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Simple Summary: BRPF1 (also named as BR140) was identified 28 years ago, and it was not until
the past 5 years that its mutations in humans caught increasing attention. Those patients with
BRPF1 mutations often display intellectual disability or suffer from leukemia or medulloblastoma.
BRPF1 is an activator and a scaffold protein of a multiunit complex, with other members being
KAT6A/KAT6B, ING5 or ING4 and MEAF6. This review summarizes the molecular structure,
biological function and human diseases associated with the BRPF1-KAT6A/KAT6B complex and
summarizes the development of inhibitors for targeting specific domains of BRPF1.

Abstract: The bromodomain and PHD finger–containing protein1 (BRPF1) is a member of family
IV of the bromodomain-containing proteins that participate in the post-translational modification
of histones. It functions in the form of a tetrameric complex with a monocytic leukemia zinc finger
protein (MOZ or KAT6A), MOZ-related factor (MORF or KAT6B) or HAT bound to ORC1 (HBO1
or KAT7) and two small non-catalytic proteins, the inhibitor of growth 5 (ING5) or the paralog
ING4 and MYST/Esa1-associated factor 6 (MEAF6). Mounting studies have demonstrated that
all the four core subunits play crucial roles in different biological processes across diverse species,
such as embryonic development, forebrain development, skeletal patterning and hematopoiesis.
BRPF1, KAT6A and KAT6B mutations were identified as the cause of neurodevelopmental disorders,
leukemia, medulloblastoma and other types of cancer, with germline mutations associated with
neurodevelopmental disorders displaying intellectual disability, and somatic variants associated with
leukemia, medulloblastoma and other cancers. In this paper, we depict the molecular structures and
biological functions of the BRPF1-KAT6A/KAT6B complex, summarize the variants of the complex
related to neurodevelopmental disorders and cancers and discuss future research directions and
therapeutic potentials.

Keywords: BRPF1; KAT6A; KAT6B; molecular structure; biological function; intellectual disability;
cancer; bromodomain inhibitors

1. Molecular Structure of the BRPF1-KAT6A/KAT6B Complex

Post-translational modifications of histones are one of the major mechanisms by which
epigenetic changes are initiated and maintained [1,2]. Participating proteins can be divided
into three categories: “writer”, “eraser” and “reader” [3]. Bromodomain proteins are
one of the “reader” proteins that can recognize and bind modified acetyllysines. There
are 57 bromodomains encoded in the human genome, which can be divided into 8 sub-
families according to their similarity and conservation in sequence and structure [4,5].
Bromodomain and PHD finger–containing protein (BRPF) is a member of the bromod-
omain protein subfamily IV, and the BRPF family includes BRPF1, BRPF2 (also named
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as BRD1) and BRPF3 isoforms [6]. BRPF1 can form tetrameric complexes with three dif-
ferent histone acetyltransferases (HATs), monocytic leukemia zinc finger protein (MOZ
or KAT6A), MOZ-related factor (MORF or KAT6B) or HAT bound to ORC1 (HBO1 or
KAT7) and two accessory proteins, the inhibitor of growth 5 (ING5) or the paralog ING4
and MYST/Esa1-associated factor 6 (MEAF6) (Figure 1). The BRPF1 complex functions
in epigenetic modifications by histone acetylation at H3K23, H3K14 and H3K9 as well as
histone propionylation at H3K23 [5,7–13]. BRPF1 forms complexes with KAT6A or KAT6B
both in vitro and in vivo [14], but the association of BRPF1 with KAT7 is not clear in vivo,
although it was reported in vitro [12].
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Figure 1. Molecular structure of the BRPF1-KAT6A/KAT6B complex. The figure illustrates how dif-
ferent domains are involved in complex formation. BRPF1 contains SZ, NLS1, BN, EPC-I, PZP, 
NLS2, EPC-II, Bromo and PWWP domains. KAT6A/KAT6B contains NEMM, double PHD fingers, 
MYST, acidic and SM domains. KAT7 contains a ZF, MYST and a serine-rich domain (not depicted 
here). ING4/5 have a C-terminal PHD domain. BRPF1, KAT6A/KAT6B and KAT7 are 1220, 
2004/2073 and 611 amino acids long, respectively. EPC-I and BN domains are required for associa-
tion with MYST. EPC-II takes part in the interaction with ING5 or ING4 and MEAF6. Red arrows 
indicate interaction between two domains. SZ, Sfp1-like zinc finger; NLS, nuclear localization signal; 
BN, BRPF-specific N-terminal; EPC, enhancer of polycomb; PZP, PHD–zinc knuckle–PHD; Bromo, 
bromodomain; PWWP, Pro-Trp-Trp-Pro containing domain; NEMM, N-terminal part of Enok, 
MOZ and MORF; MYST, members MOZ, Ybf2/Sas3, Sas2 and Tip60; SM, serine/methionine-rich; 
ZF, zinc finger. 

2. Biological Functions of the BRPF1-KAT6A/KAT6B Complex 
BRPF1 is highly evolutionary conserved from Caenorhabditis elegans to humans [32]. 

Although the biological function of Drosophila BRPF1 remains uncertain, LIN-49 in C. ele-
gans is most similar to the human BRPF1 [44]. It forms a histone-modifying complex with 
the LSY-12 MYST-type histone acetyltransferase and the ING-family PHD domain protein 
LSY-13 [45]. The C. elegans LIN-49 protein plays an important role in maintaining neuronal 
laterality in the gustatory system, affecting hindgut development and regulating left/right 
asymmetry in chemosensory neurons [44–47]. In zebrafish, BRPF1 mutants show progres-
sive loss of anterior Hox gene expression and display shifts in segmental identity [48]. 
Similarly, BRPF1 mutant medaka fish show abnormal patterning of craniofacial and cau-
dal skeletons due to expression changes in Hox and Zic genes [49]. 

In the mouse, our previous work indicated that BRPF1 is expressed during embry-
onic, fetal and postnatal development, suggesting critical roles in different developmental 
processes [50–58]. We found that BRPF1 global inactivation in the mouse caused embry-
onic lethality at E9.5, demonstrating that it is indispensable for embryogenesis [50]. Global 
ablation led to defective vasculature formation and neural tube closure with arrested cell 
growth and cell cycle [51]. These results indicated that BRPF1 is critical for embryonic 
development. Since BRPF1′s expression is strong in the fetal, postnatal and adult brain, 
we also investigated BRPF1′s role in forebrain development and found that forebrain-spe-
cific BRPF1 loss led to early postnatal death, neocortical disorganization, partial corpus 
callosum hypoplasia and hippocampal dentate gyrus agenesis by inhibition of the expres-
sion of multiple genes important for neocortical development, such as Robo3 and Otx1, 
and de-suppression of Hox genes and other transcription factors that normally are not 
expressed in the forebrain, such as Lhx4, Foxa1, Tbx5 and Twist1 [52,53]. Although fore-
brain-specific BRPF1 knockouts suffered from early postnatal lethality, the heterozygotes 
were viable. Another group further characterized heterozygotes, showing decreased den-
dritic complexity and reduced excitatory synapse transmission [56]. At the cellular level, 
our group investigated the effects of BRPF1 partial knockdown on excitatory hippocampal 
and inhibitory medial ganglionic eminence (MGE)-derived GABAergic neurons [57,58]; 

Figure 1. Molecular structure of the BRPF1-KAT6A/KAT6B complex. The figure illustrates how dif-
ferent domains are involved in complex formation. BRPF1 contains SZ, NLS1, BN, EPC-I, PZP, NLS2,
EPC-II, Bromo and PWWP domains. KAT6A/KAT6B contains NEMM, double PHD fingers, MYST,
acidic and SM domains. KAT7 contains a ZF, MYST and a serine-rich domain (not depicted here).
ING4/5 have a C-terminal PHD domain. BRPF1, KAT6A/KAT6B and KAT7 are 1220, 2004/2073 and
611 amino acids long, respectively. EPC-I and BN domains are required for association with MYST.
EPC-II takes part in the interaction with ING5 or ING4 and MEAF6. Red arrows indicate interaction
between two domains. SZ, Sfp1-like zinc finger; NLS, nuclear localization signal; BN, BRPF-specific
N-terminal; EPC, enhancer of polycomb; PZP, PHD–zinc knuckle–PHD; Bromo, bromodomain;
PWWP, Pro-Trp-Trp-Pro containing domain; NEMM, N-terminal part of Enok, MOZ and MORF;
MYST, members MOZ, Ybf2/Sas3, Sas2 and Tip60; SM, serine/methionine-rich; ZF, zinc finger.

As shown in Figure 1, BRPF1 has a yeast transcription factor Sfp1-like C2H2 zinc
finger (SZ), nuclear localization signal 1 (NLS1) and the BRPF-specific N-terminal (BN) at
the N-terminus, enhancer of polycomb (EPC)-like motif 1 (EPC-I), PHD-zinc knuckle-PHD
(PZP) domain, NLS2, EPC-II and bromodomain in the middle part and Pro-Trp-Trp-Pro
(PWWP) domain at the C-terminus. EPC-I, together with the BN domain, are required
for association with the MYST (named for members MOZ, Ybf2/Sas3, Sas2 and Tip60)
domain of KAT6A or KAT6B, whereas EPC-II is sufficient for interaction with ING5 or
ING4 and MEAF6. Thus, BRPF1 is a scaffold protein that bridges KAT6A/KAT6B and
two accessory proteins (ING4/5 and MEAF6) [14–17]. There are also three histone-binding
modules existing in BRPF1, including a PZP domain, a bromodomain, and a PWWP
domain. The PZP domain recognizes unmodified histone H3 tails and associates with
DNA [18–20], the bromodomain is capable of binding to acetyllysine in histone H4 and H3
(H4/H3KAc) [21–24], and the PWWP domain is necessary for the association of BRPF1 with
condensed chromatin and recognizes trimethylated K36 of histone H3 (H3K36me3) [25,26].
BRPF1 has a specific domain SZ that BRD1 and BRPF3 do not have [13,27–30]. These
domains of BRPF1, together with other chromatin reader domains from other subunits
of the complex, facilitate the recruitment of KAT6A/KAT6B to different sites of active
chromatin [24]. Analogously, KAT7 participates in forming a KAT7-BRPF1 tetrameric
complex and acetylates only histone H3 on chromatin, while the previously reported
KAT7-JADE complex targets histone H4 [12].
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KAT6A and KAT6B are paralogs and are composed of multiple domains: an NEMM
(N-terminal part of Enok, MOZ and MORF) domain, tandem PHD fingers, a MYST domain,
an acidic region and a Ser/Met (SM)-rich domain [31,32] (Figure 1). The NEMM domain
possesses some sequence similarity to histones H1 and H5, suggesting a regulatory function
for this region [32]; the double PHD fingers are capable of recognizing histone H3 tails [33];
the MYST domain catalyzes histone acetylation and interacts with BRPF1 [14,32,34,35]; the
acidic region is associated with leukemia and developmental disorders [36–39]; and the SM
domain has transcriptional activation potential [40]. KAT7 is much smaller than KAT6A
or KAT6B. It consists of an uncharacterized zinc finger (ZF), a serine-rich domain and
MYST domain [41]. ING4/5 have a conserved C-terminal PHD domain bound to histone
H3 trimethylated at Lysine 4 (H3K4me3) [42,43] and the N-terminal region interacts with
BRPF1 [14]. ING4 can form part of the KAT7 complex, whereas ING5 is part of two distinct
complexes, the KAT7 and KAT6A/KAT6B complex [11]. The structural and biochemical
information of MEAF6 remains unclear.

2. Biological Functions of the BRPF1-KAT6A/KAT6B Complex

BRPF1 is highly evolutionary conserved from Caenorhabditis elegans to humans [32].
Although the biological function of Drosophila BRPF1 remains uncertain, LIN-49 in C. elegans is
most similar to the human BRPF1 [44]. It forms a histone-modifying complex with the LSY-12
MYST-type histone acetyltransferase and the ING-family PHD domain protein LSY-13 [45].
The C. elegans LIN-49 protein plays an important role in maintaining neuronal laterality in
the gustatory system, affecting hindgut development and regulating left/right asymmetry in
chemosensory neurons [44–47]. In zebrafish, BRPF1 mutants show progressive loss of anterior
Hox gene expression and display shifts in segmental identity [48]. Similarly, BRPF1 mutant
medaka fish show abnormal patterning of craniofacial and caudal skeletons due to expression
changes in Hox and Zic genes [49].

In the mouse, our previous work indicated that BRPF1 is expressed during embryonic,
fetal and postnatal development, suggesting critical roles in different developmental pro-
cesses [50–58]. We found that BRPF1 global inactivation in the mouse caused embryonic
lethality at E9.5, demonstrating that it is indispensable for embryogenesis [50]. Global
ablation led to defective vasculature formation and neural tube closure with arrested cell
growth and cell cycle [51]. These results indicated that BRPF1 is critical for embryonic
development. Since BRPF1′s expression is strong in the fetal, postnatal and adult brain, we
also investigated BRPF1′s role in forebrain development and found that forebrain-specific
BRPF1 loss led to early postnatal death, neocortical disorganization, partial corpus callosum
hypoplasia and hippocampal dentate gyrus agenesis by inhibition of the expression of
multiple genes important for neocortical development, such as Robo3 and Otx1, and de-
suppression of Hox genes and other transcription factors that normally are not expressed
in the forebrain, such as Lhx4, Foxa1, Tbx5 and Twist1 [52,53]. Although forebrain-specific
BRPF1 knockouts suffered from early postnatal lethality, the heterozygotes were viable. An-
other group further characterized heterozygotes, showing decreased dendritic complexity
and reduced excitatory synapse transmission [56]. At the cellular level, our group investi-
gated the effects of BRPF1 partial knockdown on excitatory hippocampal and inhibitory
medial ganglionic eminence (MGE)-derived GABAergic neurons [57,58]; 50% knockdown
of BRPF1 in primary cultured perinatal hippocampal neurons led to reduced excitatory
synaptic transmission and stereo-injected mice with acute BRPF1 knockdown in the hip-
pocampus displayed reduced spatial learning and memory trend [57]. Similarly, mild
knockdown of BRPF1 in MGE-derived GABAergic interneurons led to reduced inhibitory
synaptic transmission and a decreasing differentiation trend of GABAergic into PV+ in-
terneurons [58]. Considering KAT6A/KAT6B/BRPF1 were all reported to be translocated
or mutated in leukemia [17,59], we further examined hematopoiesis-specific disruption
of BRPF1 and found that BRPF1 deficient pups experienced early lethality with acute
bone marrow failure due to severe deficiency in hematopoietic stem cells (HSCs) and
hematopoietic progenitors in the bone marrow and fetal liver [54]. We also demonstrated
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that BRPF1 is essential for fetal HSCs by regulating acetylation of histone H3 at lysine 23
and expression of multipotency genes including Slamf1, Mecom, Hoxa9, Hlf, Gfi1, Egr and
Gata3 [54]. Another group identified two distinct BRPF1 isoforms, BRPF1a and BRPF1b,
with more abundance in adult and fetal LSK (Lin-Sca1+c-Kit+) cells, respectively. They are
also functionally opposite since BRPF1a overexpression suppressed LSK frequency and
number, while BRPF1b overexpression boosted LSK frequency [55].

KAT6A is a histone acetyltransferase with key roles in hematopoiesis such as gener-
ation and maintenance of HSCs [60–62], in neurogenesis by controlling proliferation of
neural stem cells [63], in skeletal development by conferring segmental identity [64,65] and
in regulating the development of monocyte/macrophage [66] and B-cell progenitors [67].

KAT6B, identified as a KAT6A-associated factor, is the result of a BLAST search for other
MYST proteins [68]. Querkopf, the mouse homologue of the human KAT6B, is essential for
embryonic neurogenesis especially for maintaining cell number in the cortical plate [69] and
also pivotal for adult neurogenesis, including maintaining cell number, self-renewal capacity
and the differentiation potential of adult neural stem cells/progenitor cells [70,71]. KAT6B and
KAT6A overlap in many functions but also participate in distinct developmental programs
and regulate each other in the macrophage activation pathway [72].

KAT7 is another HAT that BRPF1 forms a tetrameric complex with in vitro and is
linked to DNA replication initiation [73–80] and DNA repair [75]. However, KAT7 prefer-
entially forms tetrameric complexes with BRD1 [81] or BRPF3 [82] in vivo. The KAT7-BRD1
complex is required for global H3K14Ac and fetal liver erythropoiesis [81]. The KAT7-
BRPF3 complex regulates H3K14Ac and replication origin activation [82]. KAT7 is required
for H3K14Ac and KAT7-deficient embryos arrested at around E8.5, indicating its criti-
cal role in embryonic development [83]. Other functions of KAT7 involve maintaining
HSC quiescence and self-renewal in adult hematopoiesis [84], regulating tip cell sprouting
during developmental angiogenesis [85], regulating T-cell development and survival [86],
enabling autoimmune regulator function and establishing immunological tolerance [87]
and maintaining pluripotency and the self-renewal of embryonic stem cells [88].

The ING family, consisting of ING1 to ING5 and pseudogene INGX, regulates cell
cycle progression, apoptosis and DNA repair as targeting components of HAT and HDAC
complexes [11] and as regulators of TP53 [89,90]. ING1 and TP53 interact with each other
and are required for the activity of both genes. Their cooperation causes growth inhibi-
tion. In addition, ING1 stabilizes TP53 by inhibiting polyubiquitination [90]. The ING
members recognize H3K4mes and thus regulate transcriptional states of chromatin by
recruiting remodeling complexes to sites with H3K4me3 [91,92]. Moreover, they act as
tumor suppressors in various cancer types [93]. In response to DNA damage, ING4 asso-
ciates with H3K4me3 and induces apoptosis [92], while ING5 is increased and translocated
into the nucleus [94]. Furthermore, ING4 expression in normal fibroblasts induces the
senescence-associated secretory phenotype, promoting tumor progression in mice [95,96].
ING5 participates in the replication machinery as the key factor for normal progression
through the S phase [11]. Several groups have demonstrated the interactions between ING4
and the NF-κB signaling pathway to suppress angiogenesis in glioma, colorectal and breast
cancers [97–99]. The physical interaction between ING4 and the NF-κB subunit was also
observed in a glioma cell line [97]. Consistently, ING4 associates with the NF-κB complex
and leads to the downregulation of NF-κB target genes, indicating that ING4 is a tumor
suppressor [100]. ING5 has been implicated in different stem cell differentiation mecha-
nisms, such as those in mesenchymal stem cells [101] and epidermal stem cells [102,103].
ING4 and ING5 possess high amino acid sequence homology and share inhibitory function
on epithelial–mesenchymal transition that subsequently reduce the migration and inva-
sion capacity of malignant cells [93,104]. ING5 could enhance PI3K/AKT and MEK/ERK
activity to sustain self-renewal of glioblastoma stem cells [105].
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3. Human Diseases with Mutations in the BRPF1-KAT6A/KAT6B Complex
3.1. Neurodevelopmental Disorders Associated with Mutations in BRPF1/KAT6A/KAT6B

Fish and mouse BRPF1-related studies have demonstrated that BRPF1 has essential
roles in embryo development, forebrain development, hematopoiesis, skeletal patterning
and synaptic transmission. Thus, an interesting question is whether BRPF1 mutations
in humans cause developmental abnormalities. To date, 43 cases of BRPF1 mutations
reported confirm that BRPF1 is a causal gene for intellectual disability (ID) in a disease
known as intellectual developmental disorder with dysmorphic facies and ptosis (IDDDFP)
(12 cases [13], 10 cases [106], 12 cases [107], 1 case [108], 1 case [109], 1 case [110], 4 cases [111],
1 case [112], 1 case with schizophrenia and mild ID [113]). The sites of BRPF1 mutations
involved in IDDDFP are summarized in Figure 2.
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Figure 2. Syndromic intellectual disability-associated BRPF1 germline variants. (A) Illustration of the
BRPF1 variants identified in the 43 cases identified to date. A BRPF1 Tyr406His variant was identified
in an autistic individual, but the pathogenicity remains elusive. See Figure 1 for domain nomenclature.
(B) Lollipop graph demonstrating the distribution of syndromic intellectual disability-associated
BRPF1 variants in different domains. Most variations are clustered in PZP domain.
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Yan et al. [106] identified 10 individuals with 9 different mutations of the BRPF1
gene, all of whom displayed intellectual disability, global developmental delay, expres-
sive language impairment and impaired H3K23 acetylation. Among the 9 BRPF1 vari-
ants, 7 were de novo mutations and 2 were inherited from their mothers. The missense
mutation p.Pro370Ser is located within the PZP domain. The other 8 truncating mu-
tations encode variants missing essential structural domains of BRPF1. The variants
p.Glu121Glyfs*2, p.Trp315Leufs*26, p.Arg455* and p.His563Profs*8 lack the ING5- and
MEAF6-interacting domain. By contrast, the remaining 4 variants p.Gln629Hisfs*34,
p.Arg833*, p.Met973Asnfs*24 and p.Arg1100* have complete ING5- and MEAF6-interacting
domain. Moreover, this team also analyzed these variants’ functional impact on the for-
mation of tetrameric complexes, the acetyltransferase activity of KAT6A and subcellular
localization. p.Pro370Ser, p.Gln629Hisfs*34, p.Arg833* and p.Arg1100* can promote pro-
duction of ING5 and MEAF6 and form tetrameric complexes in HEK293 cells as wild-type
BRPF1. However, p.Glu121Glyfs*2, p.Trp315Leufs*26 and p.Arg455* cannot promote ING5
and MEAF6 expression. Among them, p.Glu121Glyfs*2 failed to interact with KAT6A while
the remaining 2 can interact with KAT6A. However, p.Arg455* failed to mediate the inter-
action of KAT6A with ING5 and MEAF6. Surprisingly, pTrp315Leufs*26 can still interact
with MEAF6. For acetyltransferase activity, p.Pro370Ser, pTrp315Leufs*26 and p.Arg455*
showed reduced stimulation of KAT6A activity, while p.Gln629Hisfs*34, p.Arg833* and
p.Arg1100* were as active as wild-type BRPF1. At last, the variants behaved differently
from wild-type BRPF1 in subcellular localization. p.Glu121Glyfs*2 and p.Trp315Leufs*26
presented uniform cytoplasmic distribution, p.Arg833* formed large aggregates in the
cytoplasm and p.Arg455* and p.Gln629Hisfs*34 were mainly nuclear. In the presence of
KAT6A, ING5 and MEAF6, these variants all became nuclear. Thus, the 9 variants appear to
generate different groups, suggesting their deregulation of BRPF1 via distinct mechanisms.

Mattioli et al. [107] identified 12 individuals carrying 5 BRPF1 mutations, 1 nonsense
and 4 splice variants. All individuals with BRPF1 mutations have mild or moderate
ID. One variant was a 2 nt deletion, p.Val351Glyfs*8, which retains the KAT6A/KAT6B
interaction domain but lacks the ING5-MEAF6 interaction domain, leading to failure of
complex formation, failure of H3K23Ac stimulation and more uniform distribution in
both cytoplasm and nucleus. The remaining 4 were mutations of the BRPF1 gene, 1 de
novo missense variant—p.Cys389Arg and 3 nonsense or frameshift variations—p. Tyr994*,
p.Asp190Metfs*24 and p.Tyr35*.

Yan et al. [13] recently reported another 12 cases of syndromic intellectual disability
and demonstrated that these and previous cases also showed impaired H3K23 propi-
onylation. Intellectual disability, language delay and facial/eye dysmorphisms (eg. ble-
pharophimosis and ptosis) were frequently observed. 11 BRPF1 variants were identified
in the 12 cases. They were p.Pro76Leu, p.Gln96*, p.Asp187Glyfs*29, p.Met295Valfs*17,
p.Arg318His, p.His410Arg, p.Thr434Profs*61, p.Glu474Glyfs*3, p.Tyr543Thrfs*6, p.Arg833*
and p.Phe1154del. p.Arg833* was previously reported and thus there were 10 new variants.
6 of them led to C-terminal truncations (Figure 2). p.Gln96* and p.Asp187Glyfs*29 vari-
ants lack the KAT6A/KAT6B-interacting domain. p.Met295Valfs*17 and p.Thr434Profs*61
variants lack a complete PZP domain, which is critical for BRPF1 to promote nucleosomal
H3K23Ac. p.Glu474Glyfs*3 and p.Tyr543Thrfs*6 lack an intact EPC-II domain required
for ING5/MEAF6 binding. Thus, the 6 variants are probably causative. For the remaining
4 variants, p.His410Arg possibly disrupts the PZP domain. p.Phe1154del likely inactivates
the PWWP domain. p.Pro76Leu disrupts the N-terminal region, whereas p.Arg318His alters
the first PHD of the PZP domain (Figure 2). Function-associated studies demonstrated that
p.Arg318His can form a tetrameric complex normally, whereas p.Thr434Profs*61 could not
interact with ING5 and MEAF6. The 2 variants were both defective for stimulating H3K23
acetylation and propionylation by KAT6A. Surprisingly, p.Pro76Leu was the exception
with normal promotion of ING5 and MEAF6 expression and normal stimulation of H3K23
acylation by KAT6A as wild-type BRPF1. Thus, BRPF1 mutations appear to deregulate its
functions through different mechanisms.
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4 other de novo truncating variants (BRPF1-p.Gln629Hisfs*34, p.Val707Argfs*8,
p.Arg833*, and p.Met973Asnfs*24) have also been identified in 4293 UK individuals in
the Deciphering Developmental Disorders (DDD) study [114]. Additional BRPF1 vari-
ants reported include a de novo LoF variant (p.Ala396LeufsTer69) in a child of sudden
unexplained death [112], a truncating variant (p.Q186*) in three affected siblings and their
mother [111], a variant (p.Val352Leu) in a girl [110], a de novo nonsense variant (p.Glu219*)
in a boy [109] and a rare nonsense variant (p.Gln322*) in a patient with normal intellectual
development [108]. A BRPF1 Tyr406His variant was identified in an autistic individual,
but the pathogenicity remains elusive [115].

In addition, BRPF1 was identified as the most clinically relevant genes required for
dystonia by performing whole exome sequencing (WES)-based copy-number variation
analysis [116]. Another study found that BRPF1 may be potentially disease-related for
coloboma and microphthalmia [117]. BRPF1 is also one of the target genes regulated by
pmiR-chr, which was significantly dysregulated in major depressive disorder patients [109].

KAT6A and KAT6B were originally identified as genes rearranged in leukemia [17,31].
Later, they were also reported to be mutated in patients with intellectual disability and
neurodevelopmental disorders [36,37,118–124]. A recent study summarized 61 KAT6A vari-
ants from 76 patients [123]. Syndromes of 100% penetrance include intellectual disability
and speech delay. The protein domains of KAT6A include a NEMM domain (aa 1-206), two
PHD domains (aa 207-313), an MYST domain (aa 314-787), an acidic domain (aa 788-1414)
and a Ser/Met domain (aa 1414-2004) (Figure 3A). The 61 variants were located spanning
all domains (Figure 3A,C). Individuals with truncating mutations located in exons 16–17 of
KAT6A showed more prevalent and severe ID.

Other KAT6A variants reported since this report include a de novo frameshift vari-
ant (p.Lys1130Asnfs*4) in a 2-year-old boy with global developmental delay and ID [125],
a de novo frameshift variant (p.Glu1419fs) in a 16-year-old girl with severe ID and pan-
craniosynostosis (no major visible skull suture lines) [126], 5 de novo variants (p.Gly359Ser,
p.Arg1129*, p.Lys1214*, p.Ser1143Leufs*5, p.Glu1419Trpfs*12) from 5 patients with mod-
erate or severe ID and severely affected speech and expressive language [127], a de novo
variant (p.Glu1139SerfsTer41) in a 9-month-old boy with severe developmental delay [128],
a variant (p.Arg438*) in a 2-month-old baby with multiple facial deformities [129], 2 novel vari-
ants (p.P1261Lfs*33) in a patient associated with pan-suture craniosynostosis [130],
a missense variant (p.N1975S) in the index patient displaying microcephaly and developmen-
tal delay [131] and 2 de novo variants (p.S1113X [132] and p.Val20* [133]) in a 21-year-old man
and a 1.2-year-old baby with intellectual disability, respectively (Figure 3A).

Mutations in KAT6B have been reported in patients with Say–Barber–Biesecker–
Young–Simpson syndrome (SBBYSS or Ohdo syndrome) [119], genitopatellar syndrome
(GPS) [120,121], and Blepharophimosis–Ptosis–Epicanthus inversus syndrome (BPES) [122].
Known cases with KAT6B variants have exceeded 60 with SBBYSS and GPS [124]. The two
syndromes share features such as intellectual disability but also have their own particular
symptoms, which seem to be dependent on the location of KAT6B mutations. SBBYSS-
associated variants frequently appear in the distal part of exon 18, while GPS-associated
variants are often distributed in the end of exon 17 and beginning of exon 18. The 60 known
variants are summarized in Figure 3B,D.
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Figure 3. Syndromic intellectual disability-associated KAT6A and KAT6B germline variants. (A) Cartoon
representation of KAT6A germline mutants identified in patients with intellectual disability. (B) Cartoon
representation of KAT6B germline mutants identified in patients with intellectual disability. See Figure 1
for domain nomenclature. (C) Lollipop graph demonstrating the distribution of syndromic intellectual
disability-associated KAT6A variants. Most variations are clustered in the acidic region. (D) Lollipop
graph demonstrating the distribution of syndromic intellectual disability-associated KAT6B variants.
Most variations are clustered in acidic and SM regions.
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3.2. Cancers Associated with the BRPF1-KAT6A/KAT6B Complex

In addition to germline mutations in patients with neurodevelopmental disorders,
somatic mutations of BRPF1 have been reported in leukemia, medulloblastoma and
other types of cancer [59,134] (Figure 4). About 236 BRPF1 variants have been found in
211 individuals out of a total of 10,240 cancer patients from TCGA datasets, equivalent
to a prevalence rate of 2%. Furthermore, about 1016 cases with copy number variation
(CNV) events of BRPF1 are found in 11,115 cancer patients, corresponding to a rate of
10%. Thus, BRPF1 is frequently mutated in different cancer types [13]. The impact of
each cancer-derived somatic BRPF1 mutation should be verified experimentally. Mutants
Pro20Leu, Arg29Cys and Ser36Ile alter the BRPF1-specific SZ domain, and affect complex
formation and H3K23Ac. Mutants Arg66Cys, Arg59His, Arg59Cys and Gln67Pro likely
affect NLS1 function, while mutants Glu253Gly, Leu298Pro, Trp348Arg and Glu369Asp,
identified in medulloblastoma, are located in the EPC-I and PZP domains, respectively, and
exert variable effects on enzyme activity.

Cancers 2022, 14, x FOR PEER REVIEW 10 of 19 
 

 

cervix cancer, lung adenocarcinoma, colon and rectal cancer [143]. In addition, KAT6A 
and structurally similar gene KAT6B also undergo rearrangements in myelodysplastic 
syndromes [144] and benign uterine fibroids [32]. 

KAT7 is overexpressed in cancerous tissues [145]. Its substrate specificity of H4 lysine 
is similar to the pattern of H4 modification observed in cancer [11]. The KAT7 gene maps 
to 17q21.3, the region of which is associated with frequent allelic gains found in breast 
cancer and linked with poor prognosis [146,147]. In addition, KAT7 is essential to sustain 
functional leukemia stem cells [148], and its overexpression facilitates osteosarcoma [149] 
and hepatocellular carcinoma growth [150]. 

ING4 downregulation, loss of expression and mutations have been observed in many 
tumors and cancer cell lines, supporting its potential as a tumor suppressor that regulates 
several biological and pathological processes [151]. However, the loss of ING4 alone is not 
sufficient to trigger tumorigenesis [152], consistent with its interaction with signaling 
pathways such as MYC, TP53, NF-κB and HIF-1 in tumor suppressive functions [151]. 
ING4 dysregulation correlates with pathophysiological process of many tumors, such as 
astrocytomas [153], clear-cell renal carcinoma [154], glioblastoma [97], glioma [155] and 
hepatocellular carcinoma [156]. Similarly, ING5 manipulates tumor progression via inter-
action with different molecules [157]. Nuclear ING5 is negatively correlated with tumor 
size and depth of invasion [158], while cytoplasmic ING5 is associated with tumor pro-
gression [159]. 

 
Figure 4. Cancer-associated BRPF1 somatic mutants. (A) Cartoon illustration of somatic variants of 
BRPF1 identified in cancer. See Figure 1 for domain nomenclature. (B) Lollipop graph demonstrat-
ing the distribution of cancer-associated BRPF1 variants. 

  

Figure 4. Cancer-associated BRPF1 somatic mutants. (A) Cartoon illustration of somatic variants of
BRPF1 identified in cancer. See Figure 1 for domain nomenclature. (B) Lollipop graph demonstrating
the distribution of cancer-associated BRPF1 variants.

In addition to mutations, accumulating findings have indicated BRPF1’s role in cancer.
Truncated BRPF1 protein, cooperating with SmoM2 activation, promotes postmitotic neu-
ron dedifferentiation, re-entering the cell cycle and inducing medulloblastoma in vivo [135].
BRPF1, as an inflammatory signature gene in glioma, regulates glioma cell proliferation and
colony formation, thereby being described as a potential drug target of primary lower-grade
gliomas [136]. In addition, BRPF1 is significantly upregulated in human hepatocellular
carcinoma [137] and was found to be a biomarker to discriminate prostate cancer patients
and healthy controls [138,139].

Recent pan-cancer analysis of CNV has identified KAT6A and KAT6B as top targets for
amplification in different cancers [140]. In humans, abnormal chromatin acetylation caused
by KAT6A may be a contributing factor to cancer. KAT6A was reported to cooperate with
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TP53 to drive cancer growth [141]. Inhibition of KAT6A/KAT6B induces senescence and
arrests tumor growth [142]. KAT6A was frequently reported to be translocated in various
hematological malignancies to form fusion genes, such as KAT6A-CBP, KAT6A-TIF2 and
KAT6A-EP300 [17]. Similarly, KAT6B is also rearranged in leukemia [32]. In addition
to hematologic malignancies, recurrent amplifications of KAT6A have been reported in
various solid tumors, including breast cancer, ovarian cancer, uterine cervix cancer, lung
adenocarcinoma, colon and rectal cancer [143]. In addition, KAT6A and structurally similar
gene KAT6B also undergo rearrangements in myelodysplastic syndromes [144] and benign
uterine fibroids [32].

KAT7 is overexpressed in cancerous tissues [145]. Its substrate specificity of H4 lysine
is similar to the pattern of H4 modification observed in cancer [11]. The KAT7 gene maps
to 17q21.3, the region of which is associated with frequent allelic gains found in breast
cancer and linked with poor prognosis [146,147]. In addition, KAT7 is essential to sustain
functional leukemia stem cells [148], and its overexpression facilitates osteosarcoma [149]
and hepatocellular carcinoma growth [150].

ING4 downregulation, loss of expression and mutations have been observed in many
tumors and cancer cell lines, supporting its potential as a tumor suppressor that regulates
several biological and pathological processes [151]. However, the loss of ING4 alone is
not sufficient to trigger tumorigenesis [152], consistent with its interaction with signaling
pathways such as MYC, TP53, NF-κB and HIF-1 in tumor suppressive functions [151].
ING4 dysregulation correlates with pathophysiological process of many tumors, such
as astrocytomas [153], clear-cell renal carcinoma [154], glioblastoma [97], glioma [155]
and hepatocellular carcinoma [156]. Similarly, ING5 manipulates tumor progression via
interaction with different molecules [157]. Nuclear ING5 is negatively correlated with
tumor size and depth of invasion [158], while cytoplasmic ING5 is associated with tumor
progression [159].

3.3. Other Diseases Associated with BRD1 and BRPF3

Inactivation of BRD1 in mice led to lethality of E15.5 embryos with growth retardation,
neural tube defects, abnormal eye development and erythropoiesis [81]. BRD1 also regu-
lates embryogenesis and early thymocyte development [81,160]. In humans, PAX5-BRD1
fusion events have been reported in leukemia [161]. BRD1 is also associated with bipolar
disorder and schizophrenia in European populations [162].

Endogenous BRPF3 preferentially forms tetrameric complexes with KAT7, and it is
not essential for mouse embryo survival, distinguishing it from its homologs BRPF1 and
BRD1 [163]. Others reported that BRPF3 is essential for DNA replication initiation and
damage response in immortalized cell lines [82]. Few have reported BRPF3 mutation events
in humans.

4. Conclusions and Implications

Post-translational modifications of histones are important in epigenetic regulation,
which is critical in human development and disease [1,2,164,165]. BRPF1 works in com-
plexes with KAT6A/KAT6B/KAT7 and all of them are unique chromatin regulators gaining
more and more attention. Recent studies have elucidated the function of these chromatin
regulators’ reader and writer modules. BRPF1 interacts with KAT6A/KAT6B’s MYST
domain, which catalyzes histone acetylation. KAT6A/KAT6B double-PHD-finger domain
prefers to bind acetylated H3K14/K9, thus cooperating with the MYST domain to facilitate
histone acetylation [166]. Additionally, BRPF1 is capable of interacting with ING4/5 and
MEAF6 via its EPC-II domain. The C-terminal PHD finger of ING4/5 has been shown
to bind H3K4me3 resulting in the complex’s preferential acetylation of histone peptides
tri-methylated at H3K4, meaning that ING4/5 acts as an adapter targeting the complex to
chromatin via histone recognition of its PHD finger domain [43]. In addition to functioning
as a scaffold protein, BRPF1 also possesses multiple epigenetic reader domains which
appear to regulate the complex’s enzymatic activity, including a PZP domain recognizing
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unmodified histone H3 tail and associating with DNA [18–20], a bromodomain binding
H4/H3Kac [21–24] and a PWWP domain necessary for the association of BRPF1 with
condensed chromatin and recognizing H3K36me3 [25,26]. Thus, it is the comprehensive
effect of these epigenetic reader domains within the BRPF1-KAT6A/KAT6B complex that
directs it to chromatin substrates and regulates its acetylation activity.

There are also more and more studies to explore the biological functions of BRPF1,
KAT6A, KAT6B and KAT7. Fish and mouse BRPF1 work has indicated its critical roles in
embryo development, forebrain development, synaptic transmission, hematopoiesis and
skeletal patterning [48–58]. KAT6A and KAT6B share domain organization and exhibit
overlapping functions, such as the interaction with Runx2, which is required for T-cell
lymphomagenesis and bone development [40]. KAT6A and KAT6B also display distinct
functions, with the former being critical for hematopoiesis and neurogenesis [60–63] and the
latter being pivotal in embryonic and adult neurogenesis [69–71]. KAT7 is associated with
DNA replication initiation [73–80] and DNA repair [75] but preferentially interacts with
BRD1 [81] or BRPF3 [82] in vivo, with essential roles in fetal liver erythropoiesis and repli-
cation origin activation, respectively. Related to human disease, BRPF1/KAT6A/KAT6B
mutations have all been identified as the cause of neurodevelopmental disorders, leukemia
and other types of cancer. The biological functions from mouse studies explain well the
symptoms found in those patients, such as intellectual disability. Although great progress
has been made on the molecular structures and biological functions of these chromatin
regulators, how distinct domains of the BRPF1-KAT6A/KAT6B complex interact with each
other as well as with other chromatin regulators remains an important question awaiting
further investigation.

Another important question is how to translate the knowledge that we have acquired
to clinical situations. Bromodomains are small protein modules that recognize acetylated
lysines on histones and play an important role in the epigenome [167]. Probes targeting
typical bet family bromodomains have been heavily investigated [22,168], and those tar-
geting non-bet bromodomains [169,170] are gaining increasing focus for chemical probe
discovery efforts. Several groups have reported chemical probes that specifically inhibit
the bromodomain of BRPF1 [171,172]. Others also claimed dual-targeting probes of BRPF1
bromodomain with TRIM24 bromodomain or with HDAC6/8 [173–175]. Probes targeting
BRD1 and TAF1 bromodomains have also been reported [176].

In summary, the BRPF1-KAT6A/KAT6B complex with multiple chromatin modules is
closely linked with neurodevelopmental disorders and cancers. How these domains of the
complex interact with each other merits further investigation.
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