diabetes, an international group of leading
diabetes researchers participating in the CoviDIAB Project have
established a global registry of patients with SARS-CoV-2-related
diabetes (covidiab.e-dendrite.com) (81).

The theoretical basis of new onset diabetes induced by SARS-
CoV-2 could be supported by the findings of ACE2 expression in
both exocrine and endocrine pancreas (islet cells) (82). In addition
to lung, SARS-CoV-2 also attacks other organs and tissues
including liver, brain, cardiovascular system, gastrointestinal
system and pancreas, largely because of the wide distribution of
ACE2 in those organs. Interestingly, the expression of ACE2 on the
mRNA level in pancreas is slightly higher than that in the lung (82).
Thus, SARS-CoV-2 probably causes the damage of pancreatic islets
via ACE2 in pancreas (Table 1).

SARS-CoV-2 infection may not only worsen the preexisting
diabetes but also cause new cases of diabetes in non-diabetic
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subjects through a direct pancreatic damage and a resultant
impairment of insulin secretion from b-cells. This can be partly
proved by the study fromWang and colleagues (83). It was found
that 9 out of 52 hospitalized patients with SARS-CoV-2-
associated pneumonia in China displayed a pancreatic injury,
which was determined by the plasma levels of amylase and lipase.
Of note, 6/9 of these subjects exhibited moderate increases in
plasma glucose (83). This phenomenon is in accordance with
what is observed in patients after SARS-CoV-1 infection at the
beginning of this century. Yang et al. reported that patients with
SARS-CoV-1 infection, who had never received glucocorticoids,
presented significantly higher levels of fasting plasma glucose
compared to patients with non-SARS pneumonia (87).
They supposed that SARS-CoV-1 may mediate the damage of
pancreatic b-cells and resulted in a development of ‘acute
diabetes’ in patients with SARS (87). In fact, SARS-CoV-1 has
been identified in the pancreas of the patients who died of SARS
by means of immunohistochemistry and in situ hybridization
(88). Thus, coronavirus, SARS-CoV-1 as well as SARS-CoV-2,
could be one of the pathogens and trigger the development
of diabetes.

Apart from direct pancreatic b-cell damage, abnormal
immune response such as inflammatory storm and T cell
imbalance could also be another explanation for the new onset
diabetes caused by SARS-CoV-2 (Table 1). As described
previously, cytokines including IL-1b, IL-6, IL-17, TNF-a, and
IFNg were significantly elevated in patients with SARS-CoV-2
infection (29–34). Interestingly, the prospective population-
based European Prospective Investigation into Cancer and
Nutrition (EPIC)-Potsdam study revealed that a combined
elevation of IL-1b and IL-6 has been shown to independently
increase the risk of the development of T2DM (84). Th17
cytokine profile, which plays a major role in the regulation of
inflammation and hyperglycemia, could mathematically predict
T2DM in obese people (89). These findings further suggest that
SARS-CoV-2 might trigger the development of new onset
diabetes through an overactivation of the immune system.

Moreover, SARS-CoV-2 could worsen the insulin resistance
in patients with pre-existing T2DM. As ACE2 expression is
particularly amplified in key metabolic organs such as the liver,
adipose tissue, and the small intestine (55–57), SARS-CoV-2
may attack these organs, resulting in insulin insensitivity and an
exacerbation of hyperglycemia. In addition, it has been reported
that acute viral infection by murine cytomegalovirus (MCMV)
could induce a rapid development of transient insulin resistance
through a specifical downregulation of the insulin receptors in
Frontiers in Endocrinology | www.frontiersin.org 6
skeletal muscle in rodents (90). Whether SARS-CoV-2 enhances
the progression of systemic insulin resistance and its
mechanisms still require further investigations.

Notably, glucocorticoid, which is an essential medication to
control CRS in COVID-19, impairs insulin sensitivity and result
in hyperglycemia too. Human immunodeficiency virus (HIV)
protease inhibitors (PIs), such as Lopinavir-ritonavir, are used
for the treatment of COVID-19. However, it is reported that HIV
PIs may acutely and reversibly inhibit the insulin-responsive
glucose transporter 4, leading to peripheral insulin resistance and
impaired glucose tolerance (85). In a cross-sectional study
recruited 710 HIV-infected patients, lopinavir/ritonavir was
found to be significantly associated with some metabolic
syndromes after adjustment for age and BMI (86). Thus, some
medications, such as glucocorticoid and HIV PIs, which are used
for SARS-CoV-2 treatment, should be further evaluated,
particularly in SARS-CoV-2 infected patients with pre-existing
diabetes or at high risk of diabetes (Table 1).
5 TREATMENT OF COVID-19 IN PATIENTS
WITH DIABETES

In concerning to an optimized treatment of patients with
coexistent diabetes and COVID-19, a glycemic control seems
to be very urgent (10, 91). However, there are still several
cautions need to be taken to achieve the appropriate
therapeutic strategies, especially in T2DM patients.

5.1 Metformin
As mentioned above, SARS-CoV-2 infection might worsen the
prognosis of diabetes by dysregulating the AMPK/mTOR
signaling (Figure 1) (45, 46, 51, 52). Observations suggest that
activating AMPK and/or inhibiting mTOR-mediated signaling
could be novel therapeutic intervention strategies for COVID-19
treatment (51, 52). Of note, dimethylbiguanide metformin is so
far a first-line medication for the treatment of T2DM, which
works as an AMPK activator (92). To a certain extent, this
molecular mechanism makes the classical medication possible as
antivirals in patients with COVID-19.

Interestingly, although a hypoglycemic effect of metformin
was discovered in the 1920s, it was disregarded until 1940s when
biguanide was reinvestigated in the search for antimalarial agents
and repurposed to treat influenza (93). Another biguanide,
which is so-called flumamine, is still in use as an anti-influenza
and anti-malarial medication in the Philippines (94). As
TABLE 1 | Potential mechanisms of SARS-CoV-2 that triggers and worsens the development of diabetes.

Potential mechanism Reference

SARS-CoV-2 causes the direct damage of pancreatic islets, partly via ACE2 in pancreas (82, 83)
SARS-CoV-2 causes abnormal immune response such as inflammatory storm and T cell imbalance (84)
SARS-CoV-2 worsens the insulin resistance through attacking key metabolic organs such as the liver, adipose tissue, and the small intestine (55–57)
Medications for SARS-CoV-2 treatment, such as glucocorticoid and HIV PIs, impairs insulin sensitivity (85, 86)
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ACE2, Angiotensin-converting enzyme 2; HIV, Human immunodeficiency virus; PI, protease inhibitor; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; T2DM, type 2
diabetes mellitus.
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antivirals, biguanides do not cause lung toxicity. Thus, when
inhaled, it may deliver more predictable amount of biguanide to
the lung than oral dosing and limit the risk of systemic side-
effects (95).

Moreover, metformin exerts anti-inflammatory actions by
decreasing the circulating biomarkers of inflammation in
people with or without T2DM (96). Metformin can also
modulate the immune response and restore immune
homeostasis in T cells (97), and more in particular,
a reciprocal balance between Th17 and Treg cells in vitro and
in vivo (98). In a cohort of 1,213 hospitalized patients with
COVID-19 and pre-existing T2DM, Cheng et al. show that the
dynamic trajectories of serum inflammatory factors, including
IL-6, IL-2, and TNF-a, all showed lower degrees of elevation in
the metformin group than in the non-metformin group,
particularly compared to the subgroup of individuals with
severe COVID-19 (99). This consists with the findings from
Chen et al. that metformin applicants showed overall lower levels
of IL-6 on admission compared to ordinary patients (100).

Lately, it was identified thatmetformin exerts potent antifibrotic
effects in the lung by inhibiting transforming growth factor (TGF)-
b1 action, suppressing collagen formation, activating peroxisome
proliferator-activated receptor g (PPARg) signaling and inducing
lipogenic differentiation in lung fibroblasts (101). However, there is
scant information about the antifibrotic actions ofmetformin in the
context of coronavirus infection.

In this respect, metformin may have the potential to benefit
diabetic patients with SARS-CoV-2 infection in some ways
(Figure 2). Interestingly, two observational studies also
identified its application resulted in a decrease in the mortality
of patients with COVID-19 and T2DM (102, 103). More
extensive studies are necessitated to estimate the effectiveness
of metformin in COVID-19. Howbeit, metformin-associated
acidosis in these patients, particularly in cases with severe
COVID19 needs to be noted (99). Regular monitoring of lactic
acid levels is recommended after metformin administration in
certain patients.

5.2 DPP4 Inhibitor
DPP4 inhibitors act selectively to inhibit the catalytic activity of
DPP4, and are widely used in clinic for the treatment of T2DM
(104). A recent retrospective study identified that the use of
DPP4 inhibitors was significantly and independently associated
with a lower mortality (Hazard ratio 0.13) and a less severe
pneumonia among diabetic patients with SARS-CoV-2 infection
(105). Consistent results were reported by Solerte and colleagues,
that treatment with sitagliptin, a highly selective DPP4 inhibitor,
at the time of hospitalization resulted in an improved clinical
outcomes and a greater number of hospital discharges (106).

Interestingly, membrane-associated human DPP4 acts as a
functional coronavirus receptor (107). Transgenic mice
engineered to express human DPP4 (hDPP4) became
susceptible to MERS-CoV (108). Moreover, DPP4 also acts as
a functional receptor for hCoV-Erasmus Medical Center (hCoV-
EMC), another member of coronavirus family, which was
identified to cause severe and sometimes lethal lower
respiratory tract infection (107). Furthermore, it was identified
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that the S1 domain of SARS-CoV-2 spike glycoprotein
potentially interacts with the human DPP4 by means of a
computational model based selective docking (109).

Although above findings revealed that DPP4 serves as a
potential co-receptor for coronaviruses, few data have been
shown whether DPP4 inhibitors interfere the binding of SARS-
CoV-2 to DPP4. Available evidences were mostly derived from
studies on MERS-CoV. Anti-DPP4 antibodies blocked acute
MERS-CoV infection in susceptible bat cells in a dose-
dependent manner (110). Administration of two human anti-
DPP4 antibodies (REGN3051 and REGN3048) could interrupt
the interaction between MERS-CoV spike protein and hDPP4,
and lead to a mitigated lung pathology in mice with experimental
MERS-CoV infection (111). Similarly, Tang et al. also reported
that human neutralizing antibodies directed against the receptor-
binding domain (RBD) of the MERS-CoV spike protein, which
blocked the viral binding to hDPP4 (112).

Our previous review has proposed that DPP4 inhibition also
presents potential modulatory functions in the immune system
(113), which may contributes to a reduction in inflammatory
response in patients with SARS-CoV-2 infection (Figure 2).
DPP4, originally known as the lymphocyte cell surface protein
CD26, is widely expressed in many types of immune cells
including CD4+ and CD8+ T cells, B cells, natural killer (NK)
cells, dendritic cells, and macrophages; and plays a role in the
regulation of cell function (113). Enzymatic activity inhibition of
DPP4 leads to an upregulation of Treg lymphocytes,
downregulation of Th17 cells, and suppression on the secretion
of pro-inflammatory cytokines, such as IL-1, 6 and 10 (113).
Thus, when applied in T2DM patients with SARS-CoV-2
infection, it would be significant to monitor DPP4 inhibitor-
induced alterations in immune indexes.

5.3 PPARg Activator and GLP-1R Agonist
Certain anti-diabetic drugs like PPARg activators have been
shown to upregulate ACE2 in animal models (114). Treatment
of diabetic rats with liraglutide, a glucagon-like peptide 1
receptor (GLP-1R) agonist, also provoked a strong elevation in
pulmonary ACE and ACE2 expression on mRNA levels (115).
As such, it is speculated that treatment for diabetes with
pioglitazone/liraglutide may increase the risk of severe and
fatal COVID-19 development (Figure 2).

On the other hand, pulmonary lipofibroblasts located in the
alveolar interstitium displayed an ability to differentiate into
myofibroblasts, which play an integral role in pulmonary fibrosis
(57) and are potentially involved in the exacerbation of pneumonia
in patients with SARS-CoV-2 infection. Yet, PPARg activators are
able to stabilize lipofibroblasts in their “inactive” state, preventing
the transitionof the cells intomyofibroblasts, so that they inhibit the
development of pulmonary fibrosis (116). The therapeutic effect of
rosiglitazone in the murine models of bleomycin-induced
pulmonary fibrosis is well determined (117, 118). However, the
putative pathophysiological significance of these findings in the
context of experimental coronavirus infection has not been
fully explored.

GLP-1R agonists exert broad anti-inflammatory actions in
humans with T2DM as well as in obese individuals (119). It was
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revealed that GLP-1 agonists contribute to a reduction in plasma
levels of pro-inflammatory cytokines including TNF-a, IL-1b
and IL-6, and an increase in plasma levels of adiponectin, which
belongs to the anti-inflammatory adipokines, in T2DM patients
(120). Moreover, multiple preclinical studies have demonstrated
that GLP-1R agonists attenuate pulmonary inflammation and
even preserve lung function in rodent models with experimental
lung injury (121–124).

So far, the safety about continuous administration of PPARg
activators and GLP-1R agonists in patients with SARS-CoV-2
infection are not stated. Further studies are needed to clarify
whether the administration of these two medicines is suitable for
diabetic patients with SARS-CoV-2 infection.

5.4 Insulin, SGLT2 Inhibitor, and
Sulfonylurea
Insulin has been extensively used for decades to control blood
glucose in critically ill patients with diabetes (125, 126).
Accordingly, insulin therapy has been recommended by many
experts for the treatment of diabetic patients with SARS-CoV-2
infection (127, 128). However, in a study with 120 patients with
COVID-19 and T2DM by Chen et al., the insulin and non-insulin
groups showedno significant difference in the percentages of severe
and critical illness on admission (100). Surprisingly, a retrospective
analysis of 689 patients with COVID-19 and T2DM revealed a
markedly increased mortality in patients with insulin treatment
(129). Hypoglycemia may be one of the important drivers causing
insulin-associated higher mortality. Accordingly, frequent glucose
monitoring, even the application of continuous glucosemonitoring
may lower the rates of hypoglycemia emergence and improve the
clinical outcomes.
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Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a novel
class of anti-diabetic drugs (OADs) which inhibit the reabsorption
of sodium and glucose in urine (130). It has been reported that this
kind of OAD could increase ketone accumulation and may induce
euglycemic ketoacidosis (euDKA) (130). Besides, SARS-CoV-2
infection may be associated with anorexia, dehydration, and rapid
deterioration in clinical status. Although SGLT2 inhibitors are
generally well tolerated in the outpatient setting, it may still
increase the risk of volume depletion and euDKA in symptomatic
individuals with T2DM and acute SARS-CoV-2 infection (131).
Accordingly, the use of SGLT2 inhibitors should be cautiously re-
evaluated in patients with severe SARS-CoV-2 infection,
particularly in patients suffering from dehydration. Furthermore,
sulfonylureas should be avoided to use in T2DM patients with
gastrointestinal symptoms such as diarrhea andnausea, owing to its
hypoglycemia side effect.

5.5 Non-Hypoglycemic Agents
ACE inhibitors (ACEIs) and angiotensin II type-I receptor
blockers (ARBs) are frequently taken by individuals with
diabetes. However, it was found that ACEI and ARB treatment
in T1DM and T2DM cause a substantially raise of ACE2
expression in the renal, duodenal, and cardiovascular systems
(132–134). Yet, an elevation of ACE2 levels in the respiratory
system after ACE/ARBs application has not been reported.
Clinical outcomes of patients with SARS-CoV-2 infection who
took RAS inhibitors were comparable with those of patients
without ACEI/ARB administration (100, 135). Nevertheless,
whether these medicines are safe for the treatment of patients
with SARS-CoV-2 infection requires more experimental and
clinical evidences.
FIGURE 2 | Pros and cons of glycemic lowering agents in diabetic patients with SARS-CoV-2 infection. Dashed arrow represents the assumption requiring further
verification. ACE2, Angiotensin-converting enzyme 2; AMPK, Adenosine 5’-monophosphate-activated protein kinase; mTOR, mechanistic target of rapamycin; DPP4,
dipeptidyl Peptidase 4; GLP-1R, glucagon-like peptide 1 receptor; PPARg, peroxisome proliferator-activated receptor g; SARS-CoV-2, severe acute respiratory
syndrome coronavirus 2; SGLT2, sodium-glucose cotransporter 2.
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6 CONCLUSIONS

In this review, the relationship of diabetes and COVID-19 were
discussed. However, most of the existing studies failed to
distinguish the potential difference of type 1 and type 2
diabetes among COVID-19 subjects. Furthermore, we describe
the potential mechanisms which are involved in the regulation of
an increased susceptibility and illness severity of diabetic patients
to COVID-19. On the other hand, SARS-CoV-2 infection may
also trigger the new onset diabetes. The rapid increase in new
experimental information stemming from the SARS-CoV-2
epidemic requires careful evaluation to help understand the
pathology of COVID-19, especially for the treatment of
patients with both diabetes and COVID-19. All medications
used in diabetes displayed advantages and disadvantages.
Physicians should estimate the status of patients individually,
especially the risk of hypoglycemia, acidosis and gastrointestinal
symptoms, to optimize the therapeutic strategies for glycemic
control in patients with SARS-CoV-2 infection.
Frontiers in Endocrinology | www.frontiersin.org 9
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