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Background: Mutations in Myosin Binding Protein C (MYBPC3) are one of the most frequent causes of cardiomyopathies in the 
world, but not much data are available in India.
Methods: We carried out targeted direct sequencing of MYBPC3 in 115 hypertrophic (HCM) and 127 dilated (DCM) cardiomyo-
pathies against 197 ethnically matched healthy controls from India.
Results: We detected 34 single nucleotide variations in MYBPC3, of which 19 were novel. We found a splice site mutation [(IVS6 
+2T) T>G] and 16 missense mutations in Indian cardiomyopathies [5 in HCM; E258K, T262S, H287L, R408M, V483A: 4 in DCM; 
T146N, V321L, A392T, E393K and 7 in both HCM and DCM; L104M, V158M, S236G, R272C, T290A, G522E, A626V], but those 
were absent in 197 normal healthy controls. Interestingly, we found 7 out of 16 missense mutations (V158M, E258K, R272C, A392T, 
V483A, G522E, and A626V) in MYBPC3 were altering the evolutionarily conserved native amino acids, accounted for 8.7% and 6.3% 
in HCM and DCM, respectively. The bioinformatic tools predicted that those 7 missense mutations were pathogenic. Moreover, the co- 
segregation of those 7 mutations in families further confirmed their pathogenicity. Remarkably, we also identified compound mutations 
within the MYBPC3 gene of 6 cardiomyopathy patients (5%) with more severe disease phenotype; of which, 3 were HCM (2.6%) [(1. 
K244K + E258K + (IVS6+2T) T>G); (2. L104M + G522E + A626V); (3. P186P + G522E + A626V]; and 3 were DCM (2.4%) [(1. 
5’UTR + A392T; 2. V158M+G522E; and 3.V158M + T262T + A626V].
Conclusion: The present comprehensive study on MYBPC3 has revealed both single and compound mutations in MYBPC3 and their 
association with disease in Indian Population with Cardiomyopathies. Our findings may perhaps help in initiating diagnostic strategies 
and eventually recognizing the targets for therapeutic interventions.
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Introduction
Cardiac Myosin Binding Protein C (MyBP-C_OMIM-600958), one of the thick filaments exhibited across the C zone of 
A-bands of sarcomeres, binds ß-myosin (ß-MYH7_OMIM-160710) in thick filaments and titin (TTN_OMIM-188840) in 
elastic filaments.1,2 It serves as a control that limits cross-bridge interactions between myosin and actin.3,4 

Phosphorylation of MYBPC3 modulates contraction and is believed to play both structural and regulatory functions. 
A total of 3 isoforms of MyBP-C (a cardiac and two skeletal) have been reported, all 3 share a conserved region 
composed of 7 IgI (immunoglobulin) and 3 FnIII (fibronectin type III) domains.4 The cardiac isoform cMyBP-C contains 
a unique IgI domain (C0) at the N-terminus and four distinctive phosphorylation sites and an exclusive proline-rich 25 
residue insertion at the C5 domain.5,6 Cardiomyopathy (CM), a heart muscle disease, is classified by its morphological 
features leading to subtypes called hypertrophic (HCM), dilated (DCM), left ventricular noncompaction (LVNC), 
restrictive (RCM), and arrhythmogenic right ventricular cardiomyopathy (ARVD/C).7,8 The former two (HCM and 
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DCM) are the most frequent forms of cardiomyopathies, usually affecting the cardiac wall thickness, chamber size and 
ultimately pumping efficiency.9 Describing features of HCM include a hypertrophied/thickened left ventricle with 
weakened diastolic relaxation, myocyte disarray, and replacement fibrosis, with an estimated prevalence of 1 in 500.10 

HCM is known as a “disease of the sarcomere”. Sarcomere consists of thick filaments of myosin and thin filaments of 
actin, tropomyosin, troponin complex, along with the assembly proteins cardiac myosin binding protein C and titin. To 
date, hundreds of mutations in sarcomere genes have been reported to cause cardiomyopathies,10–24 most of the 
mutations (~75%) were found in HCM and a few mutations (~10–16%) were in hereditary DCM. Mutations were 
predominantly reported in two sarcomere genes: ß-Myosin heavy chain (MYH7) and Myosin binding protein 
C (MYBPC3). Defining characteristics of DCM are a left ventricular dilatation, myocardial fibrosis, and myocyte disease, 
which affect systolic function with an estimated prevalence of 1 in 2500.13,17 Currently, more than 40 genes, TTN,25 

LMNA,26 DES27 RBM20, etc.,28 along with sarcomere genes were reported to cause familial DCM.2,14,29–35 The essence 
of mutation screening in disease genetics mostly relayed on the interpretation of genotype and phenotype correlation. 
Sometimes the factors that govern the variable phenotypic expressions are largely due to unknown factors like 
epigenetics, environment, lifestyle, etc., which may also possibly implicate a significant role in disease phenotypes.9,36 

Mutations in myosin binding protein C (MYBPC3) gene, one of the most frequent causes of cardiomyopathies, studied 
extensively in various other populations9–19,22,36 but not much studied in the Indian population with 
cardiomyopathies.37,38 Therefore, here, we performed a targeted screening of the MYBPC3 gene in 242 cardiomyopathy 
patients against 197 controls (ethnically matched healthy individuals).

Materials and Methods
Study Population and Ethical Approval
The Institutional Ethical Committees (IECs) of CSIR-Centre for Cellular and Molecular Biology (CCMB) and other two 
participating hospitals [(1) Government Rajaji Hospital (GH), Madurai, India, and (2) Nizam’s Institute of Medical 
Sciences (NIMS), Hyderabad, India] have approved the study (Table 1). We obtained informed written consent from all 
the participated individuals before sample collection. We then collected ~5.0 mL of blood samples from each of the 242 
patients consisting of 115 HCM, and 127 DCM along with 197 ethnically matched controls (who are healthy individuals 
without heart problems) (Table 1). To get permission to research human subjects the required guidelines and regulations 
were followed according to the principles outlined in the Declaration of Helsinki, the World Medical Association.

Genomic DNA
DNA was isolated from the peripheral blood of all cardiomyopathy patients and normal healthy controls using a standard 
protocol as follows. To the peripheral blood (5.0mL), we added 15mL of erythrocyte lysis buffer [containing 10mM Tris 
at pH 8.0, 320mM Sucrose, 5mM MgCl2, and 1% Triton X-100; Sigma Chemical Company, St. Louis, MO] for 5 
minutes to lysis the erythrocytes. Leucocytes were pelleted by spinning for 5 minutes at 500g in a centrifuge. Leucocytes 
were lysed using 8mL of leucocyte lysis buffer (400mM Tris, 60mM EDTA, 150mM NaCl, and 1% SDS; Sigma 
Chemical Company). To this lysate, 2.0mL of 5M sodium perchlorate (E. Merck, Darmstadt, Germany) was added and 
mixed thoroughly for 2–3 min. DNA was precipitated using isopropanol, after extracting once with phenol:chloroform 
(1:1) and then with chloroform. DNA was washed 2 times with 70% ethanol, and the pellet was dissolved in the TE 
(10mM Tris at pH 8.0 and 1mM EDTA) buffer.

Polymerase Chain Reaction (PCR) and Sequence Analysis
The targeted primer sequences for PCR (Supplement Table S1) covering the exons, exon-intron boundaries of 
MYBPC3 were designed and synthesized using an ABI 392 oligo synthesizer (Perkin–Elmer, Foster City, CA). 
Using 50ng of genomic DNA as a template, Polymerase Chain Reactions (PCR) were carried out using 5pM of 
both forward and reverse primers (Supplementary Table S1), 200mM dNTPs, 10X PCR buffer containing 1.5mM 
MgCl2, and 1U of AmpliTaq Gold (Perkin–Elmer). Amplifications were carried out in a thermal cycler (MJ Research, 
Waltham, MA, USA) using the following cycling conditions: 94°C for 5 min, 35 cycles at 94°C for 1 min, 55–60°C for 
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1 min, 72°C for 1 min, followed by a final extension at 72°C for 10 min. Resulted PCR products (amplicons) were 
checked using 2% agarose gel electrophoresis. The PCR products were then purified using ExoSAP-IT enzyme (USB 
Corporation, USA) and subjected to cycle sequencing reaction in GeneAmp 9700 thermal cycler using Big Dye 
Terminator ready reaction cycle sequencing kit (Applied Biosystems, Foster City, USA). The cycle sequencing 
products were precipitated with ethanol, dried and dissolved in Hi-Di formamide, and bi-directional sequencing was 
performed in an ABI 3730XL automated DNA analyzer (Applied Biosystems, Foster City, USA). The MYBPC3 gene 
sequences obtained were noted and aligned with the Reference MYBPC3 gene sequences using Sequence Analyzer and 
Auto Assembler tools. We followed the American College of Medical Genetics and Genomics (ACMG) guidance for 
the interpretation of sequence variants.39 All the mismatched nucleotide sequences were carefully noted and compared 
against 197 healthy control sequences to detect their significance. We used two bioinformatics tools, Polyphen-2 
(Polymorphism phenotyping 2)40 and SIFT (Sorting intolerant from tolerant),41 to predict the possible pathogenic 
effects of missense mutations.

Results
In the present study, we identified 34 genetic variants in MYBPC3 gene (Table 2), of which 19 were novel (https://www. 
ncbi.nlm.nih.gov/SNP/snp_viewTablecgi?handle=THANGARAJ_DEEPA_CCMB). We found a splice site mutation 
[(IVS6+2T) T>G] and 16 were missense mutations [5 in HCM (E258K, T262S, H287L, R408M, V483A), 4 in DCM 
(T146N, V321L, A392T, E393K) and 7 in both HCM and DCM (L104M, V158M, S236G, R272C, T290A, G522E, 
A626V)], but all those 16 mutations were absent in 197 controls (Figure 1A and B, Supplementary Figure S1; Table 2). 
We found 7 out of 16 heterozygous missense mutations in MYBPC3 [V158M, E258K, R272C, A392T, V483A, G522E, 
and A626V in MYBPC3 (Figure 1C and Table 3)] were altering the native evolutionarily conserved amino acids 
(Figure 1D). The Polyphen-2 or SIFT bioinformatics tools predicted that those 7 missense mutations were pathogenic 
(Table 2). The co-segregation of those 7 missense mutations in families also confirmed their pathogenicity, accounting for 

Table 1 Baseline Clinical Characteristics of HCM and DCM Patients along with Controls

Baseline Characteristics HCM (N=115) DCM (N=127) Controls (N=197)

Age (Yrs) 49±10 48±12 51.0 ±0.2

Sex, males % 67 69 70

Consanguinity % 80.2 35.6 0

Dyspnea or shortness of breath % 65 69.2 0

Angina pectoris (chest pain) % 54 56 0

Syncope (fainting) % 33 30 0

Abnormal ECG % 62 68 0

LVEDD, mm 35± 7.8 67±10 51.5± 2.7

LVESD, mm 20.3 ± 4.7 54 ± 7.7 32.2± 1.2

Septum, mm 22.2 ± 5.3 6 ± 2.7 9.0 ± 0.4

Family History % 82 79 0

Sudden cardiac death % 28.8 14.2 0

LVEF % 49 ±7 31 ± 6.6 64.2 ± 5.1

NYHA Class III &IV 29 35.2 0

Abbreviations: NYHA, New York Heart Association; LVEDD, left ventricular end-diastolic dimension; LVESD, left 
ventricular end-systolic dimension; ECG, electrocardiogram; LVEF, left ventricular ejection fraction; SCD, sudden cardiac 
death.
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Table 2 Comparing the Allele Frequencies of Detected Mutations in the MYBPC3 Gene of Indian Population vs Other Populations

Chromosome 
Position

Position Major>Minor 
Allele

Location SNP Reference AA 
Change

PolyPhen-2 SIFT Predictions CON/ 
197

HCM/ 
115

DCM/ 
127

IN_AF ASN_AF AFR_AF AMR_AF EUR_AF Mean 
India

Mean ASN- 
EUR

1 1,147,374,209 g.1045 C>T 5’UTR Novel-ss6322063401 - - - - 0 0 0.28 0 0 0 0 0 0.001 0

2 1,147,374,129 g.1125 G>T Intron 1 Reported - - - - 0 0 0.28 0 0 0 0 0 0.001 0

3 1,147,372,908 g.2346 C>T Exon 2 Reported A58A - - - 0 0 0.28 0 0 0 0 0 0.001 0

4 1,147,372,749 g.2505 G>C Intron 2 rs3729985 - - - Polymorphic 0.73 3.3 10.5 0.03 0.06 0.01 0.03 0.03 0.048 0.045

5 1,147,372,149 g.3105 C>A Exon 3 Reported L104M Benign Damaging - 0 0.5 0.28 0 0 0 0 0 0.002 0

6 1,147,371,633 g.3621 C>A Exon 4 Novel-ss6322063400 T146N Benign Tolerated Benign 0 0 0.28 0 0 0 0 0 0.001 0

7 1,147,371,632 g.3622 C>A Exon 4 Novel-ss6322063399 T146T - - - 0 0 0.28 0 0 0 0 0 0.001 0

8 1,147,371,620 g.3634 C>A Exon 4 Novelss6322063398 P150P - - - 0 0 0.28 0 0 0 0 0 0.001 0

9 1,147,371,608 g.3656 G>A Exon 4 rs3729986 V158M Possibly Damaging Damaging Pathogenic 0 0.75 0.56 0 0 0 0 0 0.003 0

10 1,147,371,442 g.3812 C>T Exon 5 rs11570051 A179S Benign Tolerated Polymorphic 0 0.25 0 0.02 0.004 0.002 0.07 0.03 0.001 0.01675

11 1,147,371,421 g.3833 G>T Exon 5 Novel_ss6322063397 P186P - - - 0 0.50 0 0 0 0 0 0 0.001 0

12 1,147,370,041 g.5213 A>G Exon 6 rs3729989 S236G Benign Tolerated Polymorphic 0 0.25 0.56 0.09 0.02 0.07 0.1 0.14 0.004 0.08

13 1,147,370,029 g.5225 G>A Exon 6 Reported E240K Probably Damaging Tolerated - 0 0.25 0 0 0 0 0 0 0.001 0

14 1,147,370,015 g.5239 G>A Exon 6 Novel_ss6322063396 K244K - - - 0 0.25 0 0 0 0 0 0 0.001 0

15 1,147,369,975 g.5279 G>A Exon 6 CM981322 E258K Possibly Damaging Damaging Pathogenic 0 0.25 0 0 0 0 0 0 0.001 0

16 1,147,369,973 g.5281 T>G[IVS6+2T] Intron 6 Novel_ss6322063395 SD - - Pathogenic 0 0.25 0 0 0 0 0 0 0.001 0

17 1,147,369,445 g.5809 A>T Exon 7 Novel-ss6322063394 T262S Benign Tolerated Benign 0 0.25 0 0 0 0 0 0 0.001 0

18 1,147,369,443 g.5811 C>T Exon 7 rs11570058 T262T - - Polymorphic 0 1.02 1.4 0.07 0.02 0.03 0.1 0.13 0.008 0.075

19 1,147,369,415 g.5839 A>T Exon 7 rs397516075 R272C Probably Damaging Damaging Pathogenic 0 0.25 0.28 0 0 0 0 0 0.002 0

20 1,147,369,009 g.6232 A>T Exon 9 Novel-ss6322063392 H287L Benign Damaging - 0 0.25 0 0 0 0 0 0 0.001 0

21 1,147,369,014 g.6240 A>G Exon 9 Reported T290A Benign Tolerated Benign 0 0.25 0.28 0 0 0 0 0 0.002 0

22 1,147,369,022 g.6245 G>A Exon 9 Novel-ss6322063393 G291G - - - 0 0 0.28 0 0 0 0 0 0.001 0

23 1,147,368,195 g.7059 C>T Exon 10 rs200713257 D303D - - - 0 0 0.28 0 0 0 0 0 0.001 0

24 1,147,367,887 g.7367 G>C Exon 11 Novel-ss6322063391 V321L Benign Damaging - 0 0 0.28 0 0 0 0 0 0.003 0

25 1,147,365,092 g.10162 G>A Exon 12 Novel-ss6322063390 A392T Probably Damaging Damaging Pathogenic 0 0 0.56 0 0 0 0 0 0.003 0

26 1,147,365,089 g.10165 G>A Exon 12 Novel-ss6322063389 E393K Benign Damaging - 0 0 0.56 0 0 0 0 0 0.003 0
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27 1,147,365,060 g.10194 G>A Exon 12 Novel-ss6322063388 E402E - - - 0 0.51 1.13 0 0 0 0 0 0.005 0

28 1,147,365,043 g.10211 G>T Exon 12 Novel-ss6322063387 R408IM Possibly Damaging Damaging Pathogenic 0 0.25 0 0 0 0 0 0 0.001 0

29 1,147,365,014 g.10240 G>A Intron 12 rs11570078 - - - Polymorphic 0 0 0.28 0.09 0.06 0.03 0.1 0.14 0.001 0.1

30 1,147,364,392 g.10862 G>A Exon 14 Novel-ss6322063386 A482A - - - 0 0.51 0 0 0 0 0 0 0.002 0

31 1,147,364,387 g.10867 T>C Exon 14 Novel-ss6322063385 V483A Probably Damaging Damaging Pathogenic 0 0.25 0 0 0 0 0 0 0.001 0

32 1,147,364,185 g.11069 G>A Exon 15 Novel-ss6322063384 G522E Probably Damaging Damaging Pathogenic 0 0.76 0.85 0 0 0 0 0 0.005 0

33 1,147,363,535 g.11719 G>A Intron 16 Novel-ss2137544465 - - - - 0 0 0.85 0 0 0 0 0 0.003 0

34 1,147,362,650 g.12548 C>T Exon 20 Reported A626V Probably Damaging Damaging Pathogenic 0 1.27 0.85 0 0 0 0 0 0.007 0

Note: Reverse strand sequences https://www.ncbi.nlm.nih.gov/SNP/snp_viewTable.cgi?handle=THANGARAJ_DEEPA_CCMB. 
Abbreviations: SNP, single nucleotide polymorphism; AA, amino acids; rs#.No, reference SNP number; PolyPhen-2, Phenotyping v2; SIFT, sorting intolerant from tolerant; CON, controls; HCM, hypertrophic cardiomyopathy; DCM, 
dilated cardiomyopathy; IN_AF, Allele frequency of Indian Ancestry; ASN_AF, Allele frequency of Asian Ancestry; AFR_AF, Allele frequency of African Ancestry; AMR_AF, Allele frequency of American Ancestry; EUR_AF, Allele 
frequency of European Ancestry.
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8.7% and 6.3% in HCM and DCM, respectively. Interestingly, in the present study, 6 patients [3 HCM and 3 DCM 
(Table 4)] with more severe disease phenotypes have shown compound mutations in the MYBPC3 gene. They were as 
follows; one was a 51-year-old HCM patient, who carried allelic heterogeneity by possessing three heterozygous 
mutations in the MYBPC3; [a splice site mutation (IVS6+2T) T>G, a missense mutation E258K, and a silent mutation 
K244K (Figure 1C)]. Another was a 53-year-old HCM patient with three missense mutations; L104M, G522E, and 
A626V. The third was a 49-year-old HCM patient, who possessed two missense mutations, G522E, A626V, and a silent 
mutation P186P. The following are the 3 dilated cardiomyopathy patients with more than one mutation in the MYBPC3 
gene. The 1st DCM patient carried a 5’UTR mutation and a missense mutation A392T. The 2nd DCM patient carried 2 
missense mutations: V158M and G522E. The 3rd DCM patient possessed 3 missense mutations: V158M, T262T and 
A626V (Figure 1 and Table 3). In addition, we too detected 10 silent mutations exclusively in cardiomyopathy patients [3 
in HCM (P186P, K24K, and A482A), 5 in DCM; A58A, T146T, P150P, G291G, D303D, 2 in both HCM and DCM; 
T262T and E402E], with unknown implication (Figure S1; Table 2).

Discussion
One of the interesting outcomes of the present study was the identification of compound variations within the MYBPC3 
gene of 6 cardiomyopathy patients with more severe disease presentation. Of which, 3 were HCM [(1. K244K + E258K 
+ (IVS6+2T) T>G), (2. L104M + G522E + A626V) and (3. P186P + G522E + A626V)]; and 3 were DCM [(1. 5’UTR + 

Figure 1 (A) Schematic representation of the MYBPC3 structure. (B) Highlighted are the observed exonic, and splice sites variations. (The 10 amino acid substitutions, and 
1 splice-site mutation were indicated in red color). (C) Electropherograms (arrows) showing 10 missense mutations [V158M, E258K, R272C, H287L, V321L, E392T, R408M, 
V483A, and a G522E, A626V), and a splice-donor mutation (T>G[IVS6+2T]) in the MYBPC3 gene. (D) Multiple alignments of amino acid sequences in the MYBPC3gene of 
several species, showing that those were highly conserved across many species.
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Table 3 Missense Mutations in Myosin Binding Protein C (MYBPC3) Gene

S:NO Chromosome 
Position

Position Major>Minor 
Allele

Location SNP 
Reference

AA 
change

PolyPhen-2 SIFT CON 
197

HCM 115 DCM 127

1 1,147,371,608 g.3656 G>A Exon 4 rs3729986 V158M Possibly Damaging Damaging - 2 1

2 1,147,369,975 g.5279 G>A Exon 6 CM981322 E258K Possibly Damaging Damaging - 2 -

3 1,147,369,415 g.5839 A>T Exon 7 rs397516075 R272C Probably Damaging Damaging - 1 1

4 1,147,365,092 g.10162 G>A Exon 12 Novel- 
ss6322063390

A392T Probably Damaging Damaging - - 2

5 1,147,364,387 g.10867 T>C Exon 14 Novel- 
ss6322063385

V483A Probably Damaging Damaging - 1 -

6 1,147,364,185 g.11069 G>A Exon 15 Novel- 
ss6322063384

G522E Probably Damaging Damaging - 2 2

7 1,147,362,650 g.12548 C>T Exon 20 rs1352376969 A626V Probably Damaging Damaging - 2 2

Total - 10/115= 8.7% 8/127= 6.3%

Abbreviations: SNP, single nucleotide polymorphism; AA, amino acids; rs#.No, reference SNP number; PolyPhen-2, Phenotyping v2; SIFT, sorting intolerant from tolerant; CON, controls; HCM, hypertrophic cardiomyopathy; DCM, 
dilated cardiomyopathy.
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A392T, (2. V158M+G522E), and (3. V158M + T262T + A626V)] (Table 2 and Figure 1), accounting for 2.6% and 2.4% 
in Indian HCM and DCM patients, respectively. Further analysis of family members of all 6 patients with compound 
variations has demonstrated the segregation of those variations along with the disease. When we extracted clinical data 
from hospital records, we noticed increased susceptibility to ventricular arrhythmias in affected patients and a history of 
sudden cardiac deaths (SCDs) in the families. Studies suggested that the patients possessing compound variations in 
MYBPC3,21,42,43 have shown dosage-dependent effects,42,44–46 therefore, required constant monitoring to avoid adverse 
outcomes.36,47–49

We studied a few familial samples to understand the co-segregation of variations in families and their association with 
disease phenotypes. As, the genotype of the patient’s family members are extremely important to understand the 
genotype-phenotype correlation,23,33,34 and how it might modify the clinical course and prognosis of the disease along 
with other factors like epigenetics, lifestyle, environment, etc.50–53 We understood from our study that most of the 
patient’s family members possessing mutations in MYBPC3 gene did not show any symptom when they were below 15 
years of age, and they all started having the symptom in their 3rd decade of life, ie, late onset of the disease symptoms. 
Therefore, we too strongly suggest that the mutations in MYBPC3 showed slightly lower penetrance, delayed onset, and 
milder forms of disease progression.48,54,55

Studies reported deletions, insertions, and splice site variations in the MYBPC3 gene.56–61 In our previous study on 
MYBPC3, we observed a founder 25bp del in MYBPC3 of HCM, DCM, and RCM and evaluated its distribution among 
the South-Asian population, and pinpointed an association with familial cardiomyopathies with an increased chance of 
heart failure [overall OR, 6.99; p = 4 × 10 (−11)].23 In the present study, we report 16 missense mutations in the MYBPC3 
gene of Indian cardiomyopathy patients and those were absent in 197 normal healthy controls (Table 2 and Figure 1A). 
Remarkably, we found that 7 out of 16 heterozygous missense mutations in MYBPC3 (V158M, E258K, R272C, A392T, 
V483A, G522E, and A626V) (Figure 1C) were altering the native evolutionarily conserved amino acids (Figure 1D), 
accounting for 8.7% and 6.3% in HCM and DCM, respectively. Polyphen-2 or SIFT bioinformatics tools also predicted 
that those 7 missense mutations were pathogenic (Table 2). The co-segregation of those mutations in families also 
confirmed their pathogenicity. Except for two missense mutations, R272C and V483A, the remaining 5 missense 
mutations (V158M, E258K, A392T, G522E, and A626V) were also detected along with other variations in the 
MYBPC3 gene as compound mutations (Table 4).

In our previous studies, we reported a few genetic variations in other sarcomere genes of Indian cardiomyopathy patients: 
Tropomyosin (α-TMP1),45 Troponin I3 (TNNI3),24,62 Troponin T2 (TNNT2),34,63 Actin (ACTC),64 Myosin (β-MYH7),35,65,66 

and MYL2 & MYL3.67 Therefore, our present and previous studies clearly illustrated the prevalence and spectrum of variations 
in sarcomere genes and their associations in Indian populationwith cardiomyopathies.23,24,34,35,45,62–67

Our categorization as pathogenic variations relied on the result that we could detect those missense mutations 
exclusively in patients and their family members. In the present study, we found 19 novel SNPs in the MYBPC3 gene, 
along with accumulated compound variations that were responsible for more severe disease phenotypes in Indian 

Table 4 Compound Mutations in Myosin Binding Protein C (MYBPC3) Gene

S:No SNP_AA Change CON HCM DCM

1 K244K, E258K, T>G[IVS6+2T] – 1(HU22) –

2 L104M, G522E, A626V – 1(HU1) –

3 P186P, G522E, A626V – 1(HU28) –

4 5’UTR, A392T, E393K – – 1(DU79)

5 V158M, G522E – – 1(DU106)

6 V158M+T262T+A626V – – 1(DU99)

Abbreviations: SNP, single nucleotide polymorphism; AA, amino acids; CON, controls; 
HCM, hypertrophic cardiomyopathy; DCM, dilated cardiomyopathy.
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cardiomyopathies. Our present comprehensive genetic analysis of the MYBPC3 gene in Indian HCM and DCM patients 
has given important insight into risk stratification. Based on our present and previous studies on sarcomere genes in 
Indian population,23,24,34,35,45,62–67 we fully agree that the mutations in myosin heavy chain and myosin binding protein 
C are the frequent causes of cardiomyopathies; therefore, these two genes should be screened first, secondly, the thin 
filament regulatory genes (TNNT2, TNNI3, and TPM1), and finally, the rarely involved genes like TTN, MYL2, MYL3, 
and ACTC. Importantly, it is not sufficient and advisable to screen only the known reported mutations, because we could 
miss unique, rare, and population-specific disease-causing mutations.

Limitations of the Study
For any genetic study, it is crucial to extend the study with their family members to understand the inheritance pattern 
and to correlate the mutations with the disease phenotype. However, generally, it is tough to collect the samples from 
family member for genetic analysis, mainly because the patients are not strictly adhering to the follow-up procedures that 
would have allowed us to invite the family members for counselling and further genetic studies. Though we identified 
missense mutations in many individuals, we could not establish the genotype-to-phenotype correlation within the family 
in many cases. Thus, for some patients, performing genetic testing, understanding their family history, and giving 
counselling is not an easy task!

Conclusion
The present comprehensive study has revealed both single and compound mutations in MYBPC3 and their association 
with disease in Indian population with cardiomyopathies. Our findings may perhaps help in initiating diagnostic 
strategies and eventually recognizing the targets for therapeutic interventions.
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