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Abstract
Multispecies occupancy models can estimate species richness from spatially repli‐
cated multispecies detection/non‐detection survey data, while accounting for imper‐
fect detection. A model extension using data augmentation allows inferring the total 
number of species in the community, including those completely missed by sampling 
(i.e., not detected in any survey, at any site). Here we investigate the robustness of 
these estimates. We review key model assumptions and test performance via simula‐
tions, under a range of scenarios of species characteristics and sampling regimes, 
exploring sensitivity to the Bayesian priors used for model fitting. We run tests when 
assumptions are perfectly met and when violated. We apply the model to a real data‐
set and contrast estimates obtained with and without predictors, and for different 
subsets of data. We find that, even with model assumptions perfectly met, estima‐
tion of the total number of species can be poor in scenarios where many species are 
missed (>15%–20%) and that commonly used priors can accentuate overestimation. 
Our tests show that estimation can often be robust to violations of assumptions 
about the statistical distributions describing variation of occupancy and detectability 
among species, but lower‐tail deviations can result in large biases. We obtain sub‐
stantially different estimates from alternative analyses of our real dataset, with re‐
sults suggesting that missing relevant predictors in the model can result in richness 
underestimation. In summary, estimates of total richness are sensitive to model 
structure and often uncertain. Appropriate selection of priors, testing of assump‐
tions, and model refinement are all important to enhance estimator performance. 
Yet, these do not guarantee accurate estimation, particularly when many species re‐
main undetected. While statistical models can provide useful insights, expectations 
about accuracy in this challenging prediction task should be realistic. Where knowl‐
edge about species numbers is considered truly critical for management or policy, 
survey effort should ideally be such that the chances of missing species altogether 
are low.

K E Y W O R D S

data augmentation, detectability, imperfect detection, richness, species occupancy, 
Switzerland

www.ecolevol.org
mailto:﻿
https://orcid.org/0000-0002-8387-5739
https://orcid.org/0000-0002-0845-7035
http://creativecommons.org/licenses/by/4.0/
mailto:gurutzeta.guillera@unimelb.edu.au


     |  781GUILLERA‐ARROITA ET AL.

1  | INTRODUC TION

Species richness, that is, number of species at a location, is a fun‐
damental biodiversity measure that underlies many ecological 
questions and conservation decisions (Gotelli & Colwell, 2010). 
Countless studies seek to elucidate patterns and drivers of species 
richness (e.g., Fraser et al., 2015; Woolley et al., 2016), and identify‐
ing areas of high diversity is relevant for conservation prioritization 
(Fleishman, Noss, & Noon, 2006). Statistical models of richness can 
assist in these tasks (Ferrier & Guisan, 2006). By relating richness 
(or its components) to environmental conditions, such models allow 
formal inference about richness–environment relationships and can 
be used for prediction to areas that have not been surveyed.

Traditionally, studies of richness patterns have often been based 
on metrics obtained from raw “presence–absence” data. One mod‐
eling approach has been to relate directly spatially replicated spe‐
cies counts to the values of environmental predictors at those sites, 
following a “stack‐first‐predict‐later” strategy (Ferrier & Guisan, 
2006). Another approach describes the raw “presence/absence” 
of individual species as a function of predictors and obtains rich‐
ness estimates by stacking the resulting individual species models 
(Calabrese, Certain, Kraan, & Dormann, 2014; Ferrier & Guisan, 
2006). In this “predict‐first‐stack‐later” strategy, richness is thus an 
emergent property. Both approaches assume that species are per‐
fectly detected at sites where they are present and, consequently, 
only consider the species recorded during the sampling. However, 
imperfect detection is an almost ubiquitous issue in ecological data 
(Kellner & Swihart, 2014). It is easy for species to remain undetected 
during surveys (Kéry & Plattner, 2007), including for sessile taxa 
such as plants (Chen, Kéry, Plattner, Ma, & Gardner, 2013). Species 
may not be detected either because they are not present at the spe‐
cific locations sampled (though they occur nearby), or because ob‐
servers fail to record them where present. Species detectability can 
vary in space, time, and among taxa (Guillera‐Arroita, 2017; Iknayan, 
Tingley, Furnas, & Beissinger, 2014); it depends not only on charac‐
teristics of the species and their environment, but also on survey 
methods, effort, and very much on the observer. Studies and com‐
parisons of species richness that disregard detectability risk that real 
patterns are masked or spurious patterns falsely identified (Gotelli & 
Colwell, 2001; Iknayan et al., 2014; Jarzyna & Jetz, 2016; Tingley & 
Beissinger, 2013).

A large number of methods have been developed to quantify spe‐
cies richness and account for species missed in sampling. Rarefaction 
methods avoid some of the pitfalls in richness comparisons between 
sites by addressing the effects of abundance and sampling effort on 
species counts (Gotelli & Colwell, 2001), yet they still make unrealis‐
tic assumptions about detectability (that is constant across samples, 
observers, and species; Gotelli & Ellison, 2012, p. 469). Rarefaction 
is a method of interpolation and hence does not provide estimates 
of “asymptotic” richness (the actual number of species at the site). 
Several estimation methods have been proposed for this task, in‐
cluding parametric and non‐parametric (capture–recapture‐based) 
approaches (for an overview see Gotelli & Colwell, 2010, section 

4.2.8). These methods work by considering the frequencies (inci‐
dence or abundance) at which detected species have been observed. 
Based on this information, they infer the likely number of species 
present but unrecorded. Parametric approaches do so by fitting a 
parametric distribution to the whole set of observed frequencies; 
non‐parametric methods focus on species with few detections and 
include variants that account for heterogeneity in detectability 
among species (Boulinier, Nichols, Sauer, Hines, & Pollock, 1998; 
Burnham & Overton, 1979). All these estimation methods operate at 
the level of a “site” (meaning they yield a single richness estimate for 
the chosen area of inference). Where the aim is to build a model of 
spatial variation in species richness, estimates obtained at different 
sites can be treated as the response variable, and related to environ‐
mental predictors in a second stage of analysis (e.g., Brehm, Colwell, 
& Kluge, 2007). However, taking estimates as true values is prob‐
lematic as their uncertainty is typically disregarded. Kéry and Royle 
(2016, pp. 679–682) propose to follow meta‐analytical principles to 
propagate uncertainty in such two‐step modeling process, but this 
requires assumptions about the error distributions.

Arguably, a more desirable approach to modeling spatial varia‐
tion in richness is one that allows both accounting for species de‐
tectability flexibly and describing the pattern directly as a function 
of site characteristics thus avoiding separate stages in the analyses. 
With this philosophy, Dorazio and Royle (2005) proposed to ap‐
proach richness modeling (or more generally, community modeling) 
by “stacking” single‐species occupancy–detection models (for a re‐
lated, independent development of similar models see Gelfand et al., 
2005). These building units are models of species occurrence that 
account for imperfect detection (Guillera‐Arroita, 2017; MacKenzie 
et al., 2002). The model combines the individual species occurrence 
predictions to derive richness (or other community metrics), result‐
ing thus in an extension of the “predict‐first‐stack‐later” strategy 
mentioned above. This structure allows accommodating different 
species responses to environmental covariates, also in the detect‐
ability component, which cannot be achieved if observations are 
aggregated to model observed richness directly as a function of 
predictors. Furthermore, the approach allows an extension to infer 
the total number of species in the community, including those com‐
pletely missed during the sampling (i.e., species not detected in any 
of the surveys, at any of the sites).

The multispecies occupancy–detection modeling framework 
and, in particular, its extension to infer the total number of species 
in the community (hereafter N) are the focus of this paper. This 
modeling framework is gaining uptake (see Supporting Information 
Appendix S1 for a literature review on its usage), including further 
extensions (e.g., Sutherland, Brambilla, Pedrini, & Tenan, 2016, for 
inference about geographic variation in species richness). However, 
there has been comparatively little effort put into exploring its prop‐
erties, and in particular into assessing how well N can be inferred 
under different scenarios (but see Broms, Hooten, & Fitzpatrick, 
2015; and Yamaura, Kéry, Kéry, & Royle, 2016, for related work on 
abundance community models). Our paper aims to progress in this 
direction.
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Our study was motivated by concerns about unrealistically high 
estimates of total richness expressed to us by model users. Indeed, 
we find examples in the published literature where the estimated N 
is substantially larger than the number of species known to occur in 
the area. For instance, Loos et al. (2015) found unrealistically high 
estimates for butterflies and plants in a study in Romania and con‐
ducted further analyses using observed richness. Yamaura, Connor, 
et al. (2016) obtained an unrealistic estimate for birds in Japan 
and continued analyses considering only species detected at least 
once. In analyses of fish species in Colorado, Broms, Hooten, and 
Fitzpatrick (2016) found that their estimate of N always lied at the 
upper bound allowed during estimation. Our reanalysis of the bog 
ant data in Dorazio, Gotelli, and Ellison (2011) without constraints 
on N yields substantial support for much greater richness than ex‐
pected by experts (Figure 1). Here, we seek to gain understanding 
about whether the method has indeed a tendency for overestima‐
tion and, more generally, learn about its estimation performance, in‐
cluding the impact of choice of priors in a Bayesian analysis. We also 
aim to address confusion about what the estimated N represents, 
which we have repeatedly encountered in discussions with model 
users. The concept of “total number of species” can be elusive when 
estimating richness, as its scope is only implicitly defined. In the 
context of “single‐site” estimators, O'Hara (2005) comments on the 
informal definition of the community and what richness estimates 

reflect. Similar considerations apply in the multispecies occupancy–
detection modeling framework.

We organize our paper into two main parts. First, we review 
model assumptions, with a focus on those related to sampling, to 
examine what the estimated N represents and identify associated 
potential sources of bias in its estimation. Second, we explore the 
performance of the estimator using simulated data under a range 
of conditions, including ideal scenarios (data generation matching 
model structure perfectly) and violations of model assumptions 
about species heterogeneity. We assess the sensitivity of estimates 
to the choice of prior distributions. We complement our assessment 
with analyses of a real dataset on Swiss birds.

2  | MODELING APPROACH AND 
INTERPRETATION OF ESTIMATES

2.1 | Multispecies occupancy–detection model

The model is constructed with single‐species occupancy–detection 
models as building blocks (Dorazio & Royle, 2005; Guillera‐Arroita, 
2017; MacKenzie et al., 2002). The data required are species detec‐
tion/non‐detection records at a set of sampling sites, with replication 
such that data inform about species detectability. This replica‐
tion often takes the form of repeat visits to sites (but sometimes 
is achieved through different means, for example, simultaneous in‐
dependent observers). For each species k, presence or absence at 
site i is described as the outcome of a Bernoulli trial with occupancy 
probability ψ ik, which can be related to environmental predictors, for 
example, using a logistic regression:

The observed species detection/non‐detection data (yijk), are 
described as another set of Bernoulli outcomes, with (detection) 
probability pijk at occupied sites, where j refers to survey visit; this 
probability can be related to spatial and/or temporal predictors, for 
example:

Assuming no false positives, only zeros can be recorded for a 
species at sites where it is absent, hence the multiplication by zik 
above, in the probability of the Bernoulli. The estimated presence/
absence indicators (latent variables z's) and occupancy probabilities 
(ψ’s) for individual species can be used to derive estimates of diver‐
sity metrics (Broms et al., 2015; Dorazio et al., 2011; Dorazio, Royle, 
Söderström, & Glimskär, 2006). For instance, site‐specific predic‐
tions of richness can be obtained by computing the expected num‐
ber of species at each site i, that is, the sum of estimated occupancy 

zik∼ Bernoulli
(

�ik

)

,

logit
(

�ik

)

=�0k+�1kX1i+ �2kX2i+⋯ .

yijk∼ Bernoulli
(

zikpijk
)

,

logit
(

pijk
)

=�0k+�1kY1ij+�2kY2ij+⋯ .

F I G U R E  1   Reanalysis of the bog ant data in Dorazio et al. 
(2011), relaxing the imposed upper limit for estimated number of 
species (from 25 to 175). Based on the data alone, the Bayesian 
posterior suggests estimated richness substantially higher than 
expected by experts (median = 43, equal‐tailed 95% credible 
interval = [24,133]; compared to 25 species, highlighted by a thick 
line above). The surveys detected 19 species. Original estimation 
(with prior constrained to 25) shown in the inset. Details about 
the data are provided in Dorazio et al. (2011), together with the 
computer code (our reanalysis used the original code, only replacing 
the upper limit for number of species)
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probabilities: N̂i=
∑

k �̂�ik. Predictions conditional on the data ob‐
served at surveyed sites can be computed by summing the latent 
binary presence–absence indicators: N̂cond

i
=
∑

k ẑik (see Kéry & Royle, 
2016, pp. 569–571, for an explanation of the connection between z's 
and conditional occupancy probabilities).

The multispecies occupancy–detection model may be simply the 
collection of fully independent single‐species occupancy–detection 
models. Alternatively, species models may be linked by modeling pa‐
rameters as species random effects (Dorazio & Royle, 2005; Dorazio 
et al., 2006; Kéry & Royle, 2009). The latter usually takes the form of 
realizations from a normal distribution.

where (hyper)parameters (µ’s and σ’s) are to be estimated. Through 
such model structure, species with fewer data “borrow” information 
from other species that are data‐rich, which can lead to improved 
precision and predictive ability (Ovaskainen & Soininen, 2011; 
Zipkin, DeWan, & Royle, 2009). The linking of species via random ef‐
fects is also the key for making inference about the total number of 
species (N) that are present in the region of inference (i.e., including 
those not recorded in any visit to any of the sites). Dorazio and Royle 
(2005) and Dorazio et al. (2006) were the first to provide methods 
to tackle this estimation task. Royle, Dorazio, and Link (2007) pro‐
pose to use “data augmentation,” which allows simple implemen‐
tation in popular Bayesian modeling tools such as BUGS or JAGS 
(Lunn, Spiegelhalter, Thomas, & Best, 2009; Plummer, 2003). This 
is the approach we consider in this paper and involves augmenting 
the dataset with an arbitrary number of “potential species” with all‐
zero detections, so that it contains M species in total (i.e., detected 
plus potential). The choice of M is not critical, only that, in order to 
represent a vague prior on N; it should be made large enough not to 
constrain estimation, that is, M ≫ N where N is the true (unobserved) 
species richness (not n, the observed species richness). A set of bi‐
nary indicators (wk) are introduced in the model, one for each of the 
M species, representing whether it belongs or not to the community. 
A new parameter (Ω) governs these indicators, describing the prob‐
ability of species inclusion. The model structure changes slightly so 
that, for a species to be present at site, it first has to be a member of 
the community:

To complete the model, we define priors for the hyperparameters 
(µ’s and σ’s), and for the probability of inclusion (Ω). The estimation of 
the total number of species in the community (N) is achieved by sim‐
ply summing the new indicators: N̂=

∑

k ŵk. A species can thus be part 
of the community despite not being present at the sampled sites.

Put in simple terms, we can interpret model fitting as a process 
of finding statistical distributions of the specified parametric form 
(usually, normal random effects) that best fit the occupancy and 

detection parameters estimated for the species detected, while con‐
sidering the possibility of “adding” a number of undetected species 
to the pool (Figure 2).

2.2 | Interpretation of N and sampling 
considerations

The interpretation of N is often not evident for users of hierar‐
chical occupancy models. This is because the definition of what 
constitutes the community whose size is estimated is set implicitly 
by the characteristics of the sampling and corresponding model 
assumptions. If the user inadvertently overlooks these assump‐
tions, the quantity estimated by their model may not reflect what 
they were actually seeking to estimate, and apparent biases could 
be observed.

Two important considerations relate to the sampling of sites. 
First, there is an assumption of random sampling behind the com‐
putation of N, with the region selected for sampling providing the 
spatial context needed to interpret N (Dorazio et al., 2006). For in‐
stance, if we draw survey sites at random across Switzerland, then 
N refers to the number of species in Switzerland (but note an im‐
portant further consideration below). In contrast, N is ill‐defined if 
sites are sampled such that some environmental conditions (e.g., low 
elevation) are disproportionally represented. When sampling is bi‐
ased, we can think of N as the number of species that would be pres‐
ent in a large hypothetical region with environmental conditions in 
the proportions captured by the sample of surveyed sites. Another 
consideration is that this is an asymptotic approach which assumes 
the region from which sampling sites are drawn is “very large” (i.e., 
contains an infinite number of potential sites; c.f. Dupuis & Goulard, 
2011). If departure from this assumption is substantial, and the re‐
gion of inference is relatively small, then N may overestimate the 
number of species; this is because the chances that a species is pres‐
ent in at least one site are higher the larger the pool of sites consid‐
ered. Departures from these two assumptions may be addressed by, 
rather than focusing on the estimated N, computing new richness 
predictions based on the predicted occurrence status (z) for all spe‐
cies only at the set of sites that defines the actual region of inference 
(note this will generally extend beyond the specific set of sites sam‐
pled); in practice, this involves counting the number of species with 
at least one latent site occupancy binary indicator estimated equal 
to 1 in the set of sites making up the target region of inference (Kéry 
& Royle, 2009).

The definition of N also depends critically on considerations 
about sampling of species; it only encompasses the set of species 
that were susceptible to detection. Data on insects will not yield 
predictions about number of bird species. Similarly, N will not reflect 
true bird richness if surveys only targeted a subset of bird species. 
One simplistic way to think about this is that the model infers the 
likelihood that species are missed (i.e., a proportion) and “corrects” 
the number of species detected by that proportion. If we start with 
a count lower that the true number we would have observed, the 
resulting estimate will be biased low. Bias will be also induced if the 

�0k∼N
(

��0
,��0

)

, �1k∼N
(

��1
,��1

)

,… ,

wk∼Bernoulli (Ω) ,

zik∼Bernoulli
(

wk�ik

)

.
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F I G U R E  2   Non‐technical explanation of the estimation task (for model without predictors)
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sampling methods render some species virtually undetectable (e.g., 
nocturnal species during day surveys).

These sampling considerations fundamentally define N. Another 
issue is how well this quantity can be estimated in practice. The 
model involves other assumptions (e.g., distribution of species 
random effects) and estimates will be to some degree sensitive to 
violations of these assumptions. A yet more basic question is how 
accurate estimation is when all assumptions are perfectly met. We 
concentrate on exploring these issues in the remainder of the paper.

3  | METHODS: SIMUL ATION AND DATA 
ANALYSES

We used simulated and real data to explore the performance of the 
richness estimator, as detailed below. We ran analyses in R v3.3.1 (R 
Core Team, 2016), conducting Bayesian model fitting in JAGS v4.2.0 
(Plummer, 2003), interfaced through package jagsUI 1.4.4 (Kellner, 
2016). We provide our code as Supporting Information.

3.1 | Estimator performance under ideal conditions

We start by considering analyses under ideal conditions, meaning 
that the data generating process matches perfectly the model as‐
sumptions. This sets an upper bound for estimation performance. 
We simulated the sampling of a community of 100 species over a 
large landscape (consisting of 10,000 sites). We considered each 
species k to have different occupancy and detectability probabilities, 
constant across the landscape (for the sake of simplicity) and drawn 
from a common distribution. We used two scenarios of occupancy 
probabilities:

Scenario “Occ1” corresponds to a mean occupancy probability of 
0.27, with values in the range [0.17–0.40] for 95% of the simulated 
species. In “Occ2”, occupancy probabilities have mean 0.13 and 
range [0.04–0.30]. We considered that species detection probabili‐
ties follow logit(pk) ~ N(−2,1), so that the mean probability of detect‐
ing a species in one survey visit is 0.15, and within [0.02–0.49] for 

95% of the species. We simulated nine sampling regimes, with differ‐
ent combinations of number of randomly sampled sites 
(S = 25,50,150) and survey visits per site (J = 2,4,6). The probability 
of completely missing a species k (i.e., not a single detection after J 
visits at S sites) is mk=

(

1−�kp
∗

k

)S, where p∗
k
=1−

(

1−pk
)J is the cu‐

mulative probability of detection at occupied sites over the J visits, 
that is, mk=

[

1−�k

{

1−
(

1−pk
)J
}]S

. With our choice of parameters, 

we tested the method under conditions that range from a substantial 
number of species missed in sampling, to cases where all species are 
recorded at least once (Table 1). We wanted to explore how good the 
method is at estimating number of missing species across this spec‐
trum, including at establishing that no species are missed when this 
is the case. Our choice of simulation parameters is in line with those 
used in a previous simulation study based on values estimated in the 
literature (Broms et al., 2015).

We simulated and analyzed ten datasets for each of the scenar‐
ios of occupancy and sampling regime (2 × 9 × 10 = 180 datasets in 
total). The fitted model assumed constant occupancy and detection 
probabilities within species (i.e., no predictors, matching our data 
generation). We augmented the datasets by adding a number of 
potential “undetected species” (with all‐zero records), from 50 up to 
500, depending on the dataset. We chose the number by running 
analyses with increasing number of species, until the posterior of 
N was not affected by this decision, or at least not substantially. 
We assessed this by dividing the interval between the lowest value 
sampled for N and the maximum number of species allowed (M) into 
10 sections of equal width. We considered data augmentation sat‐
isfactory if the posterior mass within the upper section was <1%. 
For practical reasons, we limited the number of added “species” to 
500.

We analyzed each simulated dataset using three sets of priors 
(resulting in 180 × 3 = 540 analyses), representing common prac‐
tice and recommended alternatives (see Section 3.4). We obtained 
3 MCMC chains, drawing 50,000 MCMC samples per chain, after 
a burn‐in of 25,000. If chains had not converged, additional sam‐
ples were drawn in blocks of 50,000, up to a maximum of 200,000; 
we only kept the last block of 50,000 samples, discarding others as 
burn‐in. We assessed convergence using the R̂ statistic (Gelman & 
Rubin, 1992), assuming no evidence of lack of convergence when 
R̂ < 1.1. To avoid the need to save large files, we thinned chains by 
25, keeping a total of 6,000 samples (i.e., 2,000 per chain) to char‐
acterize the posterior. We initialized the latent occupancy state of 

logit
(

�k

)

=�0k∼N
(

�=−1, �=0.3
)

Scenario "Occ1’’,

logit
(

�k

)

=�0k∼N
(

�=−2, �=0.6
)

Scenario "Occ2’’.

Scenario “Occ1” Scenario “Occ2”

S = 25 S = 50 S = 150 S = 25 S = 50 S = 150

J = 2 27% (0%) 13% (0%) 2% (0%) 50% (8%) 32% (2%) 10% (0%)

J = 4 14% (0%) 5% (0%) 1% (0%) 35% (8%) 19% (2%) 4% (0%)

J = 6 9% (0%) 3% (0%) 0% (0%) 27% (8%) 13% (2%) 2% (0%)

Note. S is the number of sites sampled, J the number of survey visits per site. In “Occ1,” species oc‐
cupancy probabilities are normally distributed on the logit scale as N(−1,0.3); in “Occ2” as N(−2,0.6). 
In all cases, detection probabilities in the logit scale follow N(−2,1).

TA B L E  1   Expected proportion of 
species missed in each simulated scenario 
(in brackets, the proportion of species in 
the simulated community not present in 
any of the sites sampled)



786  |     GUILLERA‐ARROITA ET AL.

sites to the observed detections, and all augmented species as ab‐
sent from the community (i.e., w = 0). For each simulation, we kept 
track of the number of species present at least once in the set of 
sites sampled, and the number of species detected by sampling. We 
computed summaries of the posterior of N (median, 2.5% and 97.5% 
quantiles).

3.2 | Impact of violations of species random effects 
assumptions

We ran a second set of simulations to explore how violations of 
assumptions about the distribution governing species random ef‐
fects may affect the estimation of N. We focused on the distribu‐
tion of detection probabilities; similar tests could be run for the 
occupancy component of the model. The simulation set up was 
largely as above: 100 species, random sampling, occupancy sce‐
narios “Occ1”/”Occ2”. The difference was in how we generated 
the detection probabilities when simulating the data. Rather than 
using a normal distribution on the logit scale, as customarily as‐
sumed during model fitting, we considered five other distributions, 
including with fatter or steeper tails, and/or more than one mode 
(details in Supporting Information Appendix S4). We focused this 
exploration in scenarios where relatively few species are missed 
(around 2% and 9%) because these are conditions yielding rela‐
tively accurate estimation in an ideal setting (see Section 4) and 
we wanted to assess how robust estimation was to these devia‐
tions. In all cases, we set the number of sampling sites to 25 and 
designed the detectability scenarios to meet the chosen level of 
missed species (alternatively, one could build scenarios with more 
sampling sites and lower detectabilities). We analyzed 10 simu‐
lated datasets per scenario. Fitted models assumed a normal dis‐
tribution for the description of random effects. We augmented the 
data set by 500 additional species and used the same MCMC set‐
tings and priors as above.

3.3 | Swiss bird data

Our third set of analyses were based on a real dataset, which we 
resampled to simulate sampling scenarios with different amounts 
of data. Our aim here was to explore estimator performance under 
realistic conditions and compare estimates for different amounts 
of data and structure of analysis. The data were collected as part 
of the Swiss breeding bird survey (MHB; Schmid, Zbinden, & Keller, 
2004), in which all birds breeding in Switzerland are surveyed an‐
nually in 267 1 km2 quadrats laid out as a grid. Three surveys (two 
in sites at high elevation) are conducted per site. The dataset is 
publicly available with R package “AHMbook” (companion of Kéry 
& Royle, 2016). It contains records collected in 2004 (detection/
non‐detection, reduced from the original survey counts) for 158 
species (of which 15 had no detections that year). Starting with the 
full dataset, we created 16 new datasets by randomly partitioning 
the sites into groups with 50% (two datasets), 25% (four datasets), 
or 10% (10 datasets) of the sites. We analyzed the datasets (original 

plus subsets) fitting two models: (a) with constant occupancy and 
detectability; and (b) with predictors. For the latter, we used the 
structure in Kéry and Royle (2016, pp. 685–694), where occupancy 
is a function of elevation (quadratic) and forest cover, and detect‐
ability is a function of survey date (quadratic) and survey duration; 
here species random effects are on regression coefficients. With 
real data in principle, we do not know the true number of species. 
However, as Swiss birds have been thoroughly studied, there is a 
good understanding about the number of breeding bird species 
in the country (179 regular, 20 irregular, 16 occasional; Kéry & 
Royle, 2016, p. 689), which we can use as a benchmark to compare 
our estimation against. Analyses were conducted drawing three 
MCMC chains, with 20,000 MCMC samples per chain, after a 
burn‐in of 10,000. If there was no convergence, 20,000 additional 
samples were drawn, with all previous ones discarded as burn‐in. 
We thinned chains by 10, obtaining 6,000 samples to characterize 
the posterior. Datasets were augmented with 150 (models without 
predictors) or 250 (models with predictors) additional all‐zero spe‐
cies; thus, the maximum total number of species allowed was 308 
and 408, respectively. Predictors were standardized to have zero 
mean and variance of 1. As with simulations, we analyzed each 
dataset using three sets of priors (detailed next).

3.4 | Choice of priors

We ran our analyses assuming no prior information about model pa‐
rameters, and therefore aimed to be weakly informative with our 
choice of priors. We considered three sets. Our “prior set 1” fol‐
lowed common practice. For the means of hyperdistributions (the 
µ’s), we used wide normal priors (with standard deviation of 31, i.e., 
precision 0.001). Our literature review (Table S.1.1) showed this 
was a common choice (over half the studies that estimated N used 
priors at least as wide for the mean of regression coefficients). For 
the standard deviation of the hyperdistributions (the σ’s), we used 
uniform priors with support in the [0–5] range (for the Swiss data 
analyses, we increased the range to [0–10] in one instance). These 
were a common choice in the studies we reviewed; gamma priors 
were also common. For Ω, we used a uniform in 0–1 (used by all but 
one of the studies reviewed), which implies a discrete uniform prior 
for N on {0, 1, 2, … M}.

In “prior set 2,” we modified the priors for the means of the hy‐
perdistributions. It has been recommended that priors for logit‐scale 
parameters should have low mass outside the range [−5, 5] (Broms et 
al., 2016; Gelman et al., 2014). Otherwise, estimation can be biased 
toward extreme probabilities values (0, 1), because a wide prior on 
the logit scale results in a U‐shaped prior for associated probabilities. 
Following this advice, we used narrower normal priors for the µ’s 
(N(0,2.25)).

In “prior set 3,” we made a further modification to “prior set 2” 
and replaced the uniform prior for Ω by a Beta(0.001,1), following 
recommendations by Link (2013), who argues strongly against the 
use of the constant prior due to the potential for it to yield improper 
posterior distributions.
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4  | RESULTS

4.1 | Estimator performance under ideal conditions

In our simulations under ideal conditions, the estimation of N 
was relatively reliable when few species were missed; however, it 
was poor when the proportion of species missed was substantial 
(Figure 3 and Supporting Information Appendix S2), suggesting a 
tendency for overestimation. Results show a positive correlation 
between departure of the posterior median from the truth, and the 
width of credible intervals, with much greater uncertainties when N 
is overestimated.

Overestimation was greatest with “prior set 1,” which rep‐
resents usual practice, with the posterior distribution for N often 
extending well beyond the true number of species. In 34 of the 
180 simulations, the 95% credible interval for N spanned all the 
way to 300 species (three times more than the simulated “truth”), 
going over 500 species in 19 simulations. These more extreme es‐
timates corresponded to cases with a substantial number of missed 
species (range: 19–58, mean = 40), and the maximum level of data 
augmentation allowed (+500 species) was still not enough to avoid 
constraining the posterior of N; even greater estimates could be 
expected by relaxing this limit. Estimates were less extreme when 

we used the alternative sets of priors (Figure 3). Narrowing down 
the priors of the logit scale parameters (“prior set 2”) had the stron‐
gest effect in this reduction. Then, the credible interval spanned 
beyond 300 in only 18 simulations, and over 500 in just two. The 
scale prior recommended by Link (2013) (“prior set 3”) improved 
accuracy further, with only five simulations spanning over 300 and 
none over 500.

A look at the convergence metrics for “prior set 3” reveals that val‐
ues of R̂ suggestive of lack of convergence (>1.1) remained for some 
simulations (n = 49, out of 180), even after increasing the number of 
MCMC samples to 200,000. Large R̂ values were usually on the com‐
munity inclusion binary indicators (the w's), or on N. R̂ values for the 
occupancy and detection hyperparameters were >1.1 in only 19 sim‐
ulations, and over 1.2 in just 7. In contrast, in a substantial number 
of simulations (n = 28), R̂ for N was very large (>1.5, up to “infinity”). 
Interestingly, this happened in scenarios where very few or none of 
the species were missed. Inspection of the MCMC chains revealed that 
these large R̂ values corresponded to very slow mixing of the binary 
indicator variables, and consequently of N (see Supporting Information 
Appendix S3 for an example). Such slow mixing did not happen in sce‐
narios with fewer data, or lower probabilities of occupancy and detec‐
tion, where species were missed more often during the surveys.

F I G U R E  3   Estimated number of species (N) as a function of the percentage of species missed during sampling, for 180 simulated datasets 
generated meeting perfectly model assumptions, fitted using three different sets of priors (columns). Bottom row: close up of the boxed 
area in the main plots (top). Markers indicate the posterior median; lines represent equal‐tailed 95% credible intervals. The solid horizontal 
line corresponds to the true number of species (100), and the dashed line indicates the number of species detected during sampling. The red 
solid line is a smoother applied to the medians, to indicate bias. In the top left figure, small markers (stars instead of circles) indicate that the 
level of data augmentation chosen influenced the posterior. Simulated scenarios as detailed in Table 1 (10 simulations/scenario)
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4.2 | Impact of parametric assumption violations

Simulation results were similar across the three sets of priors; we 
only report here results for “prior set 3.” The assumption violations 
about species random effects on detectability had variable effects 
on the estimation of N in our scenarios. Substantial deviations 
from the normal distribution assumption often did not introduce 
obvious performance degradation (Figure 4). However, there was 
a substantial effect in one scenario where the generating distri‐
bution displayed bimodality with the first mode away from zero 
(Figure 4c): prediction was much more uncertain than in the other 
examples (note different y axis in one of the plots), and there was 

substantial overestimation of N. The normal distributions that best 
fitted the variation in detectability had substantial mass close to 
zero, unlike the distribution used to generate these probabilities. 
Hence the model concluded that many more species had been 
missed than the actual number missed.

4.3 | Swiss bird data

The results of the Swiss bird analyses displayed considerable varia‐
tion in the estimation of N. Results were relatively precise for constant 
models but suggested a tendency for underestimation, particularly 
for smaller sample sizes (Figure 5a,b). For more complex models with 

F I G U R E  4   Estimation under violation 
of parametric assumptions about species 
detectability, for scenarios with small 
proportion of species missed. Plots in 
columns 1 and 3 show the number of 
species estimated for 10 simulations, 
under the detectability scenario 
described by the probability function in 
the middle column (thick black line). Plot 
titles indicate the occupancy scenario 
(“occ1”/”occ2”) and number of replicates 
(J) used. The number of species missed 
in these scenarios was around 10% (left 
column) or 2%–3% (right column). In all 
cases the number of survey sites S was 
25, and prior set 3 was used. Red stars 
indicate the number of species detected 
during sampling for each dataset. The thin 
colored lines in the middle plots are the 
community normal distributions estimated 
in each simulation run (red: left column; 
blue: right column)
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predictors in occupancy and detectability, estimates became more 
variable and uncertain (Figure 5c,d), more so with “prior set 1.” Several 
analyses yielded median predictions larger than the number of birds 
known to breed in Switzerland, with credible intervals extending to 
substantially larger numbers (although in general also covering the 
numbers expected by experts). Still, a few analyses yielded likely un‐
derestimates, which were deemed relatively precise by the model. We 
found substantial differences between analyses of one same dataset 
with and without predictors, sometimes with little overlap in credible 
intervals. For instance, in one of the subsets with 25% of data (third of 
25% in Figure 5a–d) and “prior set 1,” the constant model suggested the 
number of breeding bird species to be between 121 and 184 (median 
136), while the model with predictors suggested a number between 
170 and 397 (median 263). The maximum R̂ was greater than 1.1 for 
some of the analyses (7 with prior set 1; only 2 with prior set 3), and in 
all cases was less that 1.25.

5  | DISCUSSION

Multispecies occupancy–detection modeling allows inference about 
the number of species completely missed by sampling in spatially 
and temporally replicated surveys. It is important to understand the 

sampling assumptions underlying the method, as these fundamen‐
tally determine the interpretation of the estimated quantity. We 
have explored the performance of this estimation task in a range of 
scenarios, with the aim of informing ecologists planning to put this 
method into practice. We tested the method using JAGS (Plummer, 
2003) for model fitting because, together with BUGS (Lunn et al., 
2009), this is the tool of choice for most users. Our study is not 
without limitations. The spectrum of scenarios tested, although 
substantial, represents only a small fraction of the many one could 
devise. Also, as model fitting is computationally intensive and can 
take substantial time depending on the scenario, we ran a modest 
number of repetitions (10) per scenario. With this amount of replica‐
tion, we cannot quantify precisely estimation bias and precision per 
individual scenario. Yet, taken across simulated scenarios, we believe 
our results are comprehensive enough to provide a good indication 
of general performance patterns.

Our study was motivated by concerns about unrealistic richness 
estimates expressed by model users. Indeed, our simulations sug‐
gested that unrealistically high estimates with large uncertainty may 
often be obtained when the number of species missed is moderately 
high (~15% or more), even when all model assumptions are met. We 
therefore suggest that large estimates with broad credible inter‐
vals should be interpreted as an indication that species might have 

F I G U R E  5   Estimated number of breeding bird species in Switzerland, obtained analyzing the full 2004 MHB dataset (267 sampling 
sites) and subsets (50%, 25%, 10% of sites), for two sets of priors (1 and 3). In (a, b) no predictors were used, and in (c, d) predictors 
were included both in occupancy and detection probabilities (following Kéry & Royle, 2016, pp. 685–694). Dots show the median of the 
posterior distribution, and lines are equal‐tailed 95% credible intervals. Reference levels show the number of bird species known to breed 
in Switzerland regularly (179), irregularly (+20), and occasionally (+16). Stars indicate the number of species detected in each data set. The 
maximum number of species allowed in analyses were (a, b) 308 and (c, d) 408
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been missed, rather than as a reliable indication of species numbers. 
Where many species are missed, the sample size and/or the occu‐
pancy/detection probabilities are small. These are conditions that do 
not allow reliable estimation of occupancy and detectability, so it is 
unsurprising that the associated estimation of N is also poor. This 
interpretation extends to analyses where the posterior of N remains 
constrained despite increasing the amount of data augmentation, 
hence suggesting increasingly larger richness estimates. Large un‐
certainty when many species are missed has been reported previ‐
ously for other richness estimation methods (e.g., Gotelli & Ellison, 
2012, p. 474). We found the choice of priors to have a strong effect 
on the tendency for overestimation, with priors that are commonly 
used in these studies (broad priors on the logit scale; uniform prior 
on N) accentuating the problem. We therefore suggest assessing the 
sensitivity of estimates to prior choice, considering priors that follow 
best practice recommendations (as in our prior set 3, and in Broms et 
al., 2015). Also, where prior information on the maximum number of 
potential species is available, this can be incorporated as a constraint 
on N (by setting M accordingly; e.g., Dorazio, Kéry, Royle, & Plattner, 
2010; bog ant study of Dorazio et al., 2011), mitigating thus the risk 
for overestimation.

Looking at the results of our ideal simulations, one could con‐
clude that the method is fairly reliable in scenarios with a small pro‐
portion of missed species, yielding estimates not far from truth and 
with relatively narrow credible intervals. This would suggest that 
users can take precise estimation around the number of detected 
species as a likely indication that no or few species have been missed 
in their surveys. However, the risk exists that such precise estimates 
are actually the result of underestimation. Departures from model 
assumptions could lead to such situations. For instance, our analyses 
of a real dataset (Swiss birds) showed estimates of number of species 
to be quite sensitive to model structure, with an apparent tendency 
for underestimation when relevant predictors were not included in 
the model (also observed by Kéry & Royle, 2016).

The distribution of the species random effects describing oc‐
cupancy and detectability is key assumptions in the model. Our 
simulations breaking the normality assumption about detection 
probabilities highlighted that departures in the lower tails of the 
distributions are the most problematic. This is because the lower 
tail indicates the frequencies of less detectable species (or for oc‐
cupancy, the less prevalent), that is, those most likely to be missed. 
If the mass of the lower tail is overestimated, the number of spe‐
cies can be substantially overestimated. This can happen even 
with thorough sampling and few missed species, as in our simu‐
lated examples. It cannot therefore be assumed that estimation 
is generally reliable when operating in scenarios with few missed 
species (unlike suggested by the ideal simulations). These results 
also indicate that estimates suggesting a greater number of spe‐
cies than detected may just be the product of model assumption 
violations. Conversely, richness will be underestimated if the mass 
in the lower tail is underestimated. All of this highlights the value 
of evaluating fit to model assumptions, and in particular to the 
lower tails of the fitted distributions. Work developing and testing 

appropriate goodness‐of‐fit tests in this context would therefore 
be valuable. However, there is a limit to the help these tests can 
offer, as there is always the risk that the assumed parametric form 
fits well the data for the observed species but its lower tail fails 
to reflect the unobserved truth about the species missed (e.g., if 
there is a group of very elusive species, much harder to detect 
that the rest).

Apart from the performance issues above, another consideration 
when deciding to extend the multispecies occupancy–detection 
model for estimating total richness is the associated increase in com‐
putational burden. Allowing for missing species through data aug‐
mentation slows down model fitting substantially, particularly when 
adding many all‐zero species. The number of estimated parameters 
increases, and more samples are required to achieve convergence. 
For instance, our analyses of the full Swiss dataset with covariates 
took around 35 hr with prior set 1, 30 hr with set 2 and 20 hr with 
set 3; in contrast, model fitting restricted to the observed species 
and without estimation of total richness took <7 hr (Dual Intel Xeon 
E5‐2699 server, 2.30 GHz, ~40 GB RAM).

Any statistical modeling method can be “broken” by testing it 
under scenarios that violate its assumptions; the more interesting 
question is how sensitive it is to likely moderate violations. Our re‐
sults demonstrate that inference about total richness from multi‐
species occupancy–detection models can be strongly affected by 
model structure (including prior choice, parametric assumptions, 
and inclusion of predictors). Appropriate selection of priors, testing 
of assumptions, and model refinement are therefore all important 
to enhance reliability of estimation. Nevertheless, even assuming 
ideal conditions, our results confirm that richness estimates may 
easily become unrealistically high. The inference task about N is 
inherently difficult, as it requires extracting conclusions about spe‐
cies that have never been observed. The reliability of other richness 
estimation methods has been previously seriously questioned, with 
the concern that it is impossible to know how bad estimates are 
(O'Hara, 2005). Similarly, here we argue that expectations about 
richness prediction accuracy should be kept realistic. We can‐
not model our way out of every situation. Hence, where accurate 
knowledge about total number of species is considered truly criti‐
cal for management or policy, survey effort should ideally be such 
that the chances of missing species are low (so our raw data already 
provides a relatively good representation of species numbers). 
With this, we do not imply that smaller datasets are not useful, as 
at the very least they can yield key information about the pool of 
observed species. Indeed, an important fundamental consideration 
before data collection and analysis is whether knowledge of N is 
critical for one's application, or whether focus can be on a species 
pool defined a priori (e.g., "all species of taxon X ever observed in 
region Y").
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