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Abstract

Hundreds of millions of figures are available in biomedical literature, representing important biomedical experimental
evidence. This ever-increasing sheer volume has made it difficult for scientists to effectively and accurately access figures of
their interest, the process of which is crucial for validating research facts and for formulating or testing novel research
hypotheses. Current figure search applications can’t fully meet this challenge as the ‘‘bag of figures’’ assumption doesn’t
take into account the relationship among figures. In our previous study, hundreds of biomedical researchers have
annotated articles in which they serve as corresponding authors. They ranked each figure in their paper based on a figure’s
importance at their discretion, referred to as ‘‘figure ranking’’. Using this collection of annotated data, we investigated
computational approaches to automatically rank figures. We exploited and extended the state-of-the-art listwise learning-
to-rank algorithms and developed a new supervised-learning model BioFigRank. The cross-validation results show that
BioFigRank yielded the best performance compared with other state-of-the-art computational models, and the greedy
feature selection can further boost the ranking performance significantly. Furthermore, we carry out the evaluation by
comparing BioFigRank with three-level competitive domain-specific human experts: (1) First Author, (2) Non-Author-In-
Domain-Expert who is not the author nor co-author of an article but who works in the same field of the corresponding
author of the article, and (3) Non-Author-Out-Domain-Expert who is not the author nor co-author of an article and who may
or may not work in the same field of the corresponding author of an article. Our results show that BioFigRank outperforms
Non-Author-Out-Domain-Expert and performs as well as Non-Author-In-Domain-Expert. Although BioFigRank underper-
forms First Author, since most biomedical researchers are either in- or out-domain-experts for an article, we conclude that
BioFigRank represents an artificial intelligence system that offers expert-level intelligence to help biomedical researchers to
navigate increasingly proliferated big data efficiently.
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Introduction

There are 1.2 zettabytes (1021) of electronic data being

generated each year and a federal effort in U.S. has recently

been kicked off aiming to manipulate and mine the massive

amounts of information more efficiently [1]. In the biology

domain, descriptive data is also getting richer and richer. For

example, hundreds of gigabytes of DNA and RNA sequencing

data can be generated in a week for less than US$5,000 [2]. As

such tackling and understanding the big data has become a

demanding challenge confronting virtually all fields of biology [3],

many technologies, such as data integration, cloud and heteroge-

neous computing [2,4,5] and software engineering [6], have been

developed to make sense of the big data [7,8]. In this study, we

focus on developing computational approaches to tackle the big

data challenge posed by millions of biomedical figures.

Figures published in biomedical literature are typically exper-

imental evidence for knowledge discovery and biomedical

researchers need to search for figures to validate facts and to

formulate and test novel research hypotheses. It is estimated that

over 100 million figures have been published [9].

The importance for searching and mining those figures has

motivated vigorous research in this area. The Subcellular Location

Image Finder (SLIF) system [10] is the first system that targets

figures in biomedical literature. SLIF extracts and analyzes the

fluorescence microscope figures to capture sub-cellular location.

Rafkind et al. [11] and Shatkay et al. [12] developed computa-

tional approaches to automatically classify biomedical figures into

types (e.g., gel and microscopy image). The BioText search engine

[13] and Yale Image Search [14] have been developed allowing

researchers to search for biomedical figures.

However, nearly all research in figure search [10,13,14],

embraces a ‘‘bag of figures’’ assumption, and the retrieval figures

are ranked mainly by query-based relevancy without considering

the relationship among figures within the same article. The ‘‘bag

of figures’’ approach does not distinguish figures from each other.

Some figures may carry more important roles such as representing

main findings in the articles while other figures may play a

supportive role to main figures. A biologist who is looking for a

biological fact may be more interested in an article in which the

fact is not only supported with experimental evidence (figure) but

also judged as the central topic of the article.

The new figure search system we are developing Biomedical

Figure Search (http://www.figuresearch.org) [9,11,15–18] has

taken different directions: we identify the semantic relations

between figures and their associated text. Our evaluation results
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have shown that associated texts are important for figure

comprehension [15]. On the other hand, texts associated with a

figure are typically redundant [19], we therefore developed FigSum

to automatically generate a structured text summary for each

figure [17]. We also associate figures to texts appearing in the

abstract of the article [9,20].

The figure-text-summary user-interface, as shown in Figure 1

that was published in our previous work [16], enables biomedical

researchers to efficiently browse through the main content without

the access of the PDF-format full-text article. Figures appearing in

a full-text article can be ranked by their importance (from the

authors’ point of view) [16], therefore this succinct user-interface,

integrated with figure ranking, can provide a one-page summary

of an average of ,30 pages of full-text articles. The 30-

foldinformation reduction offers an effective solution to address

the big data challenge researchers face today. Figure ranking (FR)

can also be integrated to improve information retrieval and

extraction.

We have previously developed a preliminary unsupervised

approach for figure ranking [16]. In this study, we develop

innovative supervised machine-learning ‘‘learning-to-rank’’ ap-

proaches for figure ranking. Our contributions are:

1. We are the first group to develop supervised machine-learning

approaches for ranking figures in a biomedical article.

2. We explore domain-specific features as well as linguistic-

motivated features for the listwise ‘‘learning-to-rank’’ method.

3. We implement and evaluate a new loss function for listwise

learning using the top two permutation probability distribu-

tions.

4. We conduct an extensively comparative study on the figure

ranking task, competing machine computation versus human

intelligence as well as benchmarking different computational

models.

Related Work
Ranking is one of the most important tasks of relation learning.

In the field of natural language processing (NLP), many algorithms

have been developed and successfully applied to different

applications, such as speech recognition [21,22], information

extraction [23,24], information retrieval [25,26], question answer-

ing [27], syntactic parsing [28–30], and machine translation

[31,32].

In the machine learning community, the so-called ‘‘learning-to-

rank’’ methods have been successfully applied to information

retrieval (IR) tasks, which include three categories: pointwise [e.g.,

[33]], pairwise [e.g., [34]], and listwise approaches [e.g., [35]].

Figure 1. Illustration of the figure-text-summary user interface (Illustrative content is taken from the article DOI: 10.1371/
journal.pbio.1001637).
doi:10.1371/journal.pone.0061567.g001
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The pointwise approach [33] casts ranking problem into

regression or classification on single objects. The pairwise

approach transforms ranking into classification on object pairs

into two categories (correctly ranked and incorrectly ranked), and

the use of Support Vector Machines (SVM), Boosting, and Neural

Network as the classification model lead to the methods of

RankSVM [34], RankBoost [36] and RankNet [37]. The

advantage of these two approaches is that existing theories and

algorithms on regression or classification can be directly applied.

However, there are also problems. First, neither of them model the

ranking problem directly, so the objective of learning is formalized

as minimizing errors in classification or regression, rather than

minimizing errors in ranking itself. Second, the number of

candidate objects associated with each individual set (e.g., each

query in IR task) varies largely, which will result in training a

model biased toward individual set with more candidate objects.

The listwise approach overcomes the drawbacks of the

pointwise and pairwise approaches by tackling the ranking

problem directly. There are two branches in listwise ranking:

directly optimizing the evaluation metrics [38–40] and minimizing

a listwise loss function [35,41,42]. The study in this paper falls into

the second branch and is closely related to the work of Cao et al.

[35], who proposed one of the first listwise methods, called

ListNet. They defined the loss function using the cross entropy

between two probability distributions of permutations; one is from

the predicted ranking and the other is from the ground truth.

ListNet uses gradient descent algorithm to train a linear neural

network model. Similarly, ListMLE [41] also used a neural

network model for training, yet to minimize the likelihood loss

function. Another listwise approach, RankCosine [42], defined a

cosine loss function between two score vectors; one is from the

predicted scores and the other is from the ground truth. Instead of

using neural network, RankCosine chose to employ a generalized

additive model for the learning. In this study, we make a first

attempt to investigate supervised learning method on the figure

ranking task by incorporating different types of features into a

listwise learning-to-rank framework.

Although prior studies have explored different learning algo-

rithms on various ranking tasks, figure ranking within biomedical

articles has not yet been studied. As we have stated earlier, existing

figure search systems [10,13,14,43,44] and other image-related

tasks, including ImageCLEF — the evaluation competition of

cross language image retrieval as part of the Cross Language

Evaluation Forum (CLEF) [45], are all based on the ‘‘bag of

figures’’ assumption without considering the relations between

figures within an article. We have previously reported an

unsupervised approach for figure ranking [16]. In this work, we

significantly extend the previous study by exploring supervised

machine learning.

Materials and Methods

Exploring Listwise Learning Approach for Figure Ranking
ListNet is a representative listwise learning-to-rank model. A

detailed model description is reported in [35]. Here, we describe

how listwise learning can infer the ranking preferences among

figures within a biomedical article.

In figure ranking, a ListNet instance is a list of figures in each

article, and each figure is represented by a vector consisting of

features (details of features are described in the later sections). The

objective of learning is formalized as minimization of a listwise loss

function defined using the distance between two permutation

probability distributions derived from the gold standard ranking

and system predicted ranking respectively. More formally, we

denote the ranking function as fw that is based on the neural

network model (w) in ListNet. Given a figure feature vector x(i)
j (i

indicates the index of biomedical articles, j indicates the index of

figures in an article) fw assigns a score to it. For the list of figure

vectors x(i) we obtain a list of scores z(i) = (fw(x(i)
1), … , fw(x(i)

n(i)))

where n(i) is the number of figures in the ith article. Therefore, the

total loss with respect to the training data is:

Loss~
Xm

i~1

L(y(i),z(i)) ð1Þ

where L is a listwise loss function, y(i) is the corresponding list of

scores by human (here we use the reciprocal of the rank assigned

to each figure as its ground truth score), and m is the number of

articles in the training data.

For a specific loss function, ListNet transforms two lists of scores

(z(i) and y(i)) into probability distributions based on top one

probability model. For instance, based on a list of scores (z(i)) from

the ranking function, the probability of the jth figure’s being

ranked on the top (for simplicity, we ignored the article index i

hereafter):

Pz(xj)~
exp(fw(xj))Pn

k~1 exp(fw(xk))
ð2Þ

With cross entropy as metric, the loss function L in Eq. (1)

becomes:

L(y,z)~{
Xn

j~1

Py(xj)log(pz(xj)) ð3Þ

where Py(xj) is the probability of the jth figure’s being ranked on the

top based on ranking scores assigned by human. Then, the

gradient of the loss function with respect to the neural network

model parameter w can be calculated as:

Dw~
LL

Lw
~{

Xn

j~1

Py(xj)
Lfw(xj)

Lw
z

1Pn
j~1 exp(fw(xj))

Xn

j~1

exp(fw(xj))
Lfw(xj)

Lw

ð4Þ

Eq. (3) is used in gradient descent learning, where the w is updated

with w = w - r6Dw (r is the learning rate) in each iteration.

When we applied ListNet on figure ranking, we also used a

simple adaptive method to dynamically change the learning rate r

by multiplying a constant (0.875), if it remains above a threshold

(1026) and the evaluation metric on the training data improves or

remains the same in the current iteration.

BioFigRank: Extending Listwise Loss Function Beyond
Top One Probability

As discussed earlier, the loss function of ListNet [35] is defined

based on the distance between two permutation probability

distributions derived from the gold standard ranking and system

predicted ranking. Due to the larger numbers of candidates to be

ranked in the traditional IR tasks, the current loss function in

ListNet is limited to using only top one permutation probability

distribution. We hypothesize that moving beyond top one

probability distribution better characterize ranking information

Learning to Rank Figures
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from both human annotation and automatic prediction, resulting

in an improved loss function which may enhance the learning

ability for parameter optimization. For traditional information

retrieval tasks, it is impractical to go beyond top one probability

distribution due to the expensive computation caused by the larger

number of candidates to be ranked. But for the figure ranking task,

the number of figures per biomedical articles is relatively smaller

(the average is around 5 [9]) which offers perfect opportunities to

explore the effectiveness of extending the loss function beyond top

one probability distribution. In this study, we developed BioFi-

gRank, which implemented a new loss function based on top 2

permutation probability distribution, to automatically rank figures

within a biological article.

Based on the theoretical definition of top k probability in [35],

top 2 probability on subgroup g2(x1,x2) can be derived by:

Pz(g2(x1,x2))~
exp(fw(x1))Pn

k~1 exp(fw(xk))
|

exp(fw(x2))Pn
k~2 exp(fw(xk))

ð5Þ

where the subgroup g2(x1,x2) contains all the permutations in which

the top 2 figures are exactly (x1,x2); thus, top 2 probabilities form a

probability distribution over collection G2, which consists of n*(n-1)

subgroups (e.g. g2(x1,x2)).

We replace the top one probability in Eq. (3) with top 2

probability, and the loss function becomes:

L(y,z)~{
X

g2(x1,x2)[G2

Py(g2(x1,x2))log(pz(g2(x1,x2))) ð6Þ

The new gradient of the loss function based on top 2 probabilities

is derived below:

Dw~
LL(y,z)

Lw
~{

X
g2(x1,x2)[G2

Py(g2(x1,x2))|

L
Lw

X2

t~1

ðfw(xt){log(
Xn

k~t

exp(fw(xk)))

 !
~

X
g2(x1,x2)[G2

Py(g2(x1,x2))|

X2

t~1

ð{ Lfw(xt)

Lw
z

Pn
k~t

L
Lw

(exp(fw(xk))

Pn
k~t

exp(fw(xk))

Þ~

X
g2(x1,x2)[G2

Py(g2(x1,x2))|

X2

t~1

ð{ Lfw(xt)

Lw
z

Pn
k~t

exp(fw(xk))|
Lfw(xk )

Lw

Pn
k~t

exp(fw(xk))

Þ

ð7Þ

Learning Features for Figure Ranking
We represent each figure with its caption text and associated

text, from which we extract word features. We follow our previous

work [16] to extract associated text, which comprises of words in

sentences that mention the figure, as well as the preceding

and following two sentences. Since our previous studies have

concluded that biomedical articles can be typically represented by

four rhetorical categories: introduction, methods, results, and

discussion (IMRAD) [e.g., [9,15,16]] and we speculate that such

categorization may be useful for figure ranking as important

figures may be more likely described in the result and discussion

section. We therefore added the IMRAD based features. All the

features we explored can be grouped into four categories,

containing 89 features as follows.

Centrality features. We speculate that the more important a

figure is, the more it is the center topic of an article. In our

previous work [16], we found such centrality features improved

figure ranking. Specifically, we evaluated six cosine similarity

features between figures and articles, where each figure was

represented by its associate text or caption and each article was

represented by its title, abstract and full-text. In this study, we

extended the centrality features to include figure’s degree of

centrality in the article, including the cosine similarities between

the figure (represented using caption, associated context and

caption plus associated context respectively) and each IMRAD

section (i.e., introduction, methods, results, and discussion) of the

article, and the similarities between the figure (represented using

caption plus associated context) and the article as a whole

(represented using title, abstract, full text, respectively).

Frequency features. The more frequently a figure is

discussed, the more likely that the figure is important. We

therefore added the frequencies of a figure appearing in each

individual IMRAD section, as well as the weighted frequencies in

results and discussion section where the weight for each paragraph

is obtained based on the cosine similarity between the paragraph

and the article’s title or abstract. We also normalized the frequency

by its section length and added the normalized value as additional

features.

Topic based features. We employed latent Dirichlet allo-

cation (LDA) analysis [16] to identify the latent semantic topics by

taking each paragraph in each article as an individual document.

It is assumed that each paragraph is generated from multiple

implicit topics and words in each paragraph are generated based

on two multinomial distributions: distribution over topics for each

paragraph, and distribution over words for each topic. Two

variations on topic representation were explored: one using words

with higher probability in the topic; the other using paragraphs

belonging to the topic.

Once we identified the topics, we calculated the cosine similarity

between each topic and the corresponding article’s title and

abstract. Based on the similarity score, we selected the top 4 topics

with higher scores to examine their relationships with each figure.

Specifically, we calculated the cosine similarity scores between

each figure (represented as caption, associated context, and

caption plus associated context) and each of the top 4 topics with

two different representations, respectively (word or paragraph) as

features.

Structural features. In addition to relations between the

figure and the article, we also examined relations among figures as

well as figure specific internal structural features as follows:

N Position feature: the numerical position that a figure appears in

an article. For instance, the value for the first figure is 1.

N Link feature: We hypothesize that the stronger the association

between a figure and other figures, the more importance of the

figure. We first calculated cosine similarity between each figure

pair (using their caption plus associated context), and for each

figure we chose the mean and stand deviation with regard to its

similarity scores with others as features.

Learning to Rank Figures
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N Sub-figure feature: Biomedical figures frequently contain sub-

figures. We speculate that there is an association between the

number of sub-figures and the importance of a figure. To

capture the number of sub-figures, we applied regular

expression-based pattern matching on figure captions (for

example, ‘‘([a-fA- F])[\.|\,|\:]+’’ can recognize sub-captions

like ‘‘a.’’, ‘‘A:’’ or ‘‘c,’’).

Forward Greedy Feature Selection (FGFS)
Feature selection is important for any machine-learning-based

classification tasks. For conventional classification tasks, feature

selection can be performed by investigating the correlation or

dependency between class labels and individual features, such as

information gain and chi-square methods. However, those

approaches cannot be directly applied on the figure ranking task

in the listwise learning-to-rank framework, because there is no

explicit class label associated with each instance (i.e. a set of figures

in each article). In this study, we explored the forward greedy

feature selection(FGFS) approach, which have been shown

effective in automatic keyword extraction [46].

As shown in Figure 2, forward feature selection starts with an

empty feature set and at each iteration, adds one feature that has

achieved the best performance gain. The output is the best

performance score (opt), corresponding iteration index (iter) and

selected feature set (FS(iter)).

Data and Evaluation Metrics
The annotated data is a collection of 202 biomedical articles

from three journals (Journal of Biological Chemistry, Proceedings of the

National Academy of Sciences and PLoS Biology) [16]. The average

number of figures per article is 5.961.75. Figure 3A shows that

most articles in this dataset contain 4–6 figures and 97.52% of the

articles have 9 or less figures.

The corresponding authors manually ranked the figures in their

publication. A tie relation represents two or more figures that are

judged by the authors as equally important. We calculated tie pair

percentages for each article, which is the number of figure pairs

that were annotated equally important divided by the total

possible figure pairs contained in that article. For example,

assuming one article has three figures, the annotation is ‘‘Fig2,

Fig1 = Fig3’’ (‘‘ = ’’ indicates the tie relation), then the tie pair

percentage would be 1/3. As shown in Figure 3B, in the 202

annotated articles, 45% of them have at least one tie relation. The

tie pair percentage of most articles (96.04% of them) is 0.5 or less,

and only few articles were annotated with a high percentage of tie

relations. This collection of annotated figure-ranking data is used

as our gold standard dataset.

We used three metrics for the evaluation. First, we used a new

mean weighted error rate (WER-RK), which takes into account

the reference rank information associated with wrongly recognized

figure pairs. This modified metrics has shown advantages in [16]

over the original mean weighted error rate proposed by [16] to

measure the errors of recognizing pair relations. Specifically,

WER-RK assigns more penalties on wrongly ranked pairs if they

contain more important figure, and its value on each article can be

calculated by:

WER{RK~
6

m(m{1)(mz1)
|

X
rjvrk
1ƒj,kƒm

(rk{rj)
�I(sjwsk)�4=(1zerj )

ð8Þ

where m is the number of figures in the article, sj and sk are the

system ranks of figure j and k, respectively, rj and rk are the

reference ranks of figure j and k, respectively, I(.)is the indicative

function.

Another metric we used is normalized discount cumulative gain

(NDCG), a widely used evaluation criteria in document retrieval

Figure 2. Forward greedy feature selection algorithm.
doi:10.1371/journal.pone.0061567.g002

Figure 3. Statistics on the gold standard data. A(left): Distribution of articles with different numbers of figures in an article; B(right): Distribution
of articles with different percentages of tie pair relations in an article.
doi:10.1371/journal.pone.0061567.g003
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and in the learning-to-rank community [e.g., [37]]. The NDCG

value on figures in each article can be obtained by:

NDCG:N
Xm

k~1

(2m{r(xk ){1)=log(1zk) ð9Þ

where k is the predicted rank for each figure, m is the number of

figures in the article, r(xk) is the reference rank of the kth ranked

figure in the system prediction, N is chosen so that a perfect

ordering receives NDCG score 1.

Finally, we used a weighted error rate on the first rank (WER-

FR) to evaluate the identification of the most important figure in

each article, which is weighted by the deviation distance of the

system rank on the most important figure assigned by human from

the reference rank (i.e., 1) as follows.

WER{FR~
s(x1){1

m
ð10Þ

where s(x1) is the system rank on the figure x1 that is ranked on the

top by human, m is the number of figures in the article.

We present our results as ,WER-RK (‘‘1-WER-RK’’), NDCG

and ,WER-FR (‘‘1-WER-FR’’) so that larger values indicate

better ranking performance.

Models Implemented on Figure Ranking for Performance
Comparison

To effectively benchmark BioFigRank on the figure ranking task

using the shared dataset, we compared our figure ranking model

with the state-of-the-art listwise model, ListNet, as well as our

previous unsupervised model. We also implemented a random

model as a lower-bound.

N Random: For each article, we generated a randomized

permutation of figures it contains, which was used as a ranking

output. We repeated this process 100 times, and average the

ranking performance to evaluate this random model.

N Baseline: This system duplicates the unsupervised algorithm

in previous study [16].

N ListNet: We adapted the implementation in [47] for the

figure ranking task. The learning rate is empirically set to

0.0009, and the iteration number is 200.

N BioFigRank: Extended the ListNet model above using a new

loss function based on top 2 probability distributions; the

learning rate was 0.0009 and the iteration number was 200.

Results

Performance Comparison among Different Systems
Table 1 shows the 10-fold cross-validation results for different

systems. BioFigRank performed the best across all the metrics,

yielding the best score of 0.808, 0.829 and 0.791, respectively for

,WER-RK, NDCG and ,WER-FR. BioFigRank outperformed

ListNet and the differences are statistically significant based on 1-

tail paired T-test. As expected, all three models outperformed the

random model and both supervised approaches outperformed the

unsupervised baseline.

As shown in Figure 4, we noticed that the ranking performance

vary considerably among different folds, especially for ,WER-RK

ranging from 0.71 to 0.895 and ,WER-FR from 0.666–0.888.

NDCG shows relatively stable performance, but still shows the gap

between 0.761 and 0.899. This indicates that the characteristics of

ranking relationships among figures in different articles could be

very different, as some articles may have different strategies to

organize the figures and associated content.

Analysis of System Performance based on Number of
Figures per Article

Figure 5 shows the scatter graphs with regard to the ranking

performance and the number of figures. The trend lines are based

Table 1. Performance of different systems.

Systems ,WER-RK NDCG ,WER-FR

Random 0.64960.087 0.74860.080 0.64960.106

Baseline 0.79560.182 0.82460.136 0.77160.257

ListNet 0.80460.179 0.82560.143 0.78860.248

BioFigRank 0.808±0.178** 0.829±0.144* 0.791±0.248**

(**p,0.05, *p,0.1).
doi:10.1371/journal.pone.0061567.t001

Figure 4. 10-fold cross validation performance of Biofigrank.
doi:10.1371/journal.pone.0061567.g004
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on 2nd-order polynomial regression. As shown in Figure 5, all

systems exhibit similar performance trend with number of figures.

With NDCG (Figure 5B) as the evaluation metrics, Biofigrank

slightly outperformed Listnet across different figure numbers. With

two other metrics (,WER-RK and ,WER-FR) (Figure 5A and

5C), Biofigrank outperformed ListNet when the number of figures

is below 6 and there is little noticeable difference in performance

when the number of figures in each article is above 6.

We observed a similar trend in Figure 6 which shows the

performance curve with figure numbers where each data point is

the average of ranking metrics over articles with certain number of

figures. In addition, we found that at some point an unsupervised

model can do a better job. For example, it achieved a noticeable

peak at ,WER-RK and ,WER-FR (Figure 6A and 6C) with the

figure number of 8, and one at NDCG(Figure 6B) with the figure

number of 9. Based on 1-tail paired T-test, the advantage of

unsupervised model on articles containing 8 figures in terms of

,WER-RK and ,WER-FR is not statistically significant, but the

better performance at NDCG on articles containing 9 figures are

statistically significant (p,0.001).

Note that in Figure 6A, the random model shows different trend

at the starting point because when the figure number is 2, the

,WER-RK performance of random model (either 0 or 1 for each

random trial) would be around 50%, but all the other models got

the correct ranking easily which gave the ,WER-RK score of 1 at

that point.The random system achieved another peak point at 13

in Figure 6C, because there are only 3 ranking groups for 13

figures in that article with many tie relationships (see details in the

discussion), leading to the expectation of ,WER-FR at 0.9527.

Figure 5. Scatter graph with regard to ranking performance and number of figures. A: ,WER-RK metrics; B: NDCG metrics; C: ,WER-FR
metrics.
doi:10.1371/journal.pone.0061567.g005

Figure 6. Ranking performance trend as the number of figures changes. A: ,WER-RK metrics; B: NDCG metrics; C: ,WER-FR metrics.
doi:10.1371/journal.pone.0061567.g006

Learning to Rank Figures

PLOS ONE | www.plosone.org 8 March 2014 | Volume 9 | Issue 3 | e61567



Contributions of Different Feature Categories
To better understand how effective the four feature categories

are, we analyzed their contributions in BioFigRank by removing

one category at one time, as shown in Table 2. ‘‘Cent’’ indicates

the centrality features, ‘‘Freq’’ for frequency features, ‘‘LDA’’ for

LDA-based topic features, and ‘‘Struc’’ for structural features.

We can see that the centrality features play the most important

role, as removing the features leads to the worst performance of

0.791/0.815/0.775 (see row 3). This suggests the centrality-based

features are a good indicator of figures being the central point of

the current article.

Mixed trends are found for the other three categories. The LDA

features are shown to be helpful to identify the most important

figures with the ,WER-FR increasing from 0.786 to 0.791, but

slightly hurt the performance on the overall ranking, decreasing

the ,WER-RK/NDCG value from 0.810/0.833 to 0.808/0.829

respectively (compare row 1 and row 5 in Table 2). In contrast,

frequency features seem to help the overall ranking, increasing the

,WER-RK/NDCG from 0.803/0.825 to 0.808/0.829, respec-

tively, but without affecting much on the performance of

identifying the most figures (0.792 vs. 0.791). Structural features

do not seem to contribute much to the ranking performance, as

removing them results in only marginal performance differences.

Results of Forward Greedy Feature Selection (FGFS)
We conducted forward feature selection based on three metrics

as shown in Figure 7. It shows that the performance of BioFigRank

increases while incrementally adding the optimal feature at each

iteration, but after a number of iterations the performance curve

turns flat or even goes slightly down. FGFS achieved the peak

performance with 18 optimal features using the metrics of ,WER-

RK, reached the peak performance with 21 optimal features using

NDCG, and yielded the best score with 30 optimal features using

,WER-FR.

Results of Biofigrank using different feature selection strategies

are presented in Table 3, where ‘‘Indiv_X’’ selected the same

number (shown in parentheses) of top features as FGFS, only

based on the performance metric ‘‘X’’ when using each individual

feature, ‘‘FGFS_Combined’’ combined the features selected by

three FGFS based feature sets in terms of three metrics as shown in

Figure 7.

The results demonstrate the high effectiveness of FGFS based

method compared with the naı̈ve method pooling together top-

performed features (FGFS vs. Indiv in Table 3). Most ‘‘Indiv_X’’

methods either can’t even improve the performance or neglectable

improvement. In contrast, FGFS based method can significantly

improve the ranking performance across all three metrics,

achieving the best ,WER-RK of 0.831, NDCG of 0.848, and

,WER-FR of 0.823, compared with the original BioFigRank

performance of 0.808, 0.829 and 0.791 respectively.

Learning Curve and Descriptive Statistics Analysis
We analyzed the learning curve of BioFigRank and descriptive

statistics on its performance with the feature selection setting of

FGFS_,WER-RK in Table 3. Trends using other FGFS methods

are similar. We randomly shuffled all the articles 5 times, and from

each shuffled list we incrementally selected 40, 80, 120, 160 and all

articles to do the 10-fold cross validation, finally the average of

cross validation results over 5 times is calculated at 40, 80, 120,

160 and all articles. The resulting learning curve is shown in

Figure 8.

We observed the typical trend of increasing learning perfor-

mance with more data, although there are some fluctuations at

some specific point, e.g. when the data size increases from 120 to

160, the ,WER-FR performance drops a little bit. The fact that

the performance curve line rises quickly at the beginning and

gently at the end illustrates the data we used for our experiments is

in a good size.

Figure 9 shows the descriptive statistics of the BioFigRank’s 10-

fold cross validation performance when using all the data with

feature selection, where ‘‘+’’ indicates the mean value in Table 3.

Table 2. Effectiveness of different feature categories.

Feature
Categories ,WER-RK NDCG ,WER-FR

All 0.808±0.178 0.82960.144 0.79160.248

All w/o Cent 0.79160.19*** 0.81560.146*** 0.77560.251**

All w/o Freq 0.80360.18 0.82560.144 0.79260.244

All w/o LDA 0.81060.169 0.833±0.137 0.78660.252

All w/o Struc 0.80660.181 0.8360.144 0.793±0.144

(***p,0.01, **p,0.05).
doi:10.1371/journal.pone.0061567.t002

Figure 7. Performance curve with each feature selection iteration.
doi:10.1371/journal.pone.0061567.g007
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We see that all the boxes shifted to the high end, which shows a

negative skewedness on the normality of the sample’s distribution.

The median score of three performance measurements are all

around 0.88, demonstrating that BioFigRank can achieve the

performance equal to or larger than 0.88 on 50% of the articles.

The inter-quartile range represents the middle 50% of the articles,

which is 0.77–0.952 for ,WER-RK, 0.747–0.963 for NDCG and

0.714–1.000 for ,WER-FR. The upper whisker of ,WER-FR

overlapped with the 3rd quartile of 1.000, suggesting that about

25% of the articles got the perfect score of 1 on recognizing the

most important figures.

Comparative Experiments on Machine Computation
versus Human Intelligence

In this experiment, we further evaluated how well BioFigRank

performs compared to human subjects with different levels of in-

domain knowledge. Three levels were considered in this study:

1. First Author: Biologist who is the first author of an article but

not the corresponding author (who produced the gold standard

annotation) at the same time.

2. Non-Author-In-Domain-Expert: Biologist who is not the

author or co-author of an article but who works in the same

field of the corresponding author of the article.

3. Non-Author-Out-Domain-Expert: Biologist who is not the

author or co-author of an article and who may or may not

work in the same field of the corresponding author of the

article.

We used the same dataset of 202 biological articles for this

experiment. First we manually checked the contact information of

the first author of each paper who is not the corresponding author.

Out of 202 articles, 97 non-corresponding first authors can be

reached and asked to rank figures in their published articles. 27 of

them responded, resulting in a data set with annotations from both

first authors and corresponding authors. We run BioFigRank (with

feature selection setting of FGFS_,WER-RK in Table 3) on this

data to compare the performance of first authors and BioFigRank

against the gold standard annotation by corresponding authors as

in Table 4.

We can see, not surprisingly, the first author achieved

significantly better performance with ,WER-RK of 0.924,

NDCG of 0.929 and ,WER-FR of 0.896, compared with

BioFigRank (0.827, 0.845 and 0.808). It also shows that getting

the very first rank correct (,WER-FR of 0.808) is more

challenging than getting a better overall ranking with only minor

local inconsistencies (,WER-RK of 0.827, NDCG of 0.845).

Table 3. Ranking performance using different feature selection methods.

Feature Selection Methods ,WER-RK NDCG ,WER-FR

W/O FS(89) 0.80860.178 0.82960.144 0.79160.248

FGFS_,WER-RK(18) 0.831±0.172*** 0.84760.138*** 0.80360.258

Indiv_,WER-RK(18) 0.80560.177 0.82760.139 0.77560.258

FGFS_NDCG(21) 0.82760.166** 0.848±0.133*** 0.80760.245

Indiv_NDCG(21) 0.80860.180 0.83060.141 0.78360.254

FGFS_,WER-FR(30) 0.82060.172** 0.83960.141* 0.823±0.227***

Indiv_,WER-FR(30) 0.80160.185 0.82360.145 0.78560.248

FGFS_Combined(35) 0.81260.179 0.83260.143 0.79260.250

(***p,0.01, **p,0.05, *p,0.1).
doi:10.1371/journal.pone.0061567.t003

Figure 8. Learning curve of BioFigRank.
doi:10.1371/journal.pone.0061567.g008
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For the second comparison, we asked some biologists to rank

figures for non-authored biological articles that are of their own

interests. For the collected 63 articles from 5 biologists, we asked

corresponding authors to rank figures in their published articles to

get the gold standard annotation as we did before. 16 authors

responded and then we run BioFigRank to compare its

performance with Non-Author-In-Domain-Expert biologists, as

shown in Table 5.

We notice that BioFigRank can achieve better performance in

terms of ,WER-RK and ,WER-FR (0.822 vs. 0.805; 0.789 vs.

0.768), but slightly worse in terms of NDCG(0.846 vs. 0.857).

Although those are not statistically significant, BioFigRank

demonstrate that it can perform as well as Non-Author-In-

Domain-Expert biologists on the figure ranking task, offering

human-level intelligence to derive structural relations among

figures.

Finally, we randomly selected 44 articles from the 202 data set.

We recruited 6 biologists and ask them to rank figures for those

articles. Similarly, we run BioFigRank on the 44 articles to

compare its performance with Non-author-Out-Domain-Expert

biologists, as shown in Table 6.

The results show that BioFigRank can significantly (p,0.05)

outperform Non-author-Out-Domain-Expert biologists in both

,WER-RK (0.822 vs. 0.721) and ,WER-FR(0.807 vs. 0.671).

For NDCG, BioFigRank achieved 4.4% gain (0.837 vs. 0.802)

over the non-author-out-domain-experts although it is not

statistically significant.

Discussion

Figure ranking is drawing more and more attention in the

biological research community and developing computational

models to provide effective solutions is extremely important. We

developed a new ranking model, BioFigRank, which implemented

an extended loss function in the listwise learning-to-rank

framework. Although the main difference between BioFigRank

and ListNet lies in the loss functions based on top one versus top

two permutation probability, we have explored and implemented

a different model inference for the adapted model , as shown in

Eq. (7). Our comparative analysis demonstrates that the

computational model of BioFigRank can provide human intelli-

gence, at the Non-Author expert biologist level, on deriving

structural relations among figures in a biological article. This will

open up a lot of opportunities to integrate this intelligence in

facilitating biologists’ information seeking needs at this big data

era.

Our experimental results demonstrate that BioFigRank outper-

forms our previous unsupervised model and one of the state-of-

the-art listwise learning-to-rank models: ListNet. It validates our

hypothesis that the top 2 permutation probability can better

capture the difference between the system ranking and ground

truth ranking, leading to more robust optimization in the learning

process. In particular, BioFigRank performs very well when the

number of articles ranges from 4 to 6 as shown in Figure 6, while

Figure 2 also shows that larger number of articles contain 4–6

figures. That explains that the BioFigRank model can achieve the

best performance on the figure ranking task. More extensive

evaluations will be conducted in the future, with the goal of further

validating how much the advantages of BioFigRank model over

other models can be translated in improving other practical

applications, such as figure search and information retrieval.

As shown in Figure 3, BioFigRank performs considerably

different on different sets of articles. On the other hand, different

models also perform differently on different articles. From Figure 6

we can see, unsupervised model can achieve even better

performance than supervised models on some subset of articles,

e.g. articles with 9 figures with respect to the NDCG metric. The

number of figures is one factor, and it suggests that BioFigRank

might need to be personalized so that articles with different

characteristics can be treated differently, leading to further boosted

performance. A classification framework could be integrated to

classify articles into different clusters where different figure ranking

strategies could be applied in favor of this specific cluster.

Our analysis shows that the figure ranking performance has an

overall trend of favoring articles with larger number of figures in

terms of ,WER-RK as in Figure 5A, which seems count-intuitive.

In reality, if we assume all the permutations occur randomly with

the same probability, the expectation value of ,WER-RK will

increase with the larger number of figures in each article. For

example, the expectation value (assuming each permutation has a

same probability) of ,WER-RK is 0.5 on 2 figures, 0.537 for 3

figures, 0.596 for 4 figures, and 0.643 for 5 figures.

Another factor related to favoring larger number of figures is

that in our figure ranking task, we allow tie relationships in the

gold standard annotation. For articles with larger number of

figures, there is a lager possibility to be assigned tie relationship

among them. We found that the average number of figures on

articles containing at least one tie relation is 6.538, larger than the

average of 5.369 on articles containing no tie relations. Because of

the existence of tie-relations, the performance expectation of

random assignment increases when the number of figures

increases. As shown in Figure 6B and 6C, there are irregular

peak points for NDCG and ,WER-FR when the figure number is

Figure 9. Box plots of BioFigRank performance in three
metrics.
doi:10.1371/journal.pone.0061567.g009

Table 4. BioFigRank compared with first authors.

,WER-RK NDCG ,WER-FR

BioFigRank 0.82760.185 0.84560.137 0.80860.261

First Author 0.924±0.145 0.929±0.129 0.896±0.239

T-test p value 0.017** 0.013** 0.107

(**p,0.05).
doi:10.1371/journal.pone.0061567.t004

Learning to Rank Figures

PLOS ONE | www.plosone.org 11 March 2014 | Volume 9 | Issue 3 | e61567



11 or 13. The phenomenon is due to the fact that only one article

in the dataset incorporates 13 figures containing many tie relations

and hence a very high performance score was achieved. The

scatter graph in Figure 10 shows how tie pairs relate to the

BioFigRank’s performance. It indicates that the ranking perfor-

mance tends to increase with a higher tie pair percentage, while

the impact on recognizing the most important figure (Figure 10B)

seems less than ranking all the figures (Figure 10A&C).

Different feature categories contribute differently to the ranking

system. We saw that LDA and frequency features contribute

differently in terms of different performance metrics, possibly

because the LDA features are generated using top 4 topics based

on their relevancy to abstract or title and thus might be good for

identifying most important figures. Although intuitively the figure

with higher frequency is expected to be more important, this is

frequently untrue in reality, especially for recognizing the most

important figure. Therefore our results show that frequency

features are more helpful on the overall ranking of the figures than

the identification of the most important figure. Our results also

show that structural features contribute little. There are two

possibilities: the task of sub-figure extraction introduces noise, and

link features might be redundant with centrality features.

Another interesting finding is that individual features, through

FGFS feature selection, can interact implicitly with each other for

better performance. We found that simply selecting and pooling

together best-performing individual features is not as effective as

forward greedy feature selection method for overall system

performance. The results demonstrate the effective of iterative

FGFS method for optimal feature selection.

The top 5 features selected by FGFS are:

1. The similarity between the figure’s associated context and the

abstract of the article;

2. The frequency of the figure referred in the Results section of

the article;

3. The similarity between the figure caption and Results section of

the article;

4. The accumulative similarity between the figure’s associated

context and the top 2 LDA topics based on relevancy to

abstract;

5. The similarity between the figure caption and the abstract of

the article.

It shows that a figure’s associated context is complementary to

its caption as we presented in the Results section. Latent Dirichlet

allocation (LDA) based topic analysis offers another effective

method of slicing and sifting important information for the figure

ranking task. As stated earlier, the LDA feature category does not

appear to improve the performance of BioFigRank. However,

through FGFS feature selection, one of the individual LDA

features was ranked within top 4 features. It suggests that not all

the features from each category contribute positively, and

individual features from different categories can interact each

other implicitly in a different way to improve the system

performance.

In this study, we didn’t explicitly measure the inter-personal

annotation agreement due to the challenge of our task. But the

results in Table 3 demonstrated a good agreement rate between

first author and corresponding authors.

Conclusions

We investigated learning-to-rank approaches for figure ranking,

in which figures appearing in the same biomedical article are

ranked and evaluated against corresponding authors’ annotation.

We implemented a new computational figure ranking model,

BioFigRank, which further extended the loss function in ListNet, a

state-of-the-art listwise learning-to-rank model. Experimental

results show that BioFigRank outperforms the competitive ListNet

model as well as the unsupervised baseline model. We further

applied forward greedy feature selection (FSFS), and the ranking

performance of BioFigRank is significantly improved, achieving

the best ,WER-RK of 0.831, NDCG of 0.848, and ,WER-FR

of 0.823. Compared with human experts, BioFigRank performs as

well as non-author-in-domain-expert biologists and better than

non-author-out-domain-expert biologists.

Looking ahead, we plan to explore approaches to further

enhance BioFigRank’s performance. For example, we will select

salient features by exploring a more systematic way such as

dynamic programming based feature selection. Since we found

BioFigRank’s performance is article-dependent, article centric

approaches will be a future direction. In addition, we will integrate

Table 5. BioFigRank compared with Non-Author-In-Domain-Expert biologists.

,WER-RK NDCG ,WER-FR

BioFigRank 0.822±0.112 0.84660.089 0.789±0.214

Non-author in-domain-expert biologist 0.80560.162 0.857±0.133 0.76860.336

T-test p value 0.341 0.352 0.405

doi:10.1371/journal.pone.0061567.t005

Table 6. BioFigRank compared with Non-author-Out-Domain-Expert biologists.

,WER-RK NDCG ,WER-FR

BioFigRank 0.822±0.178 0.837±0.151 0.807±0.250

Non-author out-domain-expert biologist 0.72160.232 0.80260.211 0.67160.299

T-test p value 0.016** 0.190 0.019**

(**p,0.05).
doi:10.1371/journal.pone.0061567.t006
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figure ranking into other applications, such as document retrieval,

biocuration, and literature-based approaches for assisting high-

throughput data analyses and interpretation.
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