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The hemoglobin-to-red blood cell distribution width ratio (HRR) has emerged as a potential predictor 
of various health outcomes. This study aimed to investigate the association between HRR and all-
cause, cancer, and cardiovascular mortality. This cohort study used data from 28,825 participants in the 
1999–2018 U.S. National Health and Nutrition Examination Survey. Weighted Cox regression was used 
to assess the associations between HRR and mortality. Restricted cubic spline (RCS) models evaluated 
the non-linear associations between HRR and mortality risk. Subgroup and sensitivity analyses 
were conducted to assess the robustness of the study results. Trend tests assessed the temporal 
trends of mean HRR. Lower HRR was significantly linked to increased risks of all-cause, cancer, and 
cardiovascular mortality. According to the fully adjusted model, the highest quintile of HRR (Q5) 
showed lower mortality risks compared to the lowest quintile (Q1): all-cause mortality (HR 0.47, 95% 
CI 0.40, 0.55), cancer mortality (HR 0.51, 95% CI 0.37, 0.71), and cardiovascular mortality (HR 0.43, 
95% CI 0.32, 0.56). A significant trend effect was observed across HRR quintiles (P for trend < 0.0001). 
Nonlinear association analyses suggested a linear relationship between HRR and cardiovascular 
mortality, while “L”-shaped associations were observed for all-cause and cancer mortality. Notably, 
the mean HRR levels decreased from 1.18 (95% CI 1.16–1.19) in 1999–2000 to 1.07 (95% CI 1.05–1.08) 
in 2017–2018. An inverse association between HRR and mortality risk was found, with lower HRR levels 
indicating higher mortality risk. Over the past two decades (1999–2018), there has been a significant 
decline in HRR levels among U.S. adults. HRR may serve as a valuable and easily obtainable predictor 
for mortality risk assessment in clinical practice.
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SE  Standard error
RCS  Restricted cubic spline
PIR  Poverty income ratio
NCHS  National Center for Health Statistics
NDI  National death index
BMI  Body mass index

Mortality prediction and risk assessment are crucial aspects of public health and clinical practice1,2. Recently, 
there has been a growing interest in identifying novel, easily obtainable biomarkers that can provide valuable 
insights into an individual’s overall health status and mortality risk3,4. Among these, hematological parameters 
have garnered significant attention due to their widespread availability and potential to reflect various 
physiological and pathological processes5,6. Hemoglobin (Hb) and red cell distribution width (RDW) are two 
key blood parameters that are closely associated with various health outcomes.

Hemoglobin is an important indicator of the oxygen-carrying capacity of red blood cells, and low Hb 
levels are not only indicative of malnutrition and decreased immune response but may also affect a patient’s 
ability to tolerate treatment7. Studies have shown that low Hb levels are associated with adverse outcomes in 
cardiovascular and cerebrovascular diseases, such as acute coronary syndrome8, heart failure9, and ischemic 
stroke10,11. In studies of non-traumatic intracerebral hemorrhage, it was found that for every 1 g/dL increase in 
Hb, the risk of hematoma volume and hematoma expansion decreased by 14% and 7%12, respectively. Previous 
oncology research has demonstrated that pre-treatment anemia in various cancers13, including non-small cell 
lung cancer14, head and neck cancer15, cervical cancer16, and colorectal cancer17, predicts a poor prognosis. In 
contrast, RDW, a quantitative measure of circulating red cell size variability, usually tends to be elevated in the 
presence of either ineffective erythropoiesis or increased red blood cell destruction. RDW has also demonstrated 
significant value in the prediction of poor prognosis for a wide range of diseases, especially in cardiovascular 
diseases such as heart failure18–20, cardiovascular disorders21,22, and ischemic stroke23. With continuous and in-
depth research on RDW in clinical applications, its importance as a prognostic marker of disease has become 
widely recognized.

Recently, the HRR has been recognized as a novel composite marker with the unique advantage of reflecting 
both the oxygen-carrying capacity of the blood and the underlying erythropoietic stress or dysfunction, 
demonstrating superior prognostic value over single-component prognostic assessments, thus providing stronger 
support for comprehensive assessment of an individual’s health status. While preliminary studies have suggested 
a potential association between HRR and health outcomes, such as depression24, all-cause mortality in septic 
patients with atrial fibrillation25, tumor prognosis26, etc., comprehensive investigations into its relationship with 
mortality across different causes of death are lacking. To fill this knowledge gap, this study utilized a nationally 
representative sample of the U.S. population from 1999 to 2018, focusing on the relationship between HRR and 
all-cause, cancer, and cardiovascular mortality among adults aged 20 and older. Additionally, we investigated 
the changes in mean HRR over time to gain a deeper understanding of its potential as a predictive indicator in 
clinical practice and public health strategies.

Materials and methods
Data source and study population
This study utilized data from the National Health and Nutrition Examination Survey (NHANES), a large-scale 
national survey designed and continuously implemented by the National Center for Health Statistics (NCHS) 
to comprehensively assess the health and nutritional status of the U.S. noninstitutionalized population, using a 
multistage probability sampling methodology—a sampling strategy that ensures a representative sample. We 
used NHANES data from 1999 to 2018 including 28,825 participants aged 20 years or older, and the participant 
screening process is shown in Fig. 1. We excluded the following participants: (1) participants with incomplete 
HRR data; (2) participants with missing or ineligible survival status follow-up data determined by the ELIGSTAT 
variable in the NHANES public-use mortality data (specifically excluding participants classified as “under 18, 
not publicly releasable” or “ineligible”); (3) participants with incomplete data on other covariates.

HRR assessment
The NHANES database utilizes the Beckman Coulter method for blood cell counts and measurements27,28. The 
method incorporates an automated dilution mixing device to process samples and a single-beam photometer 
to measure hemoglobin. Hb and RDW data were extracted from the data and used to calculate HRR. Detailed 
procedures are available in the NHANES Laboratory/Medical Technician Manual ( h t t p s :  / / w w w n  . c d c . g  o v / n c h  s / 
d a t  a / n h a n  e s / p u b  l i c / 2 0  1 7 / l a  b m e t h o  d s / C B C  - J - M E T  - 5 0 8 . p d f). The specific formula for calculating HRR is shown 
below:

 
HRR = Hemoglobin (g/dL)

Red Cell Distribution Width (%)

Mortality assessment
Follow-up data released by NHANES were used to determine the survival status of participants, with a data cutoff 
date of December 31, 2019. These data were obtained by probability matching with death certificate records 
from the National Death Index (NDI). The probabilistic matching method, employed by NCHS, assigns weights 
to potential matches based on several identifying variables including Social Security Number, name, date of 
birth, sex, and state of residence to determine the likelihood that two records belong to the same individual. 
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A match is considered true when the total weight exceeds a predetermined threshold. For confirmed matches, 
the underlying cause of death was determined according to the International Classification of Diseases, 10th 
Revision (ICD-10). This study examined all-cause, cancer, and cardiovascular disease mortality. Based on the 
ICD-10 coding system used in the follow-up data, specific causes of death were classified as follows: Cancer 
mortality included deaths coded as malignant tumors (C00-C97), while Cardiovascular mortality encompassed 
deaths coded as cardiovascular diseases (I00-I09, I11, I13, I20-I51) and cerebrovascular diseases (I60-I69).

Definitions of covariates
Multiple covariates were included in the analyses of this study, covering four main areas: demographic 
characteristics, lifestyle factors, socioeconomic status, and health status indicators. Demographic characteristics 
included age, sex, and ethnicity (categorized as non-Hispanic Black, non-Hispanic White, and Other/
multiracial). The lifestyle factors were collected through self-reported questionnaires, including smoking status 
(Never, Former, Now), alcohol use (Drinker, Non-drinker), and physical activity. Socioeconomic status was 
evaluated using two indicators: (1) income level, categorized using the Ratio of Family Income to Poverty (PIR) 
as Poor (PIR < 1) or Not-poor (PIR ≥ 1), and (2) educational attainment, classified as High school or below 
versus College graduate or above. Physical activity level was evaluated using the WHO Global Physical Activity 
Questionnaire (GPAQ), with activity quantified in metabolic equivalent minutes (MET × min). Health status 
indicators included body mass index (BMI), cancer, cardiovascular disease, and diabetes. For sensitivity analyses, 
anemia was defined using sex-specific hemoglobin thresholds (< 130 g/L for men, < 120 g/L for women). Anemia 
treatment status was assessed through self-reported responses to the question: ‘During the past 3 months, have 
you been on treatment for anemia, sometimes referred to as “tired blood” or “low blood”?’

Fig. 1. Flowchart of the participants’ selection.
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Statistical analysis
To accurately reflect the complex sampling design of NHANES, our statistical analysis incorporated sampling 
weights, stratification, and clustering. In addition, we grouped participants based on quintiles of HRR for the 
description of baseline characteristics. Continuous variables were presented as mean standard error(SE), and 
categorical variables were presented as number (percentage). For the comparison of groups, the design-based 
Kruskal-Wallis test was conducted for continuous variables. For categorical variables, Pearson’s chi-square 
test with Rao & Scott adjustment was applied to account for the complex sampling design. Weighted Cox 
regression was applied to investigate the relationship between HRR and all-cause mortality, cancer mortality, 
and cardiovascular mortality. The Hazard Ratio (HR) and its 95% confidence interval (CI) were used to reflect 
the association’s strength. The analysis included four progressive models: the first was an unadjusted model; the 
second was a model that adjusted for the main factors of the NHANES sampling design (age, sex, and race); 
and the third model included adjustments for age, sex, race, smoking status, and cardiovascular disease. The 
selection criteria for this model were based on the following principle: A variable was considered a key covariate 
if its introduction in the unadjusted model, or its removal from the fully adjusted model, resulted in a change of 
more than 10% in the regression coefficient for HRR. The last was model 4, which fully adjusted all the covariates 
considered: age, sex, race, alcohol use, smoking status, physical activity, income level, exercise level, education, 
cancer, cardiovascular disease, and diabetes. In addition, we divided HRR into quintiles and evaluated the 
relationship between HRR and all-cause mortality, cancer mortality, and cardiovascular mortality using weighted 
Cox, and performed a trend test to assess whether this association showed a consistent trend with the increase 
in HRR level. To further capture the possible nonlinear relationship between HRR and all-cause, cancer, and 
cardiovascular mortality, this research conducted a restricted cubic spline analysis with full covariate adjustment 
and assessed the nonlinear relationship by the likelihood ratio test. The optimal number of knots for the RCS 
was determined based on minimum Akaike Information Criterion (AIC) values and nonlinearity conditions. 
After adjusting all covariates, we also performed a stratified analysis to investigate which factors may affect 
the association between HRR and all-cause mortality, cancer mortality, and cardiovascular mortality. Subgroup 
analyses considered age groups, sex, race, alcohol use, education, smoking status, income level, cancer, diabetes, 
and cardiovascular disease. Using cycle as an ordinal categorical independent variable, regression analysis was 
employed to test the trend of mean HRR changes from 1999 to 2018. In addition, using the 1999–2000 cycle as 
the reference, the ‘svycontrast’ function in the survey package was used to compare the differences in mean HRR 
across periods. All analyses were conducted with R software version 4.3.1. A two-tailed P-value of less than 0.05 
was deemed significant.

Results
Characteristics of participants
This cohort study included 28,825 participants and used HRR quintiles as the grouping criteria (Table 1). The 
analysis results indicate that participants in the high HRR level group exhibit the following characteristics 
compared to the low HRR level group: they tend to be younger, have a lower BMI, a higher percentage of males, 
and a greater likelihood of alcohol consumption and smoking. In addition, these participants typically exhibit 
higher income levels, lower prevalence of cancer, cardiovascular disease, and diabetes, along with increased Hb 
and red blood cell counts, reduced RDW, and lower platelet counts.

Association between HRR and mortality from different causes
Weighted Cox regression analysis was used to assess the relationship between HRR and all-cause, cancer, 
and cardiovascular mortality (Table  2). The analyses indicated that HRR demonstrated significant negative 
associations with all-cause, cancer, and cardiovascular mortality in both the unadjusted and adjusted models 
(p < 0.001). In the fully adjusted Model 4, the association between HRR and all-cause mortality was HR 0.19, 
95% CI 0.14, 0.26; the association with cancer mortality was HR 0.19, 95%CI 0.09, 0.38; and the association with 
cardiovascular mortality was HR 0.18, 95%CI 0.10, 0.31. To more effectively compare the association between 
different levels of HRR and various mortality rates, we grouped participants based on quintiles of HRR. The 
results showed that in each model, with Q1 as the reference, HRR at the Q2-Q5 levels was significantly negatively 
correlated with each mortality rate. In Model 4, with Q1 as the reference, it was found that in the highest quintile 
group (Q5), the association between HRR and all-cause mortality was HR 0.47, 95%CI 0.40, 0.55; the association 
with cancer mortality was HR 0.51, 95%CI 0.37, 0.71; and the association with cardiovascular mortality was HR 
0.43, 95%CI 0.32, 0.56.

Trend tests of association between HRR and mortality from different causes
After grouping participants based on the quintiles of HRR, we also conducted a trend test. The results in Fig. 2 
showed a significant trend effect between HRR and all-cause, cancer, and cardiovascular mortality (p for 
trend < 0.0001). Taking the Q1 group as a reference, higher HRR levels corresponded with decreasing hazard 
ratios for all-cause, cancer, and cardiovascular mortality.

RCS analysis of the association between HRR and mortality from different causes
To further explore possible nonlinear associations between HRR and each mortality rate, we performed a weighted 
RCS analysis and adjusted for all covariates considered. The results in Fig. 3 indicate that the relationship between 
HRR and cardiovascular mortality is more likely to be linear (P-overall < 0.05, Non-linear = 0.329), and the 
associations with cancer and all-cause mortality are likely to exhibit an “L”-shaped association (P-overall < 0.05, 
Non-linear < 0.05).
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Subgroup analysis of the relationship between HRR and mortality from different causes
We performed stratified analyses of the associations between HRR and specific mortality rates in multiple 
subgroups to explore the potential effects of different variables on these associations (Supplementary Tables 
S1-3). The results showed that the associations between HRR and all-cause and cancer mortality were robust 
across subgroups (p for interaction > 0. 05). However, it is noteworthy that the relationship between HRR and 
cardiovascular mortality had an interaction (p for interaction < 0. 05) across smoking status and whether or not 
a person had cardiovascular disease. We found that higher HRR had a stronger protective effect on non-smokers 
and patients with cardiovascular disease.

Temporal trends of HRR
The temporal trends of HRR are shown in Fig. 4 and Supplementary Tables S4-5. From 1999 to 2018, the HRR level 
decreased from 1.18 (95% CI, 1.16–1.19) to 1.07 (95% CI, 1.05–1.08), showing a significant overall decreasing 
trend (P for trend < 0. 0001). Specifically, HRR decreased from 1999 to 2016 and rebounded in 2017–2018. Using 
the mean HRR of the 1999–2000 cycle as a baseline, we observed a reduction in mean HRR from 1.18 to 1.07, and 
the difference was significant since 2009. Additionally, the trends in the mean HRR changes in different cycles of 
NHANES were analyzed and stratified by subgroups. In the gender stratification, HRR was higher among males 
than females from 1999 to 2018, with both showing a decreasing trend. By race and ethnicity, in the overall trend, 
HRR was highest among non-Hispanic White participants, followed by Other Ethnic Americans. Conversely, 
the mean HRR was lowest among non-Hispanic Black participants. Based on drinking status, participants who 
drank alcohol had higher HRR means. In terms of household income, HRR was generally higher in “Not poor” 
adults compared to “Poor” adults. Regarding smoking status, current smokers had a higher mean HRR than 
former smokers, while non-smokers had the lowest HRR. For educational attainment, participants with a high 

Characteristic

HRR (N = 28825)

Q1, N = 56831 Q2, N = 58641 Q3, N = 56851 Q4, N = 58201 Q5, N = 57731 P Value2

Age, years 48.89 (0.34) 48.07 (0.37) 46.15 (0.28) 44.50 (0.28) 40.90 (0.33) < 0.001

BMI (kg/m2) 29.98 (0.18) 28.62 (0.16) 28.19 (0.12) 27.81 (0.11) 27.81 (0.10) < 0.001

Hemoglobin (g/dL) 12.46 (0.02) 13.58 (0.02) 14.27 (0.02) 14.93 (0.02) 16.01 (0.02) < 0.001

Red cell distribution width, % 14.53 (0.03) 13.10 (0.02) 12.75 (0.01) 12.49 (0.01) 12.16 (0.01) < 0.001

Red blood cell count (Million 
cells/µL) 4.38 (0.01) 4.48 (0.01) 4.65 (0.01) 4.83 (0.01) 5.14 (0.01) < 0.001

Platelet count (1000 cells/µL) 269.65 (1.66) 254.43 (1.32) 254.22 (1.33) 252.72 (1.24) 249.79 (0.95) < 0.001

HRR 0.87 (0.00) 1.04 (0.00) 1.12 (0.00) 1.20 (0.00) 1.32 (0.00) < 0.001

Sex, % < 0.001

 Male 1,375 (18.90%) 2,069 (27.48%) 2,845 (43.77%) 3,976 (62.68%) 5,083 (86.69%)

 Female 4,308 (81.10%) 3,795 (72.52%) 2,840 (56.23%) 1,844 (37.32%) 690 (13.31%)

Race, % < 0.001

 Other/multiracial 1,730 (19.38%) 1,848 (17.25%) 1,865 (17.33%) 1,849 (16.47%) 1,908 (17.40%)

 Non-hispanic black 2,109 (23.29%) 1,371 (12.12%) 860 (7.29%) 705 (5.56%) 438 (3.46%)

 Non-hispanic white 1,844 (57.33%) 2,645 (70.63%) 2,960 (75.37%) 3,266 (77.97%) 3,427 (79.14%)

Alcohol use, % < 0.001

 Non drinker 989 (14.19%) 832 (11.52%) 678 (9.91%) 526 (7.97%) 428 (7.23%)

 Drinker 4,694 (85.81%) 5,032 (88.48%) 5,007 (90.09%) 5,294 (92.03%) 5,345 (92.77%)

Smoke status, % < 0.001

 Never 3,452 (60.27%) 3,327 (57.12%) 3,099 (55.29%) 2,927 (51.76%) 2,658 (47.25%)

 Former 1,308 (23.70%) 1,503 (25.96%) 1,394 (23.92%) 1,544 (26.06%) 1,452 (24.19%)

 Now 923 (16.04%) 1,034 (16.91%) 1,192 (20.79%) 1,349 (22.18%) 1,663 (28.56%)

Education attainment, % < 0.001

 High school or below 2,558 (39.09%) 2,530 (35.42%) 2,369 (34.30%) 2,518 (35.52%) 2,651 (39.81%)

 College graduate or above 3,125 (60.91%) 3,334 (64.58%) 3,316 (65.70%) 3,302 (64.48%) 3,122 (60.19%)

Income level, % < 0.001

 Poor 1,221 (16.13%) 1,089 (12.67%) 927 (10.68%) 961 (10.43%) 951 (10.71%)

 Not poor 4,462 (83.87%) 4,775 (87.33%) 4,758 (89.32%) 4,859 (89.57%) 4,822 (89.29%)

Cancer, % 653 (12.40%) 587 (10.46%) 483 (9.13%) 429 (7.06%) 323 (5.09%) < 0.001

Cardiovascular disease, % 760 (10.63%) 596 (8.12%) 476 (6.66%) 396 (5.00%) 321 (4.54%) < 0.001

Diabetes, % 977 (12.66%) 717 (8.82%) 546 (7.56%) 462 (5.49%) 334 (4.32%) < 0.001

Physical activity (MET × 
min/week) 2,883.05 (80.39) 3,143.51 (92.73) 3,223.78 (104.46) 3,041.63 (98.83) 2,856.01 (107.62) < 0.001

Table 1. Characteristics of participants. 1Mean (SE); n (unweighted) (%) 2Design-based KruskalWallis test; 
Pearson’s X^2: Rao & Scott adjustment
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school education or less had similar mean HRR levels to those with a college degree or higher from 1999 to 
2012. However, after 2013–2014, participants with a college degree or higher had higher mean HRR levels. In 
terms of comorbid disease stratification, those participants without cancer, cardiovascular disease, and diabetes 
had higher mean HRR values than those with cancer, cardiovascular disease, and diabetes. All graphs indicate a 
general downward trend in HRR across all subgroups (p for trend < 0.0001), with variations in the steepness of 
decline among different groups.

Sensitivity analysis for the association between HRR and mortality from different causes
To fully assess the reliability of the study results, we designed three independent sensitivity analyses. The first 
sensitivity analysis (Supplementary Tables S6). focused on assessing the impact of long-term follow-up on study 
outcomes, and we selected participants from the cycle 1999–2010. The exclusion criteria were defined as follows: 
(1) participants whose cause of death was classified as accidental (V01-X59, Y85-Y86); and (2) individuals 
with a follow-up period shorter than two years, to ensure sufficient observation time. To further explore the 
impact of anemia, the study population was stratified based on anemia status and medication use. One group 
included participants with anemia or those recently treated with anti-anemic medications, while the other group 
consisted of individuals without anemia and with no relevant drug use. Using this stratification, we carried out 
the second and third sensitivity analyses (Supplementary Tables S7, S8). The results demonstrated a high degree 
of consistency: higher HRR levels were associated with a reduction in risks of all-cause, cancer-specific, and 
cardiovascular mortality.

Discussion
This study is the first to explore the association between HRR and all-cause, cancer, and cardiovascular disease 
mortality using a large-scale cohort analysis. The results indicated a significant negative correlation between 
HRR and all three mortality rates. RCS analysis revealed that HRR had a linear relationship with cardiovascular 
mortality, while it had an “L”-shaped association with cancer and all-cause mortality. Subgroup analysis showed 

Cardiovascular-mortality Cancer-mortality All-cause mortality

Model1 Characteristic HR2 95% CI2 p-value HR2 95% CI2 p-value HR2 95% CI2 p-value

Model 1 HRR 0.09 0.06, 0.14 < 0.001 0.17 0.10, 0.30 < 0.001 0.12 0.09, 0.16 < 0.001

HRR-Q5

Q1 – – – – – –

Q2 0.68 0.54, 0.86 0.001 0.66 0.51, 0.85 0.001 0.70 0.60, 0.80 < 0.001

Q3 0.59 0.45, 0.76 < 0.001 0.53 0.40, 0.69 < 0.001 0.63 0.54, 0.74 < 0.001

Q4 0.38 0.30, 0.48 < 0.001 0.46 0.35, 0.61 < 0.001 0.44 0.38, 0.50 < 0.001

Q5 0.27 0.21, 0.35 < 0.001 0.43 0.33, 0.56 < 0.001 0.34 0.29, 0.40 < 0.001

Model 2 HRR 0.13 0.08, 0.23 < 0.001 0.19 0.10, 0.39 < 0.001 0.17 0.12, 0.24 < 0.001

HRR-Q5

Q1 – – – – – –

Q2 0.63 0.51, 0.77 < 0.001 0.61 0.48, 0.77 < 0.001 0.64 0.57, 0.72 < 0.001

Q3 0.61 0.47, 0.78 < 0.001 0.53 0.40, 0.69 < 0.001 0.64 0.56, 0.74 < 0.001

Q4 0.43 0.34, 0.54 < 0.001 0.47 0.35, 0.63 < 0.001 0.48 0.41, 0.55 < 0.001

Q5 0.38 0.28, 0.49 < 0.001 0.51 0.37, 0.70 < 0.001 0.44 0.38, 0.52 < 0.001

Model 3 HRR 0.16 0.09, 0.27 < 0.001 0.18 0.09, 0.36 < 0.001 0.17 0.12, 0.24 < 0.001

HRR-Q5

Q1 – – – – – –

Q2 0.66 0.54, 0.82 < 0.001 0.61 0.48, 0.77 < 0.001 0.65 0.58, 0.73 < 0.001

Q3 0.64 0.49, 0.82 < 0.001 0.52 0.40, 0.68 < 0.001 0.65 0.56, 0.75 < 0.001

Q4 0.48 0.38, 0.61 < 0.001 0.46 0.34, 0.62 < 0.001 0.49 0.42, 0.56 < 0.001

Q5 0.41 0.31, 0.54 < 0.001 0.49 0.35, 0.68 < 0.001 0.44 0.38, 0.52 < 0.001

Model 4 HRR 0.18 0.10, 0.31 < 0.001 0.19 0.09, 0.38 < 0.001 0.19 0.14, 0.26 < 0.001

HRR-Q5

Q1 – – – – – –

Q2 0.67 0.55, 0.83 < 0.001 0.63 0.50, 0.81 < 0.001 0.68 0.60, 0.76 < 0.001

Q3 0.66 0.52, 0.84 < 0.001 0.54 0.41, 0.71 < 0.001 0.68 0.59, 0.78 < 0.001

Q4 0.49 0.39, 0.62 < 0.001 0.48 0.36, 0.65 < 0.001 0.51 0.45, 0.59 < 0.001

Q5 0.43 0.32, 0.56 < 0.001 0.51 0.37, 0.71 < 0.001 0.47 0.40, 0.55 < 0.001

Table 2. Association between HRR and mortality from different causes. 1Models: Model 1: Not adjusted 
Model 2: Adjusted Age, Sex, Race Model 3: Adjusted Age, Sex, Race, Smoke status, Cardiovascular disease 
Model 4: Adjusted Age, Sex, Race, Income level, Smoke status, Education attainment, BMI, Alcohol use, 
Physical activity, Cancer, Cardiovascular disease, Diabetes 2HR = Hazard Ratio, CI = Confidence Interval

 

Scientific Reports |         (2025) 15:7685 6| https://doi.org/10.1038/s41598-025-92228-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


that the relationship between HRR and all-cause and cancer mortality remained stable across subgroups. 
However, in the case of cardiovascular mortality, high levels of HRR had a more significant protective effect on 
non-smokers and patients with cardiovascular disease. In addition, our analysis showed that from 1999 to 2018, 
HRR exhibited an overall downward trend, decreasing from 1.18 to 1.07, which warrants further attention. The 
results of this study emphasize that HRR may be a valuable new indicator for predicting mortality.

However, research on HRR is very limited. Previous research has shown that low levels of HRR are linked to 
poor prognosis in a variety of diseases29. Rahamim E and Xiaoye Yuan et al. discovered that a decrease in HRR 
quantile was linked to reduced survival in patients with heart failure19,30; Junhong Wang and colleagues carried 
out a retrospective cohort study on how HRR affects death rate in patients with atrial fibrillation with in-hospital 
sepsis and found that lower HRR was significantly linked to higher all-cause mortality25; Xiu et and colleagues 
studied 6,046 patients with coronary atherosclerotic cardiovascular disease. Their findings revealed that an HRR 

Fig. 3. RCS analysis of the association between HRR and mortality from different causes.

 

Fig. 2. Trend tests of association between HRR and mortality from different causes.
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below 10.25 led to a 47% rise in all-cause mortality risk and a 47.9% increase in the risk of cardiac death31. 
Research conducted by Qu et al. has shed new light on the predictors of frailty in elderly patients with coronary 
cardiovascular disease. Their study, which included 233 participants, compared the predictive power of several 
physiological markers for frailty. The results demonstrated that HRR was a more effective indicator of frailty than 
either Hb or RDW32. In cancer research, HRR is a key biomarker initially proposed as a prognostic marker for 
esophageal squamous cell carcinoma (ESCC)33 and subsequently applied to various types of cancer, including 
bladder cancer and head and neck squamous cell carcinoma. It has subsequently been used in a variety of cancer 
types, including bladder cancer34 and squamous cell carcinoma of the head and neck35. A lower HRR was 
significantly linked to poor overall survival (OS) and progression-free survival (PFS) in patients with cancer36,37. 
All the above studies are consistent with our research conclusions. Thus, HRR, as a composite measure, provides 
a comprehensive perspective on red blood cell distribution and oxygen-carrying capacity, demonstrating its 
potential as a prognostic assessment tool.

Our results suggest that higher HRR levels are linked to a lower risk of death, and this relationship 
remained consistent across subgroups. Although the exact biological mechanism remains unclear, existing 
evidence suggests that higher HRR may play a protective role by reducing oxidative stress levels38,39, decreasing 

Fig. 4. Temporal Trends of HRR.
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inflammatory responses23,40, and improving blood rheology41. Higher HRR levels may attenuate oxidative stress 
by enhancing hemoglobin-mediated antioxidant defense systems42 and maintaining cellular membrane integrity 
through reduced red blood cell heterogeneity43; chronic inflammation may be modulated by elevated HRR levels 
through dual mechanisms: enhancing hemoglobin’s capacity to bind and neutralize inflammatory mediators44 
and reducing RDW, which is typically associated with inflammatory states45, thereby mitigating tissue damage; in 
addition, individuals with higher HRR demonstrate enhanced endothelial function, characterized by improved 
production of nitric oxide46. This leads to vasodilation47,48 and anticoagulation49, optimizing blood rheology 
and potentially reducing the risk of thrombosis and cardiovascular events. The protective effects of HRR may be 
more significant in individuals who have never smoked50,51. Furthermore, given the long-term downward trend 
in HRR, future research should concentrate on the potential causes of this trend and its impact on public health.

Strengths and limitations
Our study presents several strengths, including the use of the NHANES database, a large cohort with extended 
follow-up periods, ensuring data rigor and authenticity. The large sample size enhanced the reliability of the 
results, while the general population focus improved generalizability. By investigating HRR’s association with 
all-cause, cancer, and cardiovascular mortality, we provide a comprehensive understanding of HRR’s potential 
health impacts, thereby offering a robust scientific basis for our conclusions.

Several limitations of our study need to be acknowledged. As an observational study, our findings demonstrate 
associations between HRR and mortality outcomes rather than causal relationships. The assessment of HRR 
levels at a single time point limits our understanding of potential trajectories, necessitating future studies 
with repeated measurements for validation. Although our analysis accounted for a wide range of potential 
confounders, including lifestyle factors, chronic diseases, and demographic characteristics, some unmeasured 
variables may still exert confounding effects. Additionally, NHANES primarily samples non-institutionalized 
individuals from the general population, which may not fully represent patients with specific hematological 
conditions. While we have considered anemia status using WHO criteria and conducted sensitivity analyses 
stratified by anemia status, the database’s structure does not allow for detailed identification of patients with 
specific conditions such as bleeding disorders, coagulation disorders, or hematological malignancies. Future 
studies in populations with specific hematological conditions would be valuable to validate the relationship 
between HRR and Specific mortality.

Conclusions
This cohort research found that HRR may be an independent risk factor for all-cause, cancer, and cardiovascular 
mortality. Lower HRR was linked to a higher risk of cardiovascular death, with this association particularly 
pronounced in smokers and individuals without a history of cardiovascular disease. Furthermore, since HRR is 
measured through routine laboratory tests, it could be considered a valuable indicator that is easy, reliable, and 
cost-effective for identifying high-risk individuals in clinical practice. Further research is required to confirm 
these findings and explore the possible association between HRR and all-cause, cancer, and cardiovascular 
mortality.

Data availability
All survey data utilized in this research are available in the National Health and Nutrition Examination Survey 
(NHANES) database, accessible at: http://www.cdc.gov/nchs/nhanes/.
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