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Abstract

We studied the global relationship between gene expression and neuroanatomical connectivity in the adult rodent brain.
We utilized a large data set of the rat brain ‘‘connectome’’ from the Brain Architecture Management System (942 brain
regions and over 5000 connections) and used statistical approaches to relate the data to the gene expression signatures of
17,530 genes in 142 anatomical regions from the Allen Brain Atlas. Our analysis shows that adult gene expression signatures
have a statistically significant relationship to connectivity. In particular, brain regions that have similar expression profiles
tend to have similar connectivity profiles, and this effect is not entirely attributable to spatial correlations. In addition, brain
regions which are connected have more similar expression patterns. Using a simple optimization approach, we identified a
set of genes most correlated with neuroanatomical connectivity, and find that this set is enriched for genes involved in
neuronal development and axon guidance. A number of the genes have been implicated in neurodevelopmental disorders
such as autistic spectrum disorder. Our results have the potential to shed light on the role of gene expression patterns in
influencing neuronal activity and connectivity, with potential applications to our understanding of brain disorders.
Supplementary data are available at http://www.chibi.ubc.ca/ABAMS.
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Introduction

While the brain can be studied at many different scales and with

many modalities, one of the most established is the study of brain

regions and their connectivity. These ‘‘macroconnections’’ be-

tween neuroanatomically-defined brain regions are thought to

number between 25,000–100,000 in the mammalian brain [1],

forming a complex network. Knowledge of the ‘‘connectome’’ is

used to diagnose neurological disorders such as ischemic stroke, to

interpret brain imaging results and to computationally model the

brain. There is also growing evidence of connectivity abnormal-

ities in disorders such as autism and schizophrenia [2,3,4]. Because

of the fundamental importance of the wiring of the brain, there has

been a recent push to create more comprehensive ‘‘connectome’’

maps [5,6], paralleling efforts to understand the brain at the level

of genes.

The most comprehensive studies of connectivity have been done

in the worm Caenorhabditis elegans (at the level of single neurons) and

the macaque monkey [7,8]. Recent work has begun plumbing the

properties of these networks, examining node degree distribution

[9], network motifs [10], and modularity [11]. It has been shown

that anatomical neighbours tend to be connected [12], and there is

evidence that wiring cost partially explains network structure

[13,14]. There is also increasing interest in the integration of

neuronal connectivity and information about genes. This is in part

driven by the fact that many genes show spatially-restricted or

varying expression in the nervous system, but in many cases the

reasons for the expression patterns are not clear [15,16,17,18].

The idea that gene expression is related to connectivity is not

new. For example, the expression of a transmitter must be coupled

with expression of appropriate receptors in the postsynaptic

target. To regulate neurite outgrowth and plasticity hetero- and

homophilic cell adhesion molecules require appropriate expression

patterns in connected neurons [19,20]. In a study of the mouse

hippocampus, Dong et al. [21] identified seven genes which are

differentially expressed between the dorsal and ventral CA1 field

and have a correlated expression pattern in the corresponding

projection fields in the lateral septal nucleus. The availability of

detailed information on expression patterns in the mouse brain

[15,16,17] suggests that a global examination of gene expression

and connectivity in the mammalian brain would provide

additional insights.

While there is no large-scale analysis of gene expression and

connectivity in the mammalian brain, three groups have examined

this issue in the nematode worm Caenorhabditis elegans. The groups

used cellular level expression data for a few hundred genes and a

neuron level connectivity map [8]. By combining the data,

Kaufman et al. [22] used classification and Mantel tests to predict

genes involved in synaptogenesis and axon guidance. They

concluded that expression profiles of neurons ‘‘carry significant

information about their connectivity’’. Varadan et al. [23] used a

different methodology to discover biologically meaningful gene
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sets that provide connectivity information. Within the resulting

gene sets they found high levels of multivariate synergy, suggesting

interacting genes are more important than single genes. In a third

study, Baruch et al. [24] predicted a neuron’s postsynaptic

partners using expression patterns of a small number of interacting

genes.

In this paper we examine gene expression patterns and

macroconnectivity in the adult rodent brain, using data from the

Allen Brain Atlas [17] and the Brain Architecture Management

System [25,26]. Our results suggest that in the mammalian brain,

as in Caenorhabditis elegans, there is a correlation between gene

expression and connectivity, and the relevant genes are enriched

for involvement in neuronal development and axon guidance.

Results

We obtained data sets of macroconnectivity in the rat brain and

gene expression data on mouse (see Materials and Methods and

Figure 1). By carefully mapping brain regions across them, we

identified 142 distinct (non-overlapping) brain regions in common

(the ‘‘common’’ regions; see Materials and Methods). In total these

regions account for nearly half of the volume of the brain. A

notable omission is many regions of the neocortex, which is not

sub-parcellated in our data set.

The expression data set, which is filtered to remove unexpressed

genes (see Materials and Methods) consists of the expression levels

of 17,530 genes in the 142 regions. Because many genes were

assayed more than once in the Allen Atlas (independent ‘‘image

series’’ in their terminology), there are 22,771 rows in the

expression data matrix. The connectivity data consists of the

connectivity profiles of 942 regions with the 142 common regions

(Figure 1). In this binary matrix, a value of 1 at index (i,j) indicates

a connection exists between region i and region j. In most of our

analyses, we considered the directionality of connectivity. Of the

142 common regions, 112 have efferent (outgoing) connections,

and 141 have afferent (incoming) connections; there are 5216

outgoing connections and 6110 incoming connections. Our results

are based on various direct and indirect comparisons of the

connectivity and expression data matrices or their corresponding

correlation matrices.

We began our study with some relatively simple analyses

designed to explore the relationship between connectivity, gene

expression and other parameters such as spatial distribution and

size of brain regions.

We first tested the simple hypothesis that regions which are

connected might have more similar expression patterns. This is in

effect a more global search for patterns like the ones identified by

Dong et al. [21] (note that the CA1 subregions studied by Dong

et al. were not represented in our data). To do this we compared

the distribution of correlations in expression profiles for regions

which are connected to the distribution for regions that are not

connected (Figure S1). We found that on average, regions that are

connected (ignoring directionality; 912 connected pairs among the

142 regions) have more similar expression profiles than the 8,187

non-connected region pairs (0.7960.06 for connected; 0.7660.06

for unconnected; p-value,2.2610216, t-test). This is an initial

indication that structural connectivity and gene expression are

related.

We then examined the degree of connectivity of a region with its

expression profile. The degree of connectivity is computed by

summing the columns of the connectivity matrix in Figure 1. The

correlation of this vector was then computed with each gene

expression profile (the rows of the expression matrix). After

correcting for multiple testing, 887 and 1127 genes (represented by

929 and 1175 Allen Brain Atlas image series, respectively) had

expression levels positively and negatively correlated with the

number of connections, respectively. The highest rank correlations

between expression levels and connectivity degree were ,60.64.

While the interpretation of this result is not clear (a Gene Ontology

annotation enrichment analysis did not yield any strong patterns),

we noted that all three neurofilament cytoskeleton genes (light

[NCBI gene ID:18039], medium and heavy neurofilament

polypeptides, Nefl-3) are negatively correlated with connectivity;

that is, they are expressed at higher levels in regions that have few

connections. Neurofilament content is correlated with axonal

diameter and length, with enrichment in motor and long-

projecting neurons [27,28,29] and our results suggest another

relationship with connectivity.

We found that the size of a region is significantly correlated with

its connection degree (Spearman’s rank correlation, r= 0.22). We

also noted that the more posterior the region, the fewer

connections it has (r= 0.55). Regions containing motor neurons

that project long axons to the spinal cord or muscles were found to

have significantly fewer connections (they also tend to be in

posterior locations; p-value = 1.3261026, Wilcoxon–Mann–Whit-

ney test). Table S1 provides brain region statistics for degree,

location and motor classification.

While the above analyses suggest some interesting generic

patterns relating connectivity to expression and other parameters,

they are not able to expose more complex relationships. Like

Kauffman et al. [22] and Varadan et al. [23], we hypothesized

that expression patterns carry information about specific neural

connectivity patterns involving multiple regions. To test the global

correlation between expression and connectivity profiles we used

the Mantel test. Unlike the test used above to examine the

relationship between pair-wise connectivity and expression

patterns (using the direct connectivity matrix), here we are asking

if the similarity of the connectivity profiles of two regions is related

to the similarity of the expression profiles of the two regions,

regardless of whether those two regions are themselves connected.

In this analysis we are comparing the correlation matrices for the

expression data set and the connectivity data (Figure 1).

A key finding is that, as in Caenorhabditis elegans (at the level of

individual neurons), we find that brain regions that have similar

connectivity patterns tend to have similar patterns of gene

expression. The Mantel correlation (‘‘correlation of correlations’’)

between expression and incoming connectivity patterns (141

regions) is 0.248 (p-value,0.0001). Using the outgoing connectiv-

ity profiles for 112 regions yielded a correlation of 0.226 (p-

value,0.0001). This relationship holds separately for some of the

5 major neuroanatomical divisions in the Allen reference atlas. For

Author Summary

We tested the idea that the ‘‘wiring diagram’’ of the adult
brain has a relationship with where genes are expressed.
We were inspired by similar work carried out by groups
examining the nematode worm Caenorhabditis elegans. By
using large-scale databases of brain connectivity and gene
expression in rodents, we found that many genes involved
in the development of the brain show correlations with
anatomical connectivity patterns. Some of the genes we
found have been implicated in disorders such as autism,
which is suspected to affect brain wiring. While the
biological causes of the patterns we found are not yet
known, we believe they provide new insight into the
patterns of gene expression in the brain and will spur
further study of this problem.

Gene Expression and Brain Wiring
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outgoing profiles the Mantel test is significant at p-value,0.001 for

the interbrain (r = 0.42), cerebrum (r = 0.30) and hindbrain

(r = 0.21) divisions but not midbrain or cerebellar divisions. For

incoming connectivity only the cerebrum (r = 0.29) and interbrain

(r = 0.34) divisions have significant Mantel correlations with

expression. We note that unlike our observation of similar

expression profiles among connected regions, here we are

comparing connectivity patterns of regions, which does not

require that the regions be connected to each other.

One factor in this analysis is that regions which are near each

other tend to be connected [12] and also might be expected to

have higher correlations in expression patterns (because nearby

regions will tend to be of the same embryonic origin, for example).

This will tend to obscure the degree to which expression is

specifically correlated with connectivity (and in turn obscure the

degree to which expression is specifically correlated with location).

We assessed the overall degree of spatial autocorrelation by

performing the Mantel test as above, but comparing expression or

connectivity to a matrix representing physical distance or,

alternatively, nomenclature distance (relationships in the nested

hierarchy of brain regions). As expected, the Mantel test results are

all significant (Figure 2). The connection data (r = 0.32; p-

value,0.001, Mantel test) appears to be less spatially autocorre-

lated than expression (r = 0.49; p-value,0.001, Mantel test).

We visualized the spatial correlation structure with Mantel

correlograms (Figure 3). The Mantel correlogram displays the

correlation between a data matrix and a matrix formed by

grouping region pairs into distance classes. The correlogram will

not be flat if it is possible to predict the distance class of a pair

based on connectivity or expression correlations alone. As shown

in Figure 3, there is indeed an effect of distance on the correlation

between connectivity and expression. We therefore attempted to

correct our analysis for the effect of spatial autocorrelation, using

regression. We calculated regressions between the distance and

expression or connectivity correlations for all region pairs. The

residuals of these regressions provide proximity-controlled corre-

lations. As shown in Figure 3, an improvement in the correction is

obtained when using log-transformed distances.

Using the log-transformed distance matrix from above, we can

control for spatial autocorrelations by applying the partial Mantel

test [30,31]. The partial Mantel test applies the same regression

mentioned above to both the connectivity and expression

similarity matrices. Then a standard Mantel test is calculated

between the two spatially-corrected residual matrices. We found

that after correction, the partial Mantel test between connectivity

and expression remains significant, indicating the relationship is

not entirely due to neighbourhood effects. However as expected

the correlations are lower. Using the spatial correction, the

correlation between incoming connectivity and expression is 0.109

(p-value = 0.008, Mantel test), for outgoing it is 0.126 (p-

value = 0.001, Mantel test; summarized in Figure S2). As a further

confirmation for the effectiveness of the correction based on spatial

distance, we found that the correlation between nomenclature

distance and expression or connectivity correlation drops substan-

tially, though the correlations are still significant (Mantel

correlation 20.089 for expression, p-value = 0.006; 0.11 for

connectivity, p-value,0.001). This incomplete correction is

perhaps not surprising as the nomenclature hierarchy reflects

connectivity as well as spatial location.

The above tests use expression information for all expressed

genes in the Allen Brain Atlas, but we expect that many genes will

not contribute any information on connectivity. To find the most

informative genes, we applied a greedy algorithm that identifies

subsets of the data which maximize the correlation between

connectivity and expression patterns (see Materials and Methods).

Figure 4 displays the change in the Mantel correlations as genes

are iteratively removed. As shown in Table 1, this yields much

smaller sets of genes (357 and 433 for outgoing and incoming,

Figure 1. Datasets and correlation matrices used in this paper. Matrices are shown schematically as shaded boxes; arrows indicate steps in
the workflow. For example, from the full connectivity matrix we extracted submatrices of ‘‘outgoing’’ or ‘‘incoming’’ connectivity, and compared their
correlation matrices with the correlation matrix of the brain region expression patterns.
doi:10.1371/journal.pcbi.1001049.g001

Gene Expression and Brain Wiring
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respectively) and much higher Mantel correlations (0.56 and 0.65

for outgoing and incoming connectivity respectively). Figure S3

provides a visualization of these results by intersecting region

pairings with high expression and connectivity correlations. As a

control, we performed the same procedure on multiple shufflings

of the expression data, yielding a maximum correlation across ten

Figure 2. Mantel correlations between different matrices. ‘‘Nomenclature’’ and ‘‘Proximity’’ refer to the two different measures of spatial
distance that we used (see Materials and Methods). The 141 regions with incoming connectivity information were used to generate the correlations
for this figure.
doi:10.1371/journal.pcbi.1001049.g002

Figure 3. Connectivity (A) and expression (B) Mantel correlograms for uncorrected, linear and log transform corrected spatial
distance matrices. Filled squares mark distance classes with significant spatial correlation after multiple test correction.
doi:10.1371/journal.pcbi.1001049.g003

Gene Expression and Brain Wiring
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runs of r = 0.42 and r = 0.51 for outgoing and incoming

respectively. We also carried out the same procedure for the

spatial correlations instead of connectivity, yielding a ‘‘spatial

proximity’’ list of 401 genes and a Mantel correlation of 0.934.

Eighty-five image series (89 genes) were found to overlap between

the lists for incoming and outgoing connectivity, which is not

surprising because there is a fair amount of reciprocal connectivity.

Twenty-one image series (31 genes) overlap across the spatial

proximity list and one or both of the connectivity gene sets,

suggesting that for the most part, different genes provide

information about connectivity and proximity. The top twenty

image series for the rankings are provided in Table 2 (full results

are available as Tables S2, S3, and S4). If we consider just the top

20 genes, the Mantel correlations are 0.516 (incoming), 0.460

(outgoing) and 0.590 (proximity). As an additional control, we

found that the correlations obtained for the optimized gene sets

are robust to the completeness of the connectivity network (tested

by, for example, randomly removing brain regions and recom-

puting the Mantel correlations). Thus, while the connectivity map

of the rodent brain is incomplete, the correlations with expression

appear robust.

We next examined the expression patterns of the optimized

gene lists in more detail. It was of interest to determine, for

example, if all the genes had similar expression patterns, which

would suggest a single overwhelming signal in the data. A

hierarchical clustering and visualization of the expression patterns

of the optimized gene sets suggested that the patterns are in fact

diverse (Figures S4 and S5). This is supported by a comparison of

the distributions of gene-gene correlations within the optimized

outgoing list, which are on average slightly lower than the full data

set (0.1060.21 for top outgoing genes; 0.1560.21 for all genes; p-

value,2.2610216, t-test, Figure S6). This suggests that many

different gene expression patterns are contributing to the overall

correlation between connectivity and gene expression.

Figure 5 shows the expression patterns for two genes that rank

high in the ‘‘outgoing’’ gene list, overlaid on schematics of the

connectivity data. In Figure 5A, we show the pattern for Pcp2

(Purkinje cell protein 2; Figure 5A). Although Pcp2’s function is

unknown, it is almost exclusively expressed in the projection

neurons of the cerebellar cortex (Purkinje cells). We did not expect

this specific expression pattern to carry information about

connectivity because no other regions express Pcp2. However,

the connections of the cerebellar cortex are also unique and

specific: of the 112 outgoing regions, 69 place the cerebellar cortex

in the bottom tenth percentile of similar regions based on

proximity controlled connectivity. As a result, the optimization

procedure finds that Pcp2’s expression pattern marks the

Figure 4. Optimization of Mantel correlation by iteratively removing image series. Each curve documents the correlation across iterations
(as genes are greedily removed).
doi:10.1371/journal.pcbi.1001049.g004

Table 1. Peak correlation and size of optimized Mantel tests.

Name Peak Correlation Size (image series)

Incoming 0.645 452

Outgoing 0.564 374

Proximity 0.934 420

doi:10.1371/journal.pcbi.1001049.t001

Gene Expression and Brain Wiring
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cerebellar cortex’s unique connectivity profile. Figure 5B shows

the expression pattern of Pgrmc1 (Progesterone membrane

component 1), a gene that may play roles in axon guidance

[32,33]. In contrast to Pcp2, which is expressed in only one brain

region, expression of Pgrmc1 in two regions is correlated with a

connection between them (Figure S7). Thus, clusters of highly

connected regions tend to show higher levels of Pgrmc1 expression

(Figure 5B). While the strong relationships shown in Figure 5 are

not representative of the data set as whole, they serve to illustrate

how expression patterns can contain information on connectivity.

One concern about using high-throughput in situ hybridization

data might be the potential for artifacts. While all of the image

series we used had passed the Allen Brain Atlas project’s (ABA)

own quality control criteria, we did note occasional spatial artifacts

such as dust or bubbles, though there was no indication such

problems were more common in the genes we ranked highly. In

addition, while there is good evidence that the ABA data are

reliable, with a high quantitative and qualitative agreement with

other data [34,35], there are genes (,6% in ABA) for which ABA

has disparities [35] and a few of those genes show up in our results

(at approximately the expected proportion; see Dataset S1). To

help address these concerns, we extracted a higher-confidence

subset of results by considering genes measured more than once in

the Allen Brain Atlas. These ‘‘duplicate’’ image series vary

primarily by the RNA probe sequence used and the plane of

section (sagittal vs. coronal), and it seems unlikely that results

which are concordant across image series would be due to

expression analysis artifacts. Seventeen genes in our top outgoing

connectivity list have two concordant image series. In the case of

incoming connectivity, 16 of the genes on our list are represented

by at least two image series (Rprm has three, and Calb2 has four of

its 20 image series across the atlas). We refer to these as the ‘‘high-

confidence’’ lists.

The next stage of our analysis was to consider in greater detail

the types of genes which are correlated with connectivity. We

accomplished this through a combination of Gene Ontology (GO)

annotation enrichment analysis and manual review of the

literature relating to the genes, particularly those on our high-

confidence lists. We specifically hypothesized that genes that play

roles in neural development might be found, as suggested by

previous work on Caenorhabditis elegans [22,23].

In agreement with this hypothesis, our Gene Ontology analysis

of the ‘‘outgoing’’ list revealed significant enrichment in categories

related to neuronal development (Table 3; note that many of the

top groups have overlapping gene members. No GO terms were

significant for the ‘‘incoming’’ or ‘‘proximity’’ lists. Full GO

analysis results are in Table S5). A manual examination of the

connectivity top gene lists (Tables S2 and S3) makes it clear that

this is due to the presence of many different genes that play a

variety of roles in neuronal development, but axon guidance was a

prominent theme. Our lists contain a total of 14 members of three

major axon guidance families (Semaphorin, Ephrin, and Slit

families) [36] (Table 4). These gene families express cell-surface or

secreted proteins that function to provide guidance signals to

growing axons. This was most striking for the Semaphorin family,

with ligands, receptors and co-receptors appearing in the incoming

or outgoing top gene lists (Table 4). Six of the 17 genes from the

high-confidence ‘‘outgoing’’ list function in neuronal development

and axon guidance. Two of these six, Gpc3 and Hs6st2 encode a

heparan sulfate proteoglycan and a heparan sulfate sulfotransfer-

ase respectively. Two additional heparan sulfotransferases, Hs3st1

and Hs6st1 appear with one image series on outgoing top gene list.

Table 2. Top twenty genes for proximity and proximity-controlled incoming and outgoing Mantel tests.

Incoming Outgoing Proximity

Rank Symbol Imageset Rank Symbol Imageset Rank Name Imageset

1 Nrp2 80514091 1 Pgrmc1 797 1 Nup37 68795447

1 D4st1 74657927 1 Slc25a37 68445000 1 Klrg1 69735903

3 Acadvl 227161 3 Pcp2 77413702 1 Dnahc1 73520818

4 Pgrmc1 797 4 Galr1 80514053 1 Pus1 532760

5 8030411F24Rik 74580853 5 1700054O13Rik 69117086 1 Mm.359340 71209910

6 Gda 70276867 6 Plk1s1 70295882 1 Tm2d3 77414123

7 Mdfi 275690 7 Alpk3 71574473 1 LOC433436 73636096

8 3110082D06Rik 74581400 8 Lrrn6c 72128919 8 Gba2 68844337

9 Lyzs 68191492 9 Gm47 70565879 9 Prrg2 276063

10 Atad2b 71496393 10 Cpne5 544709 10 Ccdc137 1979

11 Slc5a2 68632936 11 Nmbr 77332086 11 Col5a3 74272917

12 Dbnl 74819497 12 Trim52 70205626 12 Kcnk2 75147764

13 Dmp1 74511936 13 AI427122 71495698 13 Comt 68301371

14 Gata3 73931427 14 Slc44a4 68321886 14 Bcl2l12 71064289

15 Rgs9 73521819 15 Nrp2 80514091 15 Mtif2 68341663

16 En2 69288944 16 Anxa3 69526665 16 Eomes 80516770

17 Wisp2 68523207 17 A930033C23Rik* 74300717 17 Gcnt1 68546476

18 Cypt3 80474702 18 Tac2 77279001 18 LOC433088 70722898

19 F2rl1 199391 19 C1qtnf9 70228041 19 Mrpl45 70919854

20 1700018L24Rik 74634791 20 Kirrel1 71613657 20 Gda 70276867

doi:10.1371/journal.pcbi.1001049.t002

Gene Expression and Brain Wiring
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Heparan sulfate proteoglycans are membrane proteins that have

been linked to neurogenesis, axon guidance and synaptogenesis

[37]. Hs6st2 has been specifically linked to retinal axon targeting

in Xenopus [38]. Another gene on the high-confidence list is the

L1 cell adhesion molecule (L1cam), a recognition molecule

involved in neuron migration and differentiation [39]. Vesicle-

associated membrane-protein (Vamp2) is another gene connected

to connectivity through two image series; in addition Vamp1

occurs once in the outgoing list. Recently Vamp2 has been linked

to attractive axon guidance but not repulsion in chick growth

cones [40]. Neurturin is another high-ranking gene with two

image sets linked to outgoing and one linked to incoming.

Neurturin is well known to promote neuronal survival and induce

neurite outgrowth [41]. Lastly, Serinc5 is enriched in white matter

and Inuzuka et al. [42] suggest its major role is to provide serine

molecules for myelin sheath formation.

In the case of genes correlated with patterns of incoming

connectivity, 4 of the 16 of the genes on our high confidence list

have previously suggested roles in brain connectivity. Neurensin-1

shows up with two image series and is known to be involved in

neurite extension [43]. Recently, Stat5a has been labelled a key

effector molecule in the mammalian CNS, affecting axon guidance

in the spinal cord and cortex [44]. Thirdly, Uchl1 is mutated in

the GAD mouse strain that presents axon targeting and genesis

defects [45]. Finally, ciliary neurotrophic factor receptor (Cntfr)

appears twice on the top ranked list and is known to promote

Figure 5. Connectivity in the context of Pcp2 (A) and Pgrmc1 (B) expression. The connectivity map is a 2-D projection of the network on the
saggital plane. Each node represents a brain region (placed at the center of the region as measured in the Allen reference atlas). Expression levels are
depicted as shades of grey, with lighter shades indicating higher expression. Pcp2 expression is restricted to the cerebellar cortex (CBX), while Pgrmc1
tends to be expressed highly in both regions of connected pairs. The small inset brain diagram provides orientation (anterior (A), dorsal (D), ventral
(V) and posterior (P)) and the locations of the olfactory bulb (OB), cortex (CX), interbrain (IB), midbrain (MB), hindbrain (HB) and cerebellum (CB).
doi:10.1371/journal.pcbi.1001049.g005

Gene Expression and Brain Wiring
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neuron survival and plays important roles in nervous system

regeneration and development [46,47].

Another trend we notice from the GO results is that groups of

genes with negative regulatory roles are much more prominent

than the corresponding ‘‘positive’’ groups (e.g., ‘‘negative regula-

tion of neurogenesis’’) though these groups are not statistically

significant after multiple test correction. The high ranking of these

terms (which share members) is due to 11 genes: Hdac5, Notch3,

Nrp1, Cd24a, Cit, Apc, Nr2e1, Ptk2, Gpc3, and Runx2. The

‘‘negative’’ aspect of the function of these genes varies but all have

roles in neuronal development and/or plasticity. For example

Nrp1 is a coreceptor for semaphorins and triggers inhibition of

axonal growth [48], while Hdac5 is a histone deacetylase whose

activity is associated with repressed chromatin conformations that

are altered after addictive stimuli [49].

We also conducted a search among our high-confidence list for

genes whose homologs are implicated in human disorders of the

nervous system. We found evidence for such a role for five of the

30 genes. Prominent among the five is L1Cam, defects in which

cause several brain disorders including partial agenesis of the

corpus callosum [50]. Two genes in the high confidence lists have

been linked to heritable forms of Parkinson’s disease (alpha-

synuclein (Snca) [51] and Uchl1 [52]). Finally, two genes have

been linked to autistic spectrum disorder (ASD). The human

homolog of Cadps2 has been linked to autism and lies in the 7q

autism susceptibility locus (AUTS1) [53,54]. Another, Btg3 is in a

genetic locus linked to autistic children characterized by a history

of developmental regression [55]. By examining our expanded list

of genes, we found several more of our connectivity linked genes

are in AUTS1 and have been studied in the context of autism:

Reln [56], Mest [57], Ptprz1 [58], Dpp6 [59] and En2 [60]. To

further explore the potential connection between our results and

autism, we downloaded all autism candidate genes from the

AutDB database [61]. Of those genes, 163 were available in our

dataset, and 17 appear in at least one of the connectivity linked

lists (14 for incoming connectivity and Nrp2, Cadps2, Ntrk1,and

Apc appear in both incoming and outgoing lists). The probability

of this occurring by chance is 0.00029 (hypergeometric test;

considering the incoming list alone the p-value is 5.4361025). In

contrast, the proximity-ranked list contains only 5 genes in the

AutDB set (p-value = 0.32).

Discussion

Our analysis revealed a number of interesting relationships

between gene expression and patterns of connectivity in the adult

mammalian brain. Our key finding is that genes whose expression

patterns carry information on connectivity are enriched for genes

involved in neural development, and axon guidance in particular.

While our results are based on analysis of the brains of rodents, it is

of potential importance that many of the genes we identify have

human homologs implicated in disorders of the nervous system

including ASD. Because there is an increasing interest in the idea

Table 3. Top twenty GO groups enriched in the proximity controlled outgoing ranked gene list.

Name ID Group Size Hits P-value Corrected P-value

neuron projection development GO:0031175 186 16 0.00000 4.63E-003

cell morphogenesis involved in differentiation GO:0000904 183 13 0.00013 0.05

cell projection morphogenesis GO:0048858 157 12 0.00012 0.06

cell part morphogenesis GO:0032990 166 12 0.00020 0.06

cell migration GO:0016477 189 13 0.00018 0.06

axonogenesis GO:0007409 145 12 0.00005 0.07

cell morphogenesis involved in neuron differentiation GO:0048667 157 12 0.00012 0.07

neuron projection morphogenesis GO:0048812 154 12 0.00010 0.08

positive regulation of secretion GO:0051047 27 4 0.00227 0.45

negative regulation of cell communication GO:0010648 150 9 0.00438 0.45

heparan sulfate proteoglycan biosynthetic process GO:0015012 5 2 0.00420 0.45

lymphocyte differentiation GO:0030098 83 7 0.00177 0.47

leukocyte activation GO:0045321 161 9 0.00691 0.47

B cell differentiation GO:0030183 33 4 0.00480 0.48

positive regulation of cell-cell adhesion GO:0022409 5 2 0.00420 0.48

negative regulation of neuron differentiation GO:0045665 28 4 0.00260 0.48

regulation of neuron differentiation GO:0045664 82 6 0.00746 0.48

epithelial cell development GO:0002064 19 3 0.00689 0.48

central nervous system neuron axonogenesis GO:0021955 13 3 0.00223 0.48

lymphocyte activation GO:0046649 140 8 0.00936 0.48

doi:10.1371/journal.pcbi.1001049.t003

Table 4. Members of three canonical axon guidance families
appearing in our connectivity and proximity top genes lists.

Name Connectivity Proximity

Semaphorins and
receptors

Sema3a, Sema6a, Nrp1, Nrp2,
Plxna2, Plxnb2

Sema3a

Ephrin/Eph Ephb1, Epha7, Epha8 Efna1, Epha7

Slit/Robo Slit1 Slitrk4

doi:10.1371/journal.pcbi.1001049.t004
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that ASD and other disorders are in part due to abnormalities in

connectivity [4,62], and given the heritability of many such

disorders, the relationship between gene expression and connec-

tivity is pertinent. The enrichment of homologs of autism

candidate genes in our results suggests that these patterns could

be relevant to the understanding of behavior in autism and

potentially avenues for treatment.

To our knowledge ours is the first study comparing gene

expression and connectivity in mammals at a global level.

Interestingly, a previous focused examination of the correlation

between expression and connectivity for two brain regions

identified some of the same genes we did. Dong et al. [21]

examined correlations between genes that are differentially

expressed between the dorsal and ventral hippocampus (which

we were not able to treat as separate regions in our analysis). For

nine of their genes, they observed matching expression patterns in

a connected brain region, the lateral septal nucleus. Three of these

seven genes appear on our connectivity correlation lists (Gpc3,

Man1a, Wfs1); this is unlikely to occur by chance (p-value =

0.0045, hypergeometric test). In contrast, none of the seven appear

on the proximity gene list.

We stress that because what we observe are correlations, it is

difficult to ascribe a definite mechanism or meaning to the

patterns. In addition, in absolute terms the Mantel test correlations

may seem low when we considered all genes. However, we do

obtain a correlation of 0.65 between gene expression patterns and

proximity-controlled incoming connectivity after gene selection.

We also point out that at the neuron to neuron level in

Caenorhabditis elegans, Kaufman et al. [22] reported statistically

significant correlations of 0.075 and 0.176 between expression and

incoming and outgoing connectivity, respectively. Thus the

patterns we observe in the adult mammalian brain are at least

as strong as those observed in previous studies. An obvious

question is whether the signals we observe are strong enough to

predict patterns of connectivity. Unfortunately, while the signals

we observe are statistically significant, they are not strong enough

to allow prediction of connections based on expression patterns.

Kaufman et al. [22] attempted this with their data and achieved

very low accuracy. Using similar data, Baruch et al. [24] attained

statistically significant results in predicting the direction of

connectivity between neurons known to be connected or which

share a common synaptic partner. Using advanced imaging

techniques on human subjects, Honey et al. [63] attempted to

predict diffusion tensor imaging (DTI) based cortical connectivity

from fMRI functional connectivity. By setting thresholds on

functional connectivity, they achieved an AUC value of 0.79 that

could predict only ,6% of inferred DTI connections [63]. Despite

these limitations, our results suggest some underlying models that

in turn provide some testable hypotheses.

Many of the genes we find to be associated with connectivity

patterns in the adult are thought to be primarily active in the

developing brain, when large-scale connectivity is determined.

The reasons for expression of these genes in the adult brain is not

fully understood, though there is evidence in some cases that they

continue to play roles in the maintenance or tuning of neuronal

connectivity at finer scales [16,64]. There is even less known about

why the genes show regionally restricted patterns in the adult

brain. Our results are the first to link the expression signatures of

some of these genes to macroscopic connectivity. Our results have

at least two possible biological interpretations. One is that the

expression patterns in adulthood are a ‘‘residue’’ of the develop-

mental pattern that reflects processes occurring when connectivity

is laid down, but that the adult expression pattern is not causally

related to connectivity at the scale we studied. An alternative is

that the expression patterns in adulthood are functionally relevant

with respect to connectivity, perhaps in modulating activity in

certain pathways. The patterns we identified could be used to

design experiments to distinguish between these alternatives.

While we have provided evidence for a relationship between

connectivity and gene expression in the mammalian brain, our

analysis is surely hindered by the incompleteness of connectivity

and expression information. There are many brain regions for

which we had expression data but no connectivity. While some of

these regions might never have been studied, there are many

reports in the literature that are not included in the current

connectivity databases. Advances in the generation of connectivity

information from new experiments or from more complete use of

existing reports will be essential. The availability of additional

expression data would also improve our ability to interpret the

patterns we observe. In particular, having detailed information on

gene expression patterns during development, and their relation-

ships to the developing projection patterns in the brain, could

permit stronger inference of causal relationships. A final limitation

is that the structural connections we use cannot be easily linked to

specific states or functions of the brain. Because of this we could

only interpret our results in the context of gene function

information. It would be of interest to employ functional

connectivity data to link gene expression to more dynamic and

task specific states of the brain, especially in the context of genetic

variation.

Materials and Methods

Neuroanatomical Connectivity Data
For neuroanatomical connectivity knowledge, we used the Brain

Architecture Management system (BAMS). BAMS contains

extensive information about neural circuitry curated from

neuroanatomical atlases and tract tracing experiments [25,65].

The version of the BAMS database we use contains 7,308

structural connections between 961 rat brain regions and is

accessible via bulk download (http://brancusi.usc.edu/bkms/

xml/swanson-98.xml). Instead of parsing the original XML we

used a converted semantic web version created by John Barkley

(http://sw.neurocommons.org/2007/kb-sources/bams-from-swanson-

98-4-23-07.owl). The BAMS system stores information on projec-

tion strength, number of reports, report citations and absence of

connections but it is not available in the database version we

obtained. However, directions of the neuroanatomical connec-

tions are known, allowing splitting of our analysis between

incoming and outgoing connection profiles.

The BAMS curators comprehensively studied the bed nuclei of

the stria terminalis (BNST) and indicate that its connection matrix

is considered complete [65]. We were concerned that this

unusually well-studied region would bias our results, as it has

more known connections than the other regions (we considered

regions that lack a documented connection to be unconnected).

For example, it has over seven times the average number of

outgoing connections. To reduce this bias in the dataset, we

removed connection information for the BNST and its subparts.

We do not suspect the quality of these connections but wished to

prevent one well-characterized region from being overrepresented.

We believe the complete connectivity matrix of the BNST will be

very valuable for future focused analysis.

Gene Expression Data
We considered using gene expression profiles from SAGE and

microarray experiments, but spatial resolution was too low.

Therefore we used high-resolution colourmetric in situ hybridiza-
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tion (ISH) measurements produced by the ABA [17]. The

complete expression matrix from the ABA (kindly provided by

the Allen Institute for Brain Research) consists of 5,380,137 entries

formed by 25,991 ISH image series and 207 brain regions. In

many cases a gene was assayed more than once, using a different

probe or plane of sectioning. The ABA provides values for

expression ‘‘energy’’, ‘‘level’’ and ‘‘density’’ across a region.

Because level and density had a large fraction of data missing

(,40%) we choose to use expression energy (3% missing).

Expression energy is defined as the sum of expressing pixel

intensities normalized by the number of pixels in a region. The

natural logarithm of expression energy values formed our gene

expression matrix. Genes that do not have detectable expression in

the ABA were removed. The list of non-expressing genes list was

provided in Lein et al. as supplementary data [17]. After removing

the non-expressing genes the final gene expression profiles contain

22,771 image series representing 17,530 genes.

Neuroanatomical Matching and Selecting
The names of brain regions are formalized in hierarchies both

in BAMS [26,66] and the ABA data [67], but the schemes are not

identical. In addition, the BAMS dataset contains information at a

finer neuroanatomical resolution than ABA. To maximize the use

of connectivity information, we created connection profiles of

coarser scale by using an up-propagation procedure. Up-

propagation maps the brain region to its parent region until the

desired level in the neuroanatomical hierarchy is reached. This

procedure was applied to all connection pairs in BAMS. For

example, a connection between region A and region B will be

expanded to the set of all possible connections between the

neuroanatomical parents of both region A and region B. To

prevent enrichment of up-propagated connections we kept regions

that had zero connections to the ABA mapped regions.

Although the two datasets have common objects - brain regions,

the organisms differ. The rat brain with a wealth of neuroana-

tomical information is bigger and for some regions like the

cerebellum, more complex. In contrast, genetics and molecular

research is more commonly performed on the smaller mouse

brain. For this work we considered neuroanatomical differences

between the mouse and rat to be minor at the level of granularity

we used [68]; for example, the Paxinos mouse atlas was guided by

several rat brain atlases [69], and brain regions names largely

coincide between the two. These common names allowed quick

lexical mapping for most of the regions. To join the two data types

we mapped nomenclatures manually. We used primarily a region’s

name, then secondarily its parent region and spatial borders to

pair brain regions. The mappings for the Allen Brain regions are

provided in Table S6.

The neuroanatomical atlases from ABA [67] and BAMS [70]

provide information on which brain regions are neuroanatomical

children or parts of others. These relations create correlations in

the gene expression profiles and the connectivity data (due to up-

propagation). To negate this effect we used only 149 of 207 Allen

brain regions for the primary region list. These remaining regions

have no neuroanatomical subparts in the ABA dataset.

The Allen Atlas provides a differing grouping of regions than

the BAMS hierarchy. The superior colliculus is one example. The

ABA divides its regions into motor and sensory areas, while the

BAMS atlas groups the regions into optic, gray and white layers.

Differences were resolved by creating ‘‘virtual regions’’ in the

BAMS atlas space that contained the corresponding subregions of

the Allen Atlas. The connectivity profiles of the mapped regions

were joined using a logical OR operation to provide the virtual

region’s BAMS connections. For example the superior colliculus

sensory related virtual region has all of the BAMS connections of

the zonal, optic and superficial gray layers. In addition to the

superior colliculus, virtual regions were created for the pallidum

medial region and nucleus ambiguus.

After mapping of brain regions, the ABA data is an x (number of

regions in the ABA) by y (number of genes) matrix, and the BAMS

connectivity data is a square w (number of regions in BAMS) by w

(region) matrix (Figure 1). The two matrices are not directly

comparable because the number of regions in BAMS is greater

than those in ABA (w.x). Rather than discarding all information

from regions which lack expression information, we use the x by w

submatrix of the BAMS data. Thus each of the x regions has a y-

dimensional expression vector and a w-dimensional connectivity

vector. This maximizes the use of connection information, but we

note that the connectivity profiles include information from

regions for which we lack expression information.

Statistical Tests
Correlations between gene expression values and connection

degree were computed using Spearman’s rank correlation

coefficient (r). Connection degree for each brain region is the

sum of its propagated incoming and outgoing connections.

Significance of the correlation was corrected for multiple testing

using the Bonferroni method.

Mantel test. To test the hypothesis that there is a statistical

relationship between connectivity and gene expression profiles, we

apply the Mantel test [71]. The Mantel test is similar to methods

previously applied to Caenorhabditis elegans data [22]. The Mantel

test uses correlation at two levels to measure the relationship

between the connectivity and gene expression profiles. First,

Pearson correlation for the connectivity and gene expression

profiles are computed for each pair of brain regions, resulting in a

distance or similarity matrix (Figure 1). The upper triangles of the

similarity or distance matrices are then converted to linear vectors.

The Pearson correlation of these two vectors is then computed to

provide dependence between the connectivity and gene expression

profiles for all brain region pairings. The statistical significance is

determined from an empirical null distribution. We performed the

same analytic procedures used on the ‘real’ data 1,000 or more

times using shuffled data. To keep the distribution of the gene

expression and connectivity values constant, we shuffle the brain

region labels. Significance is determined by counting the number

of shuffled datasets that score higher than the non-shuffled result.

Mantel correlograms were created using the ‘‘mantel.correlog’’ R

library developed by Pierre Legendre (http://www.bio.umontreal.

ca/legendre/).

Spatial and nomenclature distance matrices. To create

the spatial distance profiles we computed Euclidean distance

between a given region’s centroid and all others, using the Allen

Brain Atlas programming interface (API). Further, we created

another measure of brain region proximity using the neuro-

anatomical part-of hierarchy. Similarity between two regions in

the nomenclature profile is simply the number of shared neuro-

anatomical parents. Using these distance matrices we then

performed the Mantel test using the spatial, nomenclature and

connectivity profiles. Further we applied the partial Mantel test to

determine if the correlation between connectivity and expression is

still significant after controlling for these proximity measures [30,31].

Akin to performing a partial correlation, the partial Mantel test uses

the residuals of a regression fitted to the distance matrix.

Gene Ranking and Enrichment
We generate a ranked list of genes so that a gene’s rank is

proportional to its contribution to the connectivity correlation
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score. To achieve this we reduce the number of genes in the

expression profiles while maximizing the Mantel test correlation

score. Since it is not feasible to compute all possible subsets of the

image sets, we approximate an optimal candidate list of genes.

Again, we take guidance from Kaufman et al. [22] and use a

greedy backward elimination algorithm with the Mantel test. Each

iteration of the algorithm involves ranking each gene by its

contribution to the global correlation, removing the least

informative gene, and repeating the test on the remainder. For

the connectivity gene rankings we optimized a partial Mantel

correlation that modelled proximity in the connection matrix but

not the expression correlations (due to computational constraints).

For functional enrichment analysis we employed the ErmineJ

software to explore the roles of the candidate genes [72].

Overrepresentation analysis was used on the set of genes removed

after correlation reached a maximum. To increase resolution of

the genes, NCBI identifiers were used instead of gene symbols.

Gene Ontology (GO) groups included in the analysis required 5 to

200 measured gene members and were limited to the biological

process division. Benjamini-Hochberg false discovery rate was

used to control for testing multiple GO groups [73]. GO groups

were sorted by corrected p-value to determine rankings.

For creation of Figures S4 and S5 we employed average linkage

hierarchical clustering on both the image series and brain regions.

The clustered data was converted to a heatmap using matrix2png

with rows normalized to zero mean and variance of 1 [74]. Values

were then constrained to the range of 23 to 3.

Supporting Information

Dataset S1 Gene lists mentioned in the paper. More informa-

tion about these sets is provided on the supplement website.

Found at: doi:10.1371/journal.pcbi.1001049.s001 (0.07 MB

TXT)

Figure S1 Density plot of expression correlation between region

pairs.

Found at: doi:10.1371/journal.pcbi.1001049.s002 (0.02 MB PS)

Figure S2 Mantel correlation between different matrices after

controlling for proximity. The 141 regions with incoming

connectivity information were used to generate the correlations.

Found at: doi:10.1371/journal.pcbi.1001049.s003 (0.06 MB TIF)

Figure S3 Intersection of the top 10th percentile of brain region

pairings for connectivity and gene expression correlations. Using

outgoing proximity controlled connectivity. With expression

correlation derived from only the top outgoing genes. Colors

represent five major brain divisions: cerebellum (yellow), cere-

brum (green), hindbrain (blue), interbrain (purple) and midbrain

(red).

Found at: doi:10.1371/journal.pcbi.1001049.s004 (0.49 MB TIF)

Figure S4 Heatmap produced by average linkage hierarchical

clustering of the top outgoing gene list. Rows are normalized to

show expression ranging from low (blue) to high (yellow) with grey

representing missing values.

Found at: doi:10.1371/journal.pcbi.1001049.s005 (3.38 MB TIF)

Figure S5 Gene(row) dendrogram from the hierarchical clus-

tering used in Figure S4. Some of the genes mentioned in the text

are highlighted in red, showing dispersed clustering.

Found at: doi:10.1371/journal.pcbi.1001049.s006 (0.14 MB PS)

Figure S6 Density plot of gene-to-gene correlations. Gene to

gene correlations were computed within the ‘‘outgoing’’ gene list

and all genes.

Found at: doi:10.1371/journal.pcbi.1001049.s007 (0.02 MB PS)

Figure S7 Pgrmc1 expression levels versus connectivity. For

each region pair this plot shows the sum of the two regions’

expression in the context of their connectivity.

Found at: doi:10.1371/journal.pcbi.1001049.s008 (0.02 MB PS)

Table S1 Brain region statistics (appended connectivity).

Found at: doi:10.1371/journal.pcbi.1001049.s009 (0.53 MB XLS)

Table S2 Incoming proximity-controlled top gene set.

Found at: doi:10.1371/journal.pcbi.1001049.s010 (0.20 MB XLS)

Table S3 Outgoing proximity-controlled top gene set.

Found at: doi:10.1371/journal.pcbi.1001049.s011 (0.07 MB XLS)

Table S4 Spatial proximity top gene list.

Found at: doi:10.1371/journal.pcbi.1001049.s012 (0.08 MB XLS)

Table S5 Gene Ontology group analysis results for all three top

gene sets.

Found at: doi:10.1371/journal.pcbi.1001049.s013 (1.11 MB XLS)

Table S6 Mapping of Allen Reference Atlas Brain regions to

Brain Architecture Management system regions.

Found at: doi:10.1371/journal.pcbi.1001049.s014 (0.03 MB XLS)
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