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Previous studies have demonstrated that amnestic mild cognitive impairment (aMCI) has disrupted properties of large-scale
cortical networks based on cortical thickness and gray matter volume. However, it is largely unknown whether the topological
properties of cortical networks based on geometric measures (i.e., sulcal depth, curvature, and metric distortion) change in
aMCI patients compared with normal controls because these geometric features of cerebral cortex may be related to its intrinsic
connectivity. Here, we compare properties in cortical networks constructed by six different morphological features in 36 aMCI
participants and 36 normal controls. Six cortical features (3 volumetric and 3 geometric features) were extracted for each participant,
and brain abnormities in aMCIwere identified by cortical network based on graph theorymethod. All the cortical networks showed
small-world properties. Regions showing significant differences mainly located in the medial temporal lobe and supramarginal and
right inferior parietal lobe. In addition, we also found that the cortical networks constructed by cortical thickness and sulcal depth
showed significant differences between the two groups. Our results indicated that geometric measure (i.e., sulcal depth) can be used
to construct network to discriminate individuals with aMCI from controls besides volumetric measures.

1. Introduction

Mild cognitive impairment (MCI) is considered to be a tran-
sitional period between normal aging and Alzheimer’s dis-
ease (AD), which is a progressive, neurodegenerative disease
characterized by cognitive decline greater than expected for
one’s age and educational level yet not fulfilling the criteria of
AD [1]. AmnesticMCI (aMCI), as themost common subtype
of MCI, is characterized by primary memory impairments
with single ormultiple cognitive domains impaired and likely
progresses to AD [2–4]. Current studies of aMCI have shown
disrupted functional integration [5] and abnormal structural

connections between regions [6]. Morphological features
have been widely used to characterize brain structures [7,
8] and also served as structural measures to investigate
topological properties in large-scale cortical networks [9–
11]. Previous studies on large-scale cortical network in MCI
mostly used cortical thickness and gray matter volume as
descriptors to construct structural network of the human
cortex [12, 13].

However, different morphological features reveal dif-
ferent intrinsic properties of cerebral cortex. For example,
volumetric measures (i.e., cortical thickness, gray matter
volume) reflect the size, density, and arrangement of cells
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(neurons, neuroglia, and nerve fibers) [14, 15], and surface
area is linked to the number of mini columns in the cortical
layer [16]. Using large-scale cortical network analysis based
on cortical thickness, several studies have found disrupted
small-world properties (i.e., lower clustering coefficient and
shorter path length) in MCI patients compared to normal
controls [13, 17, 18]. A cortical network study using sur-
face area can reveal topological properties of the networks
resulting from the concurrent changes between different
anatomical regions [10]. In addition, geometricmeasures (i.e.,
sulcal depth, curvature, and metric distortion) mainly reflect
cortical folding pattern [19–21]. For instance, sulcal depth and
curvature measure specific aspects of the cortical geometry,
andmetric distortion is a wider measure of the overall degree
of cortical folding [22]. These geometric measures related
to cortical folding may vary with the changes of intrinsic
as well as extrinsic connectivity according to the tension
theory of the cerebral cortexmorphogenesis [19] and could be
more suitable descriptors for finding the anatomical-axonal
and morphological connectivity correlation [10]. Thus, we
assume that geometric measures can be used to construct
cortical network that may detect the alterations from struc-
tural disconnection in aMCI and show different topological
properties compared with volumetric measures (i.e., cortical
thickness, gray matter volume, and surface area).

Here, we investigated topological properties of large-
scale human cortical network based on graph theory analysis
method by employing multiple morphological features in
aMCI patients.Then we compared the topological properties
of different cortical networks constructed by different mor-
phological features. We expected that topological properties
of cortical networks based on geometric measures in aMCI
patients may be different from normal controls and can be
used to discriminate individuals with aMCI from controls.

2. Materials and Methods

2.1. Participants. Seventy-two right-handed participants,
including thirty-six aMCI and demography matched healthy
normal controls, participated in this study. The aMCI par-
ticipants were recruited from a clinical research program
at Xuanwu Hospital, Beijing, China. The healthy normal
controls were recruited from the local community through
advertisements. This study was approved by the Research
Ethics Review Board of Xuanwu Hospital, and written
informed consent was obtained from each participant.

All the aMCI participants were identified according to the
criteria for amnestic MCI [23–26], which included (a) mem-
ory complaint, preferably confirmed by an informant; (b)
objective memory impairment, adjusted for age and educa-
tion; (c) normal or near-normal performance on general cog-
nitive functioning and no or minimum impairment of daily
life activities; (d) the Clinical Dementia Rating (CDR) score
of 0.5; and (e) notmeeting the criteria for dementia according
to the DSM-IV (Diagnostic and Statistical Manual of Mental
Disorders, 4th Edition, revised). Participants with aMCIwere
diagnosed by experienced neurologists. Participants were
excluded if they met the following clinical characteristics:
(a) a clear history of stroke; (b) severe depression that led

Table 1: Subject demographics.

aMCI (𝑛 = 36) Control (𝑛 = 36) 𝑝 value
Gender (M/F) 14/22 15/21 0.813
Age 66.0 ± 8.7 (50–83) 63.9 ± 6.1 (56–79) 0.258
Education 10.2 ± 4.4 (2–21) 10.7 ± 3.2 (5–17) 0.651
MMSE 24.4 ± 3.2 (17–30) 28.1 ± 1.7 (20–30) <0.001
MoCA 20.6 ± 3.7 (15–27) 26.4 ± 2.4 (18–30) <0.001
Age, education,MMSE, andMoCAdata are expressed asmean± SD (range).
No significant differences were between two groups in gender, age, and
education years. Groups for aMCI and NC showed significant differences in
MMSE and MoCA scores (𝑝 < 0.01). Statistical p value was analyzed using
two-sample 𝑡-test, in which gender was converted into a virtual variable.

to mild cognitive impairment (Hamilton Depression Rating
Scale score >24 points); (c) other nervous system diseases,
which can cause cognitive impairment (such as brain tumors,
Parkinson’s disease, encephalitis, and epilepsy); (d) cognitive
impairment caused by traumatic brain injury; (e) other
systemic diseases, which can cause cognitive impairment,
such as thyroid dysfunction, severe anemia, syphilis, and
HIV; and (f) a history of psychosis or congenital mental
growth retardation. Clinical and demographic data for the
participants are shown in Table 1.

2.2. MRI Data Acquisition. MRI data acquisition was per-
formed on a 3.0 T Siemens scanner by employing a sagittal
magnetization-prepared rapid gradient echo (MP-RAGE)
sequence with the following imaging parameters: repetition
time (𝑇R) = 1900ms; echo time (𝑇E) = 2.2ms; inversion
time = 900ms; flip angle = 90∘; field of view (FOV) =
250mm× 250mm;matrix = 256×256; 176 slices, thickness =
1.0mm. Brain MR images were inspected by an experienced
neuroradiologist, and no gross abnormalities were observed
for any subject.

2.3. Cortical Reconstruction and Morphological Features
Extraction. Both the cortical reconstruction andmorpholog-
ical features extraction were obtained by using the FreeSurfer
software (http://surfer.nmr.mgh.harvard.edu/) with a stan-
dard cortical automatic handling protocol. First, the data
were normalized to a standard anatomical template [27]
and corrected for bias-field inhomogeneity. Then the images
were skull-stripped using a watershed algorithm [28] and
subsequently segmented into subcortical white matter and
deep gray matter volumetric structures [29, 30]. The initial
tessellation was formed by reconstructing the gray mat-
ter/white matter boundary (white surface) and the outer
cortical surface (pial surface) [31, 32]. Subsequently, a series
of deformable procedures were performed, including surface
inflation [31], registration to a spherical atlas [33], and
parcellation of the cerebral cortex into units based on gyral
and sulcal structures [30]. All reconstructed surfaces were
visually inspected for gross-anatomical topological defects.
Finally, a variety of morphological features at each vertex
on the pial surface were computed, including volumetric
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(cortical thickness, surface area, and GM volume) and geo-
metric (sulcal depth, metric distortion, and mean curvature)
measures, more details seen in this paper [34]. The thickness
maps of both NC and aMCI groups are shown in Figure 1(a).

2.4. Cortical Network Construction. We employed a cortical
scheme comprised of 148 regions from Destrieux Atlas. Cor-
tical networks were built from partial correlation of interre-
gional cortical morphological features. Prior to the corre-
lation analysis, a linear regression was performed at every
region to remove the effects of age, gender, and the total mor-
phological feature value for each measure. And the resulting
residuals were used to substitute for the raw morphological
feature values. In this experimental design, the number of
observations (participants, 𝑁 = 36) is smaller than the
number of dependent variables (regions, 𝑃 = 148). “Small
𝑁, large 𝑃” lead to inaccurate estimations of the covariance
matrix [35]. A method based on the Ledoit-Wolf lemma
was used to shrink the covariance estimates [36]. Finally,
the partial correlation coefficients were computed with R
software (http://www.r-project.org/). The partial correlation
matrixes (adjacent matrix) of cortical networks constructed
by thickness are shown in Figure 1(b).

The adjacent matrix was then binarized to an undirected
and unweighted graph as shown in Figure 1(c) (at the sparsity
of 5%) using a wide range of sparsity values (from 5% to 35%,
step = 0.01). Sparsity of 5% meant that only the strongest
5% of the connections remained and 95% of the connectivity
matrices were removed. If the sparsity was less than 5%, the
small-world properties were not estimable. And if the sparsity
was greater than 35%, more noise would be included in the
graph and it would be more like random network [37, 38].
The same sparsity range was applied for all network analyses.

2.5. Graph Theoretical Characterization. Graph theory is
usually considered an attractive model for the mathematical
treatment of cortical network connectivity [39]. In general,
a complex network can be represented as a graph 𝐺, which
consists of a set of nodes and a set of edges. Several important
parameters of the graph 𝐺 for the connectivity matrices were
estimated in this study.

Degree is the number of links connected to the node.
Degree of a node “𝑖” is defined as

𝑘
𝑖
= ∑

𝑗∈𝑁

𝑎
𝑖𝑗
, (1)

where 𝑁 is the set of all nodes in the network; 𝑎
𝑖𝑗
is the

connection status between nodes “𝑖” and “𝑗” and 𝑎
𝑖𝑗
= 1when

link exists; otherwise 𝑎
𝑖𝑗
= 0.

The clustering coefficient𝐶
𝑖
of a node “𝑖” with degree 𝑘

𝑖
is

defined as the ratio of the existing connections (𝑒
𝑖
) between

the node’s neighbors and the maximum possible connections
between neighbors of the node. The clustering coefficient of
node “𝑖” is given as

𝐶
𝑖
=

2𝑒
𝑖

𝑘
𝑖
(𝑘
𝑖
− 1)

. (2)

The clustering coefficient is an index of local structure, while
the clustering coefficient of the whole network is the average
𝐶
𝑖
over all nodes

𝐶 =

1

𝑁

𝑁

∑

𝑖=1

𝐶
𝑖
. (3)

The shortest path length 𝐿
𝑖,𝑗
between two nodes “𝑖” and

“𝑗” of the graph 𝐺 is the smallest number of edges that is
required to connect “𝑖” and “𝑗.” The shortest path length of
a node “𝑖” can be calculated as the distance between a node
“𝑖” and all other nodes [37]:

𝐿
𝑖
=

1

𝑁

𝑁

∑

𝑗=1, 𝑗 ̸=𝑖

𝐿
𝑖,𝑗
. (4)

The characteristic path length is defined as the mean of path
length 𝐿

𝑖,𝑗
over all pairs of nodes:

𝐿 =

1

𝑁

𝑁

∑

𝑖=1

𝐿
𝑖
. (5)

The small-worldness network parameter 𝜎 is defined as
those with small path length, like random network, and high
clustering coefficient networks, much higher than random
network. Small-world properties of a given network may be
influenced by its intrinsic features, such as the number of
nodes, edges, and the degree distribution.Thus, 1000 random
networks were generated by using a random rewiring process
[40], which preserves the number of nodes, mean degree, and
degree distribution. This results in a normalized clustering
coefficient 𝛾 = 𝐶

𝑝
/𝐶rand ≫ 1 and a normalized path length

𝜆 = 𝐿
𝑝
/𝐿 rand ≈ 1. Then a simple quantitative measurement

of small-worldness 𝜎 is acquired [41]:

𝜎 =

𝛾

𝜆

. (6)

The real cortical network 𝐺 is considered to be a small-world
network if it meets the following criteria [37]:

𝜎 =

𝛾

𝜆

> 1. (7)

Betweenness centrality is a measure of network hubs that
are crucial to efficient communication. BC is defined as the
ratio of the number of shortest path passing through node “𝑖”
to the total number of shortest paths between pairs of nodes
“𝑗” and “𝑘”:

BC
𝑖
= ∑

𝑗, 𝑘∈𝑁

𝑗 ̸=𝑘

𝜌
𝑗,𝑘(𝑖)

𝜌
𝑗,𝑘

,

(8)

where 𝜌
𝑗,𝑘

is the number of shortest paths between “𝑗” and
“𝑘” and 𝜌

𝑗,𝑘(𝑖)
is the number of shortest path between “𝑗”

and “𝑘” that passes through “𝑖.” For further comparison, the
betweenness BC

𝑖
would be normalized as bc

𝑖
= BC

𝑖
/BC,

where BC is the average betweenness of the network. Cortex
regions were defined as hubs, whose betweenness values were
more than twice the average betweenness of the network
(bc
𝑖
> 2).
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Figure 1: Flowchart for the construction of structural cortical networks. (a) Two representative cortical thickness maps (left for a control
subject and right for an aMCI subject) were obtained from anatomical MRI. The color bar indicating the range of thickness is shown on the
right. (b)The cortical thickness was mapped into 148 regions and the partial correlation matrices were obtained between regional thicknesses
across subjects within each group (left for NC and right for aMCI).The color bar indicating the partial correlation coefficient between regions
is shown on the right. (c) The correlation matrices of (c) were thresholded into the binarized matrices (left for NC and right for aMCI) by
sparsity of 5%. NC, normal controls.
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2.6. Statistical Analysis. Two-sample 𝑡-test was used to test
the demographics, in which gender was converted into a
virtual variable. To test the statistical significance of the
between-group differences in the parameters of the cortical
networks, a nonparametric permutation test was employed
[42]. In this permutation test, we calculated possible values
of the test statistic on a reference distribution after repeatedly
rearranging the observed data from NC and aMCI groups.
First, characteristics of the cortical network, such as 𝐶

𝑝
,

𝐿
𝑝
, and bc

𝑖
, were calculated for NC and aMCI groups,

respectively. Then NC and aMCI data were mixed. From
the mixed data, the same number of subjects as aMCI
patients was randomly chosen to be considered as aMCIs
and the rest to be NCs. Next, partial correlation matrix for
each randomized group was recalculated and corresponding
binarized matrix was obtained using the same sparsity as in
the real cortical networks.Third, network parameters for each
randomized groupwere computed.This process was repeated
1000 times and the 95 percentile points of each distribution
used as the critical values for a one-tailed procedure were
repeated at every sparsity value of the cortical networks.

3. Results

3.1. Demographics. Two-sample 𝑡-test was used to test the
demographics, in which gender was converted into a virtual
variable, and results are shown in Table 1. There were no
significant differences in gender, age, or years of education
between aMCI and NC. Groups for aMCI and NC showed
significant differences in MMSE and MoCA scores (𝑝 <
0.01).

3.2. Small-World Properties of Cortical Networks. Compared
with random networks, small-world networks had higher
clustering coefficients and similar characteristic path length.
Over a range of sparsity values (5% ≤ sparsity ≤ 35%),
clustering coefficient and characteristic path length were
calculated for both the NC and aMCI networks based on
different morphological features. The small-world attributes
of the networks are shown in Figure 2. Compared with
matched random networks which had the same number of
nodes and degree distribution, all morphological networks
had similarly characteristic path length (𝜆 ≈ 1) and larger
clustering coefficients (𝛾 ≫ 1) in both NC and aMCI
networks. Compared with NC, aMCI showed slightly larger
small-world characteristics (larger 𝜎) in the cortical networks
obtained for volumetric measures (cortical thickness and
GM volume) and there were no great differences between
NC and aMCI cortical networks based on surface area and
geometric measures (mean curvature, metric distortion, and
sulcal depth).

3.3. Abnormal Changes in Nodal Betweenness Centrality. As
crucial components required for efficient communication in
a network, hubs regulated information flow and played a
key role in network resilience against attacks. To study the
nodal characteristics, the cortical networks were constructed
at certain sparsity of 11%.This sparsity ensured that all regions

were included in the cortical networks while minimizing the
number of false-positive paths. Based on the results, some
regions were identified as hubs in the cortical network of both
the NC and aMCI groups. Details of the hub regions in the
cortical networks are shown in Table 2.

In this study, the identified hub in networks based on
volumetric measures, as shown in Figures 3(a) and 3(b),
was involved in the frontal, temporal, parietal, and insula
association cortex in the NC and temporal lobe, superior
parietal lobule, cingulate cortex, precentral sulcus, callosum,
and insula in the aMCI. High betweenness in network based
on geometric measures was similar to volumetric measures.
It was worth noting that hubs in networks using sulcal
depth as descriptor included frontal polar, lingual sulcus,
medial occipitotemporal sulcus, precentral sulcus, temporal
gyrus (Heschl), and corpus callosum in NC group. And
in aMCI group, regions included collateral sulcus, precen-
tral sulcus, postcentral sulcus, temporal-occipital incisures,
frontal gyrus, and corpus callosum (Figure 3(c)).

Permutation test was used to detect the significant dif-
ferences in betweenness between NC and aMCI. Regions
showing significant increase (𝑝 < 0.05) in the betweenness
of cortical networks using volumetric measures in aMCI
patients included collateral sulcus, occipital gyrus, temporal
gyrus, temporal pole, parietooccipital sulcus, postcentral
gyrus, and subcallosal gyrus. And decreased betweenness
(𝑝 < 0.05) regions were located in subparietal sulcus, middle
occipital gyrus, precuneus, and superior temporal sulcus as
shown in Figures 4(a) and 4(b). Betweenness in inferior tem-
poral gyrus, superior temporal gyrus, inferior frontal gyrus,
and pericallosal sulcus showed significant increase (𝑝 < 0.05)
in network constructed by sulcal depth in aMCI patients.
And betweenness in lateral sulcus, medial occipitotemporal
sulcus, lateral occipitotemporal sulcus, cingulate sulcus, and
short insular gyri significantly decreased (𝑝 < 0.05).

3.4. Comparing Networks from Different Morphological
Features between Groups

3.4.1. Volumetric Measures. As shown in Figures 5(a) and
5(b), clustering coefficient and characteristic path length
were higher in the structural cortical networks obtained
from volumetric measures (both cortical thickness and GM
volume) of aMCI. A permutation test was used to detect
the between-group differences. The arrows indicated the
significant differences between NC and aMCI in the clus-
tering coefficient (𝑝 < 0.05) of networks constructed by
cortical thickness at the sparsity of 12% and 14% as shown
in Figure 5(a). Significant differences in characteristic path
length (𝑝 < 0.05) of networks constructed by cortical
thickness had been detected between NC and aMCI at the
sparsity of 11%, 12%, and 14%. In the cortical networks
obtained from GM volume, as shown in Figure 5(b), no
significant differences were found in clustering coefficient
between NC and aMCI (𝑝 > 0.05). Only at the sparsity of
35% was a significant difference found in characteristic path
length (𝑝 < 0.05). Our findings provided further evidence
for which networks constructed by cortical thickness had a
small-world characteristic loss in aMCI.
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Figure 2: Small-world properties of volumetric measures networks and geometric measures networks. The graph shows the normalized
characteristic path length (lambda, 𝜆 = 𝐿

𝑝
/𝐿 rand) and clustering coefficients (gamma, 𝛾 = 𝐶

𝑝
/𝐶rand ≫ 1) over a range of sparsity values

(5% ≤ sparsity ≤ 35%). All the networks have 𝛾 ≫ 1 (green lines) and 𝜆 ≈ 1 (red lines), which imply small-world properties. (a) The values
of gamma and lambda in NC and aMCI of cortical thickness networks. (b)The values of gamma and lambda in NC and aMCI of GM volume
networks. (c) The values of gamma and lambda in NC and aMCI of surface area networks. (d) The values of gamma and lambda in NC and
aMCI of mean curvature networks. (e) The values of gamma and lambda in NC and aMCI of metric distortion (Jacobian) networks. (f) The
values of gamma and lambda in NC and aMCI of sulcal depth networks. Thickness, cortical thickness. Volume, gray matter volume. Area,
surface area. Curv, mean curvature. Sulc, sulcal depth. NC, normal controls.

In Figure 5(c), the clustering coefficient and characteristic
path length were much larger for aMCI in cortical network
using surface area as descriptor. However, no significant
differences (𝑝 > 0.05) were found in all permutation tests for
small-world properties of cortical network based on surface
area.

3.4.2. GeometricMeasures. Small-world properties of cortical
network using sulcal depth were very similar to properties in
network using thickness for both NC and aMCI. As shown in
Figure 5(f), the clustering coefficient was higher for aMCI,
and the characteristic path length had no much difference
between aMCI and NC. Statistical analysis further revealed
significant differences in the clustering coefficient (𝑝 < 0.05)
at 9% ≤ sparsity ≤ 11%, sparsity = 13%, 16%, and 18%, and

sparsity = 24% and 25%. Significant differences were found
in the characteristic path length betweenNC and aMCI at the
range of sparsity values (sparsity = 25%and 30% ≤ sparsity ≤
33%).

In Figure 5(e), small-world properties analysis using
metric distortion as a descriptor showed similar results to
properties in network based on cortical thickness. As shown
in Figure 5(e), the clustering coefficient was larger for the
aMCI compared with NC subjects. What is more, the charac-
teristic path length had no much difference between NC and
aMCI. However, statistical analysis revealed no significant
differences (𝑝 > 0.05) in all the topological parameters
over the whole range of sparsity values. Similar to metric
distortion, no significant differences were found when using
mean curvature as descriptor in cortical network (𝑝 > 0.05).
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Table 2: The abbreviations of Destrieux Atlas.

Index Long name Abbreviations
1 Frontomarginal gyrus (of Wernicke) and sulcus GSF
2 Inferior occipital gyrus (O3) and sulcus GSOI
3 Paracentral lobule and sulcus GSP
4 Subcentral gyrus (central operculum) and sulci GSS
5 Transverse frontopolar gyri and sulci GSTF
6 Anterior part of the cingulate gyrus and sulcus (ACC) GSCA
7 Middle-anterior part of the cingulate gyrus and sulcus (aMCC) GSCMA
8 Middle-posterior part of the cingulate gyrus and sulcus (pMCC) GSCMP
9 Posterior-dorsal part of the cingulate gyrus (dPCC) GCPD
10 Posterior-ventral part of the cingulate gyrus (vPCC, isthmus of the cingulate gyrus) GCPV
11 Cuneus (O6) GC
12 Opercular part of the inferior frontal gyrus GFIOper
13 Orbital part of the inferior frontal gyrus GFIOrb
14 Triangular part of the inferior frontal gyrus GFIT
15 Middle frontal gyrus (F2) GFM
16 Superior frontal gyrus (F1) GFS
17 Long insular gyrus and central sulcus of the insula GILSCI
18 Short insular gyri GIS
19 Middle occipital gyrus (O2, lateral occipital gyrus) GOM
20 Superior occipital gyrus (O1) GOS
21 Lateral occipitotemporal gyrus (fusiform gyrus, O4-T4) GOTLF
22 Lingual gyrus, lingual part of the medial occipitotemporal gyrus (O5) GOTML
23 Parahippocampal gyrus, parahippocampal part of the medial occipitotemporal gyrus (T5) GOTMP
24 Orbital gyri GO
25 Angular gyrus GPIA
26 Supramarginal gyrus GPIS
27 Superior parietal lobule (lateral part of P1) GPS
28 Postcentral gyrus GPost
29 Precentral gyrus GPCen
30 Precuneus (medial part of P1) GPCun
31 Straight gyrus, gyrus rectus GR
32 Subcallosal area, subcallosal gyrus GS
33 Anterior transverse temporal gyrus (of Heschl) GTSGTT
34 Lateral aspect of the superior temporal gyrus GTSL
35 Planum polare of the superior temporal gyrus GTSPP
36 Planum temporale or temporal plane of the superior temporal gyrus GTSPT
37 Inferior temporal gyrus (T3) GTI
38 Middle temporal gyrus (T2) GTM
39 Horizontal ramus of the anterior segment of the lateral sulcus (or fissure) LFAH
40 Vertical ramus of the anterior segment of the lateral sulcus (or fissure) LFAV
41 Posterior ramus (or segment) of the lateral sulcus (or fissure) LFP
42 Occipital pole PO
43 Temporal pole PT
44 Calcarine sulcus SCal
45 Central sulcus (Rolando’s fissure) SCen
46 Marginal branch (or part) of the cingulate sulcus SCM
47 Anterior segment of the circular sulcus of the insula SCIA
48 Inferior segment of the circular sulcus of the insula SCII
49 Superior segment of the circular sulcus of the insula SCIS
50 Anterior transverse collateral sulcus SCTA
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Table 2: Continued.

Index Long name Abbreviations
51 Posterior transverse collateral sulcus SCTP
52 Inferior frontal sulcus SFI
53 Middle frontal sulcus SFM
54 Superior frontal sulcus SFS
55 Sulcus intermedius primus (of Jensen) SIPJ
56 Intraparietal sulcus (interparietal sulcus) and transverse parietal sulci SIPT
57 Middle occipital sulcus and lunatus sulcus SOML
58 Superior occipital sulcus and transverse occipital sulcus SOST
59 Anterior occipital sulcus and preoccipital notch (temporooccipital incisure) SOA
60 Lateral occipitotemporal sulcus SOTL
61 Medial occipitotemporal sulcus (collateral sulcus) and lingual sulcus SOTML
62 Lateral orbital sulcus SOL
63 Medial orbital sulcus (olfactory sulcus) SOMO
64 Orbital sulci (H-shaped sulci) SOHS
65 Parietooccipital sulcus (or fissure) SPO
66 Pericallosal sulcus (S of corpus callosum) SPer
67 Postcentral sulcus SPost
68 Inferior part of the precentral sulcus SPIP
69 Superior part of the precentral sulcus SPSP
70 Suborbital sulcus (sulcus rostrales, supraorbital sulcus) SSO
71 Subparietal sulcus SSP
72 Inferior temporal sulcus STI
73 Superior temporal sulcus (parallel sulcus) STS
74 Transverse temporal sulcus STT

4. Discussion

In this study, we explored the properties of large-scale
human brain cortical networks usingmultiplemorphological
features (including 3 volumetric measures, cortical thick-
ness, surface area, and gray matter volume, and 3 geo-
metric measures, sulcal depth, metric distortion, and mean
curvature) based on graph theory analysis in cognitively
normal older adults and amnestic mild cognitive impairment
(aMCI) patients. We found that all networks constructed by
these morphological features showed small-world properties
which implied high efficiency of information transformation
in human cognition. Properties in networks constructed
by cortical thickness and sulcal depth showed significant
differences between NC and aMCI patients. Besides, regions
showing significant differences mainly located in the medial
temporal lobe and supramarginal and right inferior parietal
lobe. Our results indicated that geometricmeasure (i.e., sulcal
depth) can be used to construct network to discriminate
individuals with aMCI from controls besides volumetric
measures and provided new insights into the study of the
pathophysiological mechanism of amnestic MCI.

Previous studies have demonstrated that the cortical
thickness and GM volume can be used as morphological
descriptors to study the complex cortical networks, and
networks based on the cortical thickness and GM volume
followed the small-world properties [10–12, 43, 44]. Similar

to previous studies, networks based on volumetric mea-
sures showed altered small-world properties (i.e., increased
clustering coefficient and path length) in aMCI patients
compared with NC subjects. Short path length and high
clustering coefficient in cortical network mean effective and
rapid transfers of information between and across remote
regions that are believed to constitute the basis of cognitive
processes. Large 𝜎 means an optimal balance between local
specialization and global integration. The cortical thickness
changes are related to myelination of gray matter or the
underlyingwhitematter, aswe knowdamage ofmyelin sheath
is often associated with decreased functional efficiency. Here,
we found longer path length and higher clustering coefficient
in aMCI that may indicate a disturbance of the normal
balance [45].

Consistent with the volumetric measures, all networks
based on geometric measures also followed the small-world
properties but less optimal small-worldness in aMCI net-
work, while properties in network constructed by sulcal
depth showedmuchmore significant differences betweenNC
and aMCI patients compared with properties in networks
based on other geometric measures through a range of
sparsity values. Previous studies have demonstrated that
geometric differences are predominantly linked with the
development of neuronal connections and cortical pattern of
connectivity [19, 46] and are thus amarker for cerebral devel-
opment or abnormal cortical connectivity due to disorders.
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Figure 3: Hubs regions in cortical networks. Global hub regions derived from normalized nodal betweenness centrality in NC and aMCI.
The blue spheres indicate the global hubs whose betweenness is more than twice the average betweenness of the network. (a) Global hubs in
cortical thickness networks. (b) Global hubs in gray matter volume networks. (c) Global hubs in sulcal depth networks. Thickness, cortical
thickness. Volume, gray matter volume. NC, normal controls. For the abbreviations of regions, see Table 2.
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Figure 4: Abnormal changes in nodal betweenness centrality.The graph shows significant difference (𝑝 < 0.05) in betweenness between two
groups. The green spheres indicate significant decreases in between-group nodal centrality. The red spheres indicate significant increases in
between-group nodal centrality. (a) Abnormal changes in cortical thickness networks. (b) Abnormal changes in graymatter volume networks.
(c) Abnormal changes in sulcal depth networks. Thickness, cortical thickness. Volume, gray matter volume. NC, normal controls. For the
abbreviations of regions, see Table 2.

Here networks constructed by sulcal depth in aMCI with
less optimal small-worldness implied abnormal structural
connections between specific regions in aMCI patients.

Previous studies indicated that hubs were mainly in
regions of the parietal, temporal, and frontal heteromodal
association cortex (SPL, SMG, MTG, STG, IFG, and SFG)
and highly connected primary motor cortex (PrCG) [45].
Hubs in this study were predominately in frontal, temporal,
parietal, and insula association cortex in NC of networks
based on volumetric measures. Many previous studies ignore
the insula when constructing cortical network because the
insula is covered by other lobes. Compared with NC, there
were more hubs in aMCI involved intemporal lobe, superior

parietal lobule, cingulate cortex, precentral sulcus, callosum,
and insula. In networks based on sulcal depth, hub regions in
NC were compatible with previous studies of functional and
structural cortical network [47]. These hub regions, which
are considered to be the substrates of human cognition and
consciousness, are in the association cortex that receives
convergent inputs from multiple other cortical regions [12].
And in networks based on sulcal depth, hub regions in aMCI
had more hubs compared with NC, which was similar to
regions in networks based on volumetric measures.

Evidences from previous studies have shown the shrunk
brain regions in aMCI patients located in parahippocampal
gyrus, medial temporal lobe, entorhinal cortex, cingulum,
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Figure 5: Continued.
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Figure 5: Between-group differences in clustering coefficient (𝐶
𝑝
) and characteristic path length (𝐿

𝑝
) of different morphological features

based networks. The graph shows the differences in 𝐶
𝑝
and 𝐿

𝑝
between NC and aMCI as a function of sparsity of geometric measures

networks. The blue lines represent the mean values (open circles) and 95% confidence intervals of the between-group differences obtained
from 1000 permutation tests at each sparsity value. The arrows indicate significant (𝑝 < 0.05) difference in 𝐶

𝑝
or 𝐿
𝑝
between the two groups.

(a) Between-group differences in 𝐶
𝑝
and 𝐿

𝑝
as a function of sparsity of cortical thickness networks. (b) Between-group differences in 𝐶

𝑝

and 𝐿
𝑝
as a function of sparsity of gray matter volume networks. (c) Between-group differences in 𝐶

𝑝
and 𝐿

𝑝
as a function of sparsity of

surface area networks. (d) Between-group differences in 𝐶
𝑝
and 𝐿

𝑝
as a function of sparsity of mean curvature networks. (e) Between-group

differences in 𝐶
𝑝
and 𝐿

𝑝
as a function of sparsity of metric distortion (Jacobian) networks. (f) Between-group differences in 𝐶

𝑝
and 𝐿

𝑝
as

a function of sparsity of sulcal depth networks. Thickness, cortical thickness. Volume, gray matter volume. Area, surface area. Curv, mean
curvature. Sulc, sulcal depth. NC, normal controls.

insula, and thalamus [48, 49]. Our results were partially
consistent with previous studies. Abnormal changes in the
temporal, occipital gyrus and cingulated sulcus in aMCI
group have been reported as being related to memory per-
formance.What is more, significantly higher nodal centrality
in aMCI was considered as increased functional connectivity
occurred in various brain regions [50]. This may serve as a
compensatorymechanism that enables patients with aMCI to
use other additional resources to maintain normal cognitive
performance [51, 52]. The abnormal characteristics of the
cortical networks observed in aMCI may reflect anatomical
structural abnormalities. Our findings may contribute to an
understanding of the cerebral organization in aMCI.

Some limitations should be addressed in the future.
Firstly, several studies have demonstrated that network res-
olution has an effect on topological properties of human
neocortex by using volumetric measures as descriptors of
anatomical connectivity [10, 53, 54]. In our network anal-
ysis, we only used 148 nodes to construct the network. In
the future, it is interesting to investigate the relationship
between network resolution and topological properties of
human neocortex by using geometric measures. Secondly,
topological properties of a given network may be influenced
by intrinsic features of that network, such as the number of
nodes, number of connections, and degree distribution. To
counteract these effects, we used random networks with the
same number of nodes and edges as surrogates to normalize
the corresponding graph measures. Without any correction,
the small-world index cannot be used to compare the small-
worldness of different empirical networks. However, random
surrogates may increase the sensitivity to differences in
nodes number and degrees for the commonly used small-
world index [55]. The minimum spanning tree (MST) [56],

amathematically defined and unbiased subnetwork, provides
similar information about network topology as conventional
graph measures. It is noted that the MST discards all loop
connections that the clustering coefficient and path length in
the small-world index are highly correlated. Several network
characteristics such as modularity, hierarchy, and rich club
cannot be interpreted with the MST. There is still no optimal
method to normalize network measures. Thirdly, differ-
ent thresholding may lead to different network topological
organizations [47]. Notably, connectivity values often vary
depending on subjects and conditions, which can result in
differences in average degree when using the same threshold
for all networks. In the future, it is important to study the
optimal thresholding methods in constructing networks.

5. Conclusions

This work demonstrated that besides cortical thickness and
gray matter volume, sulcal depth can also be used to study
the topological properties of cortical networks. We found
that networks based on both the volumetric measures and
geometric measures showed small-world properties and
properties in these networkswere different from aMCI toNC.
Notably, properties in cortical network constructed by sulcal
depth showed significant differences between the two groups.
Our results indicate that geometric measure (sulcal depth)
can be used to construct network to discriminate individuals
with aMCI from controls.
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