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Abstract: Organ fibrosis is a common pathological result of various chronic diseases with multiple
causes. Fibrosis is characterized by the excessive deposition of extracellular matrix and eventually
leads to the destruction of the tissue structure and impaired organ function. Prostaglandins are
produced by arachidonic acid through cyclooxygenases and various prostaglandin-specific synthases.
Prostaglandins bind to homologous receptors on adjacent tissue cells in an autocrine or paracrine
manner and participate in the regulation of a series of physiological or pathological processes,
including fibrosis. This review summarizes the properties, synthesis, and degradation of various
prostaglandins, as well as the roles of these prostaglandins and their receptors in fibrosis in multiple
models to reveal the clinical significance of prostaglandins and their receptors in the treatment
of fibrosis.
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1. Introduction

Organ fibrosis is a common pathological result of chronic tissue damage caused by
various etiological factors. This condition is often defined as a degenerative process of
connective tissue that is accompanied by the excessive formation and deposition of extracel-
lular matrix (ECM) components, resulting in the destruction of normal organ architecture
and function [1]. Fibrotic responses share the same initial fundamental mechanism as
the normal wound healing process: the generation of new tissue to replace damaged
tissue. However, when this process exceeds that of normal repair, it will cause pathological
fibrosis with the accumulation of nonfunctional scarring and destruction of the normal
tissue architecture [2]. The pathogenesis of fibrosis is associated with various diseases,
including idiopathic pulmonary fibrosis (IPF), heart failure, liver cirrhosis, nonalcoholic
steatohepatitis, chronic kidney disease, scleroderma, and glaucoma. However, no effective
treatments are available to prevent or reverse this process. Nintedanib and pirfenidone are
the only two drugs approved by the Food and Drug Administration to treat IPF [3] but
only retard disease progression. Therefore, a better understanding of the processes and
mechanisms of fibrosis will help identify more specific and efficient strategies to reduce the
morbidity and mortality caused by fibrosis. Prostaglandins (PGs) are lipid mediators that
participate in various physiological reactions. Multiple studies have indicated that PGs
also play an important role in fibrosis. The purpose of this review is to summarize the key
biological features of various PGs and to discuss their roles in fibrotic processes.

2. Comprehensive Mechanisms of Fibrosis

Fibrosis is a complex process that requires multiple cells and active mediators. Con-
tinuous tissue damage or exposure to harmful substances induces a local inflammatory
response by activating immunocytes (macrophages, dendritic cells, and mast cells), the
complement system and the coagulation/fibrinolysis systems and inducing the secretion of
various biological inflammatory mediators. These changes all induce typical inflammatory
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signs, including redness, swelling, heat, pain, and impairment or loss of function, on the
one hand, and clear production of harmful or damaged material on the other hand [2]. This
inflammatory process is an effective mechanism by which the body reduces damage and
protects organ function. However, if the removal is not complete, a persistent inflammatory
response with immune cell accumulation and further cytokine and enzyme release will
lead to the death of parenchymal cells and uncontrolled production and activation of
profibrotic cytokines, such as transforming growth factor-β (TGF-β), connective tissue
growth factor (CTGF), and platelet-derived growth factor (PDGF), which in turn activate
various progenitor cells, transforming them into myofibroblasts with high expression of
alpha-smooth muscle actin (α-SMA), increasing cell proliferation and production of ECM
and decreasing myofibroblast apoptosis. These cells finally drive pathological fibrosis [2,4].

Myofibroblasts are an important cellular component that produce ECM and pro-
mote tissue fibrosis and were first detected in the granulation tissue of healing skin
wounds as the final differentiated form of fibroblasts [5]. Different mechanisms, includ-
ing cellular activation, transformation, proliferation, infiltration, expansion, epithelial-
to-mesenchymal transition (EMT), mesothelial-to-mesenchymal transition (MMT), and
endothelial-to-mesenchymal transition (EndoMT), are involved in increasing the number
of myofibroblasts [2]. Myofibroblasts, which express α-SMA, not only have secretory
functions similar to those of fibroblasts but also possess ultrastructural and physiological
characteristics similar to those of smooth muscle cells; hence, they rapidly induce the
production and stimulation of ECM and contract the ECM via stress fibers, resulting in
the deformation of the tissue structure and scar formation [6,7]. As discussed previously,
TGF-β not only induces ECM formation in profibrogenic cells but also acts as the key factor
inducing the activation of myofibroblasts. Therefore, inhibiting myofibroblast activation
through the above mechanisms is also an effective strategy to prevent or reverse fibrosis.

3. Production of Prostaglandins

PGs, which are secretory lipid mediators generated from arachidonic acid (AA), play
an important role in regulating various biological functions in humans. These molecules are
members of a subclass of eicosanoids containing C20 atoms with a cyclopentane (5-carbon)
ring and are divided into prostacyclopentanes and thromboxanes, depending on their
structures [8].

AA is a type of polyunsaturated fatty acid that exists as a membrane phospholipid on
cells. AA is released through phospholipid hydrolysis by the phospholipase A2 (PLA2),
phospholipase D, or phospholipase C pathways in response to cytokines, growth factors,
and other proinflammatory stimuli [9] and then is converted to PGs and leukotrienes by
the cyclooxygenase (COX) and lipoxygenase (LOX) pathways, respectively. COX, also
called PTGS or PGHS, catalyzes cyclooxygenase and endoperoxidase reactions, leading
to the production of PGH2 from AA via PGG2. The generated PGH2 can be converted
to PGE2, PGD2, PGI2, PGF2α, and thromboxane A2 (TXA2) by individual enzymes and
isomerases [10], including PGE synthase (PGES), PGD synthase (PGDS), PGI synthase
(PGIS), PGF synthase (PGFS), and TXA synthase (TXAS), respectively [8].

A series of G protein-coupled rhodopsin-type receptors located on the surface of
target cells mediate the function of these PGs and consist of eight types: prostaglandin
D receptor (DP1), prostaglandin E receptors (EP1, EP2, EP3, and EP4), prostaglandin F
receptor (FP), prostaglandin I receptor (IP), and thromboxane receptor (TP). In addition,
another G protein-coupled receptor termed chemoattractant receptor-homologous molecule
is expressed on T helper 2 cells (CRTH2 or DP2) and responds to PGD2 but belongs to the
superfamily of N-formyl-methionyl-leucyl-phenylalanine chemoattractant receptors.

A dynamic balance between PG production and degradation is needed to maintain
physiological homeostasis. PGs are primarily metabolized by the initial oxidation of the
15(S)-hydroxyl group catalyzed by 15-hydroxyprostaglandin dehydrogenases (15-PGDHs),
which are comprised of two types, type I NAD+-dependent 15-PGDH and type II NADP-
dependent 15-PGDH, and type I is considered the key enzyme involved in controlling the
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biological activities of PGs and related eicosanoids [11]. Due to the role of PGs in fibrosis,
the pathological process of fibrosis is also indirectly altered by the regulation of 15-PGDH
expression. The specific details will be discussed later (Figure 1).
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Figure 1. PG production. Membrane phospholipids are metabolized into AA by the PLA2, PLD, or
PLC pathways. AA is then converted to PGs and IL by the COX and LOX pathways, respectively.
The generated PGH2 is transformed to PGE2, PGD2, PGI2, PGF2α, and thromboxane A2 (TXA2)
by individual enzymes, all of which function by binding to target receptors on their own cells or
adjacent cells in an autocrine or paracrine manner.

4. Prostaglandins

PGs are expressed in almost all cell types and perform various functions, such as
maintaining the physiological balance, regulating inflammation, and participating in tumor
formation or migration, in an autocrine or paracrine manner. However, some studies have
found that PGs also play multiple roles in tissue fibrosis, which involves several cell types,
such as fibroblasts, alveolar epithelial cells, renal mesangial cells, and hepatic stellate cells
(HSCs). Next, we summarize the roles of all PGs in fibrosis and the possible mechanisms,
which will provide new information to help elucidate fibrotic pathogenesis or therapeutic
targets (Table 1).

Table 1. PG receptor associated signal transduction and effect on fibrosis.

Prostaglandins Receptors G Proteins Second Messengers Fibrosis

PGE2 EP1 Gq IP3, ↑ Ca2+ ↓ +
EP2 Gs cAMP ↑ −
EP3 Gi, G12, GRho camp, ↓ Ca2+ ↑ +
EP4 Gs cAMP ↑ −

PGD2 DP1 Gs cAMP ↑ −
DP2 Gi cAMP ↓, Ca2+ ↑ +

PGI2 IP Gs cAMP ↑ −
PPAR-α −

PGF2α FP: FPA FPB Gq, GRho IP3, ↑ Ca2+ ↑ +

TXA2 TP:TPα TPβ Gq, G13
Gs, Gi, Gh

Ca2+ ↑ (Gq)
cAMP ↑↓ (Gs Gi)

+

“↑” stands for ascending, “↓”for descending, “+”for promoting fibrosis, and “−” for inhibiting fibrosis.

4.1. PGE2

PGE2 is one of the most abundant PGs produced in the body and exhibits versatile
biological activities. On the one hand, PGE2 is vital for many biological functions under
physiological conditions, such as the regulation of immune responses, smooth muscle
contraction/dilation, gastrointestinal integrity, sodium homeostasis, and fertility. On the
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other hand, dysregulated or uncontrolled PGE2 synthesis or degradation is associated
with a wide range of pathological conditions, including chronic inflammation, Alzheimer's
disease, and tumorigenesis [12,13]. In addition, PGE2 participates in the pathological
fibrotic process in various cells or tissues through a series of signaling pathways.

4.1.1. Production of PGE2

PGE2 is synthesized from AA by COX and specific PGESs, including microsomal
PGE synthase-1 (mPGES-1), microsomal PGE synthase-2 (mPGES-2), and cytosolic PGE
synthase (cPGES). mPGES-1 is a membrane-associated protein in the eicosanoid and glu-
tathione metabolism (MAPEG) family that is constitutively expressed at low levels under
homeostatic conditions; however, mPGES-1 is substantially upregulated in response to var-
ious inflammatory stimuli and is responsible for the production of PGE2 in inflammation
specifically coupled to COX-2 [14]. Unlike mPGES-1, mPGES-2 is constitutively expressed
in many cells and tissues and is not induced by inflammatory stimuli. In vitro studies
have found that mPGES-2 exerts its PGE2 synthase activity via both COX-1 and COX-2
in immediate and delayed responses, with a modest COX-2 preference [15]. However,
in vivo studies have revealed that the production of PGE2 in mPGES-2 gene-deficient
mouse tissues and cells does not change [16]. Consistent with this finding, Fusao found
that mPGES-2 only catalyzes PGE2 synthesis in the heme-free form in vitro, while in vivo,
it does not change PGE2 production as a heme-bound protein [17]. cPGES is localized
in the cytoplasmic compartment, is constitutively expressed in a wide variety of mam-
malian cell lines and tissues, and converts PGH2 to PGE2 in association with COX-1,
particularly during the immediate PGE2 biosynthetic response elicited by Ca2+-evoked
stimuli [13,18]. Therefore, mPGES-1 is the primary enzyme catalyzing PGE2 production,
which has been shown to regulate the fibrotic response. mPGES-1 exerts an essential effect
on pulmonary fibrogenesis in mice via EP2-mediated signal transduction, and activation of
mPGES-1/PGE2/EP2/focal adhesion kinase signaling may represent a new therapeutic
strategy for the treatment of patients with IPF [19]. An mPGES-1 deficiency in a mouse
model of nonalcoholic steatohepatitis with decreased PGE2 production augmented the
TNF-α-triggered inflammatory response and hepatocyte apoptosis [20]. mPGES-1 also
protects against renal fibrosis and inflammation during obstructive nephropathy via the
mPGES-1/PGE2/EP4 pathway [21].

After PGE2 is formed, it is transported through the membrane by ATP-dependent
multidrug resistance protein-4 or diffuses across the plasma membrane to act at or near its
site of secretion. PGE2 signals through four receptors, EP1, EP2, EP3, and EP4. EP1 coupled
with Gq mediates phospholipase C activation, resulting in the accumulation of inositol
1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), which in turn induce Ca2+ release from
the endoplasmic reticulum and activate protein kinase C (PKC). EP2 and EP4 couple to
Gs to increase the intracellular concentration of cyclic adenosine monophosphate (cAMP),
which subsequently activates protein kinase A (PKA). However, EP3 plays a unique role,
with multiple splice variants defined by unique C-terminal cytoplasmic tails. EP3 isoforms
couple to Gi or G12 to increase the concentration of intracellular Ca2+, inhibit cAMP
generation and activate the small G protein Rho [10,13,18,22]. Therefore, the functions of
PGE2 mainly depend on the type and proportion of activated receptors in the tissue or
cells. An article analyzing the expression of various PG receptors in human lung fibroblasts
from normal individuals and patients with IPF via RNA sequencing and western blotting
revealed the prominent expression of EP2, with lower expression of EP4 receptors and
barely discernible expression of EP1 or EP3 in normal fibroblasts. Moreover, the expression
of EP2 and EP4 decreased in fibroblasts from patients with IPF [23], indicating that EP2
and EP4 may be involved in the response to pulmonary fibrosis.

4.1.2. Effect of PGE2 on Fibrosis

The role of PGE2 in fibrosis is complex and may be related to the receptor types, target
cell types, and organs. The protective effect on fibrosis by acting on multiple cells via
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EP2 and EP4 receptors. PGE2 is produced by various cells in different tissues, including
alveolar epithelial cells, tubular epithelial cells, fibroblasts, and alveolar macrophages. The
secreted PGE2 acts on fibroblasts or epithelial cells in an autocrine or paracrine manner, thus
disrupting the process of tissue fibrosis [24]. Many studies have shown that PGE2 exerts
antifibrotic effects on different organs by inhibiting cell proliferation [25,26], migration [27],
collagen expression and deposition [25,28,29], and fibroblast differentiation [30,31] by
activating the cAMP/PKA signaling pathway upon binding to EP2 or EP4 in fibroblasts.
Inhalation of liposome-coated PGE2 in the lungs significantly improves the symptoms of
bleomycin-induced pulmonary fibrosis in mice, including weight loss and the reduction in
fibrosis-related gene expression, and improves the survival rate of animals [32].

Changes in PGE2 Expression in Different Organs

PGE2 expression also changes in different fibrotic diseases. Notably, PGE2 is normally
present at high concentrations in respiratory epithelial lining fluid (ELF), where it sup-
presses mesenchymal cell proliferation mediated by polypeptide-derived growth factors.
However, fibroblasts derived from the lungs of patients with IPF and systemic sclerosis
(SSc) produce low levels of PGE2, and the levels in the ELF of patients with IPF were also
found to be 50% lower than normal [33,34]. This finding may result from the combination
of decreased COX-2 expression in lung fibroblasts and increased 15-PGDH expression in
the intact alveolar structures preserved in lung tissues of patients with IPF [30,35]. The
limited capacity of fibrotic lung fibroblasts to upregulate COX-2 expression may be due
to epigenetic regulation of the COX-2 promoter region, such as hypermethylation of the
transcriptional regulator chromosome 8 open reading frame 4 (c8orf4) [34], H3 and H4
histone deacetylation, and H3K9 and H3K27 methylation [36]. In the mouse model of
hepatic fibrosis induced by CCl4, PGE2 levels in the liver also decreased significantly [37].
Unlike lung tissue, the EP2 mRNA is expressed at low levels in the kidneys under physio-
logical conditions [38], but the expression of the COX-2, EP2, and EP4 mRNAs increased
significantly after unilateral ureteral obstruction (UUO), which were detected mainly in
tubular epithelial cells and interstitial cells [39,40].

Regulation of PGE2 in Cell Proliferation and Apoptosis

Interstitial cells and parenchymal cells play an important role in the development of
pulmonary fibrosis, and PGE2 affects the survival and apoptosis of these cells to prevent
fibrotic diseases. First, in the lung, exogenous PGE2 inhibits the proliferation of patient-
derived normal lung fibroblasts via EP2 receptor and cAMP activation [25]. PKA is the
classic effector of cAMP and is responsible for cell growth and differentiation. However, the
inhibitory effect of PGE2 on proliferation is mediated by another effector named exchange
protein activated by cAMP-1 (Epac-1) through the activation of the small GTPase Rap1, and
PKA activation is mainly responsible for regulating collagen expression [41]. In addition,
PGE2 also inhibits the FGF-induced expression of a number of cell cycle genes, including
CCND1, CCNB1, and PLK1, which results from the brake for the binding between the
transcription factor Forkhead box M1 (FOXM1) and above target gene-promoter elements
of human lung fibroblast [42]. Under normal circumstances, timely apoptosis of fibroblasts
avoids the pathological changes of fibrosis, caused by its excessive accumulation. However,
some studies have found that fibroblasts from patients with pulmonary fibrosis are resis-
tant to apoptosis. However, PGE2 restores the sensitivity of fibroblasts to apoptosis and
promotes apoptosis by activating the EP2/EP4 receptor through an increase in phosphatase
and tensin homolog on chromosome ten (PTEN) activity, decrease in Akt activity and
increase in Fas receptor expression [43]. Consistent with the findings described above,
PGE2 also regulates the survival and apoptosis of renal cells. PGE2 produced by renal
tubular cells inhibits proliferation and induces the apoptosis of interstitial fibroblasts in
a paracrine manner and improves the survival and regeneration of tubular cells in an
autocrine manner via EP4, and this result may be related to the reduced production of
chemokines related to inflammatory infiltrates [39,44]. Several studies have also revealed
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that the expression of COX-2/PGE2 decreases the apoptosis of hepatocytes but increases
the apoptosis and inactivation of HSCs with inhibiting the proliferation by downregulating
miR-23a-5p and miR-28a-5p expression in HSCs [45]. In addition to affecting interstitial
cell and parenchymal cell survival, PGE2 alters the migration of fibroblasts by increasing
PTEN levels in the heart, which is another important feature of wound repair at the site of
injury [46].

Regulation of PGE2 in Myofibroblast Differentiation

Myofibroblast differentiation induced by mediators, such as TGF-β and biomechanical
signals, is an important step in the pathological progression of fibrosis. These myofibrob-
lasts not only have stronger proliferative and migratory abilities but also exhibit increased
synthesis and secretion of ECM. PGE2 not only inhibits but also reverses myofibroblast
differentiation. Through microarrays, PGE2 was shown to reverse the changes in gene
expression induced by TGF-β1. Genes upregulated by TGF-β1 and downregulated by
PGE2 tend to be associated with cell adhesion, contractile fibers, and actin binding, whereas
genes downregulated by TGF-β1 but subsequently upregulated by PGE2 are enriched in
glycoprotein, polysaccharide binding, and regulation of cell migration [47]. α-SMA is a
marker of myofibroblast differentiation, and the transcription factors serum response factor
(SRF) and myocardin-related transcription factor-A (MRTF-A) are important for regulating
α-SMA expression. PGE2 inhibits the expression of SRF by inhibiting P38 activation and
inhibits the nuclear import of MRTF-A via the activation of cofilin 1 and inactivation of
vasodilator-stimulated phosphoprotein, thus reducing the formation of nuclear MRTF-A-
SRF complexes and subsequently inhibiting α-SMA promoter activation in normal lung
fibroblasts [48]. Myofibroblasts were previously considered terminally differentiated cells,
but with the development of research sites, myofibroblasts were also shown to have the
ability to dedifferentiate and are characterized by the disappearance of α-SMA. Therefore,
approaches promoting the dedifferentiation of myofibroblasts are also necessary for fi-
brosis resolution. As discussed in a previous study, undifferentiated fibroblasts appear
spindle-shaped and elongated, in stark contrast to the larger, cuboidal, and stellate-shaped
myofibroblasts. Myofibroblasts exposed to PGE2 appear smaller, thinner, and display
fewer cytoplasmic projections, along with the downregulation of α-SMA, eradication of
stress fibers and reduction in ECM production, which is mediated by the EP2/cAMP/PKA
pathway [49]. As research has progressed, more mechanisms involved in fibrosis have been
discovered. Ca2+ oscillations induced by TGF-β are sufficient to increase the production
of ECM proteins. The inhibitory effect of PGE2 on the expression of ECM genes and con-
version of fibroblasts to a myofibroblast phenotype appears to occur via cAMP generated
by signaling from the EP2 receptor and apparently the EP4 receptor, which blunts Ca2+

oscillations promoted by TGF-β or present in HPFs from patients with IPF and inhibits the
activation of Ca2+/calmodulin-dependent protein kinase-II (CaMK-II) [23]. In renal tissue,
EP2 receptor stimulation reduces TGF-β1-induced injury and fibrosis in mouse mesangial
cells (MCs) by decreasing endoplasmic reticulum stress and transient receptor potential
cation channel protein (TRPC) via the inhibition of excessive ERK signaling [50].

PGE2 exerts an antifibrotic effect by activating EP2 or EP4 receptors, and various
agonists of this receptor have also been used in antifibrotic studies. The EP2 receptor
agonist butaprost inhibits renal fibrosis and reduces the expression of α-SMA, fibronectin,
and col1 in Madin-Darby canine kidney (MDCK) cells, a mouse model of unilateral ureteral
obstruction and human precision-cut kidney slices, but this effect is not achieved through
the activation of the cAMP/PKA signaling pathway but through the inhibition of the TGF-
β/Smad signaling pathway [38,40]. The EP4 agonist ONO-0260164 also exerts antifibrotic
effects on cardiac fibrosis via the downregulation of collagen type 1 and type 3 in vivo
and in vitro through PKA activation [51]. However, the damage caused by EP4 agonists
to glomerular tissue limits their clinical application. In cultured renal fibroblasts isolated
from WT kidneys, ONO-AE1-329 significantly suppresses PDGF-BB-induced proliferation
in a concentration-dependent manner [39]
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However, the antifibrotic effect of PGE2 is controversial. Although the presence
of PGE2 inhibits the proliferation, transformation, and ECM production of fibroblasts
in most cases, these effects are mainly mediated by EP2/EP4 receptors. The EP1/EP3
receptor-coupled signal is associated with promoting fibrosis due to the differences in G
proteins coupled with the EP1/EP3 receptors and the differences in downstream cAMP
and Ca2+ regulation. Activation of EP1/EP3 receptors by PGE2 may serve to induce the
proliferation of MCs and cardiac fibroblasts and promote the accumulation of ECM, effects
that are mediated by the stimulation of cyclin D1 with involvement of both the p42/44
MAP kinase pathway and the PI3 kinase pathway [52,53] or the induction of excessive ERK
signaling [50].

Overall, PGE2 participates in the fibrosis of various organs and tissues by regulating
all hallmarks of profibrotic fibroblasts induced by TGF-β through the activation of the
corresponding receptors. However, the specific effect of PGE2 is context-specific and
cell/receptor type-dependent. Therefore, the fibrotic effects of PGE2 on various organs
must be studied separately and generally cannot be defined. The promotion of endogenous
PGE2 generation or inhibition of endogenous PGE2 degradation by external stimuli is a
potentially useful method for the treatment of fibrosis to avoid defects in PGE2 chemical
instability and for greater efficacy, which has strong prospects for clinical application.

4.2. PGD2

PGD2 is a major lipid mediator with physiological effects on both the peripheral
nervous system and central nervous system (CNS) [13]; it regulates vasodilatation, bron-
choconstriction, platelet aggregation, glycogenolysis, allergic reactions, and a reduction in
intraocular pressure in peripheral tissues and modulates sleep induction, body temperature,
olfactory function, nociception, and neuromodulation in the CNS [54].

4.2.1. Production of PGD2

Two enzymes are responsible for the synthesis of PGD2 from PGH2: hematopoietic-
type PGD synthases (H-PGDS) and lipocalin-type PGD synthases (L-PGDS). H-PGDS
mediates the production of PGD2 in mast cells and other hematopoietic cells, while L-
PGDS is expressed in oligodendrocytes, the choroid plexus, organs of the male genital tract,
leptomeninges, and hearts of humans and monkeys [10].

PGD2 usually regulates physiological functions through its specific receptors DP1
and DP2 [also known as chemoattractant receptor homologous molecule expressed on
TH2 lymphocytes (CRTH2)] [55]. Multiple tissues and cells, such as nasal serous glands,
the vascular endothelium, Th2 cells, dendritic cells, basophils, and eosinophils, express
the DP1 receptor [10]. Similar to EP2 or EP4, DP1 receptor activation leads to increased
cAMP levels and intracellular PKA activation. CRTH2 is mainly expressed in Th2 cells
and couples to the Gi protein to inhibit cAMP synthesis and increase intracellular Ca2+

concentrations. This finding suggests that PGD2 interferes with the fibrotic process by
activating its receptor.

PGD2 is a relatively unstable lipid with a half-life of approximately 30 min in plasma
and can be metabolized to other types, including PGF2α, 9α,11β-PGF2 and the J series of
PGs (such as PGJ2, ∆12-PGJ2, and 15d-PGJ2) [13]. Moreover, 15d-PGJ2, a natural ligand that
activates peroxisome proliferator-activated receptor (PPAR-γ), inhibits the NF-κB pathway
and induces oxidative stress, is an important lipid participating in various biological
and pathological conditions [56,57]. A stereoisomer of PGF2α, 9α,11β-PGF2, which is
metabolized from PGD2 by the enzyme PGD 11-ketoreductase, has been shown to mediate
various biological activities, such as the contraction of bronchial smooth muscle cells,
inhibition of platelet aggregation and induction of chemoattraction of various immune
cells [56].
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4.2.2. Effect of PGD2 on Fibrosis

The function of PGD2 in the inflammatory response is complex and not only pro-
motes the development of inflammation by stimulating the chemotaxis of eosinophils,
basophils, and Th2 lymphocytes but also inhibits the activation of inflammatory cells
such as antigen-specific T cells and basophils [58]. H-PGDS knockout mice exhibit ag-
gravated bleomycin-induced collagen deposition in the lung, accompanied by the early
accumulation of inflammatory cells and inflammatory cytokines and increased vascular
permeability [58]. H-PGDS is expressed at high levels by monocyte macrophages and
neutrophils in a bleomycin-induced mouse model of pulmonary fibrosis, while it is also
expressed in epithelial cells and vascular endothelial cells in an endotoxin-induced in-
flammation model. PGD2 derived from these cells reduces the inflammatory and fibrosis
responses of lung tissue by inhibiting the aggregation of inflammatory cells and reducing
vascular permeability [58]. Therefore, PGD2 plays an important role in the pathological
fibrotic process in some organs.

In the lung, PGD2 induces antifibrotic effects by inhibiting TGF-β-induced collagen
secretion and fibroblast proliferation via the activation of the DP receptor and suppression
of early inflammation [58–60], which is achieved by cAMP accumulation [59]. However,
CRTH2, another PGD2 receptor expressed in Th2 group 2 cells, innate lymphoid cells,
eosinophils, and basophils, is also vital for the inhibition of fibrosis. The absence of CRTH2
exacerbates bleomycin-induced pulmonary inflammation and fibrosis in mice, changes
that are alleviated by the transfer of wild-type splenocytes, especially γδT cells expressing
CRTH2, by inducing the expression of the anti-fibrosis factor IL-10 [61]. In the liver,
PGD2 inhibits VEGF expression induced by TGF-β in HSCs from chronic schistosome
granulomas, indicating that PGD2 may be a novel target for the treatment of schistosomal
hepatic granuloma [62].

Both PGD2 and its metabolite inhibit fibrosis. An increasing body of in vivo or in vitro
evidence has shown that 15d-PGJ2 possesses antifibrotic properties in various experimental
models, most of which occur in a PPAR-γ-independent manner. Alon et al. showed that
15d-PGJ2 in keloids attenuates keloid cell proliferation, inhibits collagen gel contraction,
and increases cell apoptosis by inducing oxidative stress in vitro [56]. AKR1C3 is an enzyme
that metabolizes PGD2 to 9α,11 β-PGF2, the inhibition of which increases the concentration
of 15d-PGJ2 and is a potential treatment for skin keloids [56]. P38 mitogen-activated protein
kinase (MAPK) is an important downstream molecule of the TGF-β signaling pathway
that mediates fibrosis. Kye-Im et al. found that 15d-PGJ2 inhibits cat corneal myofibroblast
transformation and ECM production by decreasing the expression of α-SMA, COL1, and
FN induced by TGF-β1 through a mechanism regulated by p38 MAPK, which blocks the
phosphorylation of GSK3β and decreases levels of active (unphosphorylated) β-catenin
in the cytoplasm and nucleus [63–65]. Furthermore, inhibition of p38-MAPK also restores
the sensitivity of myofibroblasts to apoptosis by inhibiting the ROS resistance induced
by activating the antioxidant enzyme superoxide dismutase-1 [56]. In the liver, 15d-PGJ2
administration substantially attenuates hepatic inflammation and fibrosis by inhibiting
phagocytic activity and reducing inflammatory cytokine expression in marrow-derived
monocytes/macrophages [66]; this treatment also inhibits TGF-β-induced CTGF expression
by preventing the phosphorylation of Smad2 through a mechanism independent of PPAR-
γ [67]. Therefore, 15D-PGJ2 and its analogs may have clinical application value in a variety
of fibrotic diseases due to the beneficial antifibrotic effect of 15D-PGJ2 and its stability,
which is higher than that of PGD2.

BW245C is a DP receptor-specific agonist that mimics the function of PGD2. In a
pulmonary fibrosis cell model, BW245C inhibited the TGF-β-induced proliferation of
pulmonary fibroblasts but did not affect the synthesis of collagen or the differentiation
of myofibroblasts. In a mouse model of pulmonary fibrosis established by bleomycin
treatment, BW245C significantly ameliorates the accumulation of inflammatory cells and
collagen in the lungs [60]. In cardiac fibrosis models, rosiglitazone, a PPAR-γ receptor
ligand, inhibits Ang II-induced myocardial fibroblast proliferation and the expression of
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plasminogen activator inhibitor-1, type I collagen, type III collagen, and fibronectin in vitro
via interactions between PPAR-γ and the TGF-β1/Smad2/3 and JNK signaling pathways.
Rosiglitazone also inhibits Ang II-induced ECM deposition in the left atrium of rats [68].

However, in a study of renal fibrosis, the PGD2–CRTH2 pathway was identified as
a profibrotic factor for tubulointerstitial fibrosis and advanced renal failure. The urinary
excretion of L-PGDS increases during the progression of renal disease, including the
early stage of diabetic nephropathy and hypertension without any renal injury, which may
indicate renal injury in these patients. Hideyuki et al. found that the L-PGDS-PGD2-CRTH2
pathway mediates the activation of Th2 lymphocytes to promote fibrosis in the renal cortex
after UUO via the production of IL-4 and IL-13 [69]. In conclusion, the antifibrotic effect of
PGD2 is also related to the receptor type.

4.3. PGI2

PGI2, also called prostacyclin, is an important physiological regulator of platelet
aggregation, leukocyte adhesion, the proliferation and relaxation of vascular smooth muscle
cells, and vascular homeostasis, and is primarily synthesized in endothelial cells [8,13].

4.3.1. Production of PGI2

PGI2 is generated by the conversion of PGH2 catalyzed by PGIS, which belongs to the
family of cytochrome P450 enzymes [8]. Various studies have highlighted the importance
of PGIS expression in preventing fibrotic progression. For example, hypermethylation of
the PGIS promoter mainly induced by DNMT1 and DNMT3b contributes to the downregu-
lation of PGIS in hepatic fibrosis, increasing HSC activation and the expression of collagen I
and α-SMA. The overexpression of PGIS in vivo or in vitro in HSCs inhibits cell activation
and promotes apoptosis [70]. This outcome indicates that PGIS plays a pivotal role in
fibrotic progression, and epigenetic modification is also involved in these pathological
processes. Both of these factors are considered new targets for antifibrosis research. PGI2 is
unstable below pH 8.0 (the half-life is 3 min at pH 7.4 and 37 ◦C) and is rapidly hydrolyzed
to the stable compound 6-keto-PGF1α [8]. Therefore, the developed stable analogs of PGI2
are potential candidates that reproduce its biological activities.

The effects of PGI2 are mediated by the activation of the prostaglandin I receptor
(IP) coupled with the Gs-type G protein, which activates intracellular cAMP signaling.
Studies using IP−/−mice showed that cardiac hypertrophy, cardiomyocyte hypertrophy,
and cardiac fibrosis were significantly greater in these animals than in wild-type mice,
indicating that the IP receptor suppresses the development of pressure overload induced
cardiac hypertrophy [71]. Endogenous peroxisome proliferator-activated receptor (PPAR)-
α is known to be a potential nuclear receptor for PGI2 [72], which is also related to the
antifibrotic activity of PGI2. The induction of PGI2 further activates PPAR-α [73]. Several
studies have indicated that activation of PPAR-α by agonists prevents myocardial fibrosis
and renal fibrosis in mice [74,75].

4.3.2. Effect of PGI2 on Fibrosis

Since PGI2 is mainly involved in the regulation of vascular function, studies of the
effect of PGI2 on fibrosis mostly focus on heart and renal diseases. More clearly, PGI2
acts as an antifibrosis agent. Myocardial PGI2 release is increased in dogs with cardiac
hypertrophy [76], which may be related to the increased expression of the COX-2 gene
in this disease state. Myocardial fibroblasts are an important source of PGI2 production,
and the PGI2 produced by these cells not only acts on fibroblasts to inhibit the synthesis
of ECM [77] but also acts on IP receptors of cardiomyocytes to inhibit cardiomyocyte
hypertrophy [71].

Due to the instability of PGI2 with a half-life of 3 min at pH 7.4 and 37 ◦C, PGI2 analogs
or IP receptor agonists are often used in fibrosis research instead of exogenous PGI2. Ac-
cording to several reports, PGI2 analogs or IP receptor agonists exert antifibrotic effects
on different organs, such as the heart, lung, kidney, and pancreas, through multiple mech-
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anisms. With the development of research, multiple PGI2 analogs, including beraprost,
cicaprost, and iloprost, have been discovered and used in antifibrosis research. In the heart,
both receptors of IP and PPAR are abundant in cardiac fibroblasts. Beraprost, a prostacyclin
analog, inhibits cardiac fibroblast proliferation by activating IP but not PPAR, which might
be related to a suppressive TGF-β/Smad pathway [78]. Moreover, beraprost sodium exerts
a suppressive effect on kidney fibrosis by improving damaged peritubular capillaries, in-
hibiting inflammation and oxidative stress and subsequently relieving EndoMT and ECM
deposition in mice [79]. Cicaprost, another prostacyclin analog, also inhibits the PDGF in-
duced proliferation of noncardiomyocytes via activation of the IP receptor [71]. All of these
results suggest that the PGI2 analogs described above inhibit fibrosis of the heart or kidney
by activating IP or PPAR-α. However, PGI2 analogs have also been shown to reverse the
fibrosis process that has already developed. Inhaled iloprost improves right ventricular
function and reverses established right ventricular fibrosis partially by preventing collagen
synthesis and by increasing collagen degradation via two complementary mechanisms:
inhibiting the expression of CTGF to decrease the activation of cardiac fibroblasts and
inducing the activation of MMP9 to degrade the matrix protein [80]. This drug also in-
hibits pulmonary fibrosis induced by bleomycin and is more effective at decreasing fibrotic
changes than methylprednisolone [81]. In addition, ONO-1301 is another PGI2 analog
that is more likely to be used in the clinic than others. ONO-1301, which lacks typical
prostanoid structures, thus leading to improved biological and chemical stability accompa-
nied by long-lasting prostacyclin activity and thromboxane synthase inhibitory activity,
has become a popular IP receptor agonist for research. In vitro, ONO-1301 suppresses the
TGF-β-induced cardiac fibroblast-to-myofibroblast transition and fibroblast proliferation
and migration via the activation of IP. ONO-1301SR, a sustained-release form of ONO-1301,
exerts the same effects accompanied by the downregulation of fibrosis-related cytokines
(α-SMA, ECM, and TGF-β) and upregulation of cardioprotective cytokines hepatic growth
factor (HGF), vascular endothelial growth factor (VEGF), and stromal cell-derived factor 1
(SCDF-1) in a mouse transverse aortic constriction model [82]. Similar to the effect on the
heart, ONO-1301MS may relieve the inflammation and remodeling that occur in individu-
als with asthma by suppressing airway hyperresponsiveness, allergic inflammation, and
the development of remodeling in a chronic house dust mite-induced asthma model [83].
ONO-1301 attenuates pancreatic fibrosis by inhibiting monocyte activity not only through
the induction of HGF but also through direct effects of ONO-1301 itself on a rat model of
dibutyltin dichloride-induced chronic pancreatitis [84]. Moreover, ACT-333679, a selective
IP receptor agonist, suppresses TGF-β1-induced myofibroblast transdifferentiation, prolif-
eration, ECM synthesis, and IL-6 and plasminogen activator inhibitor-1 secretion via the
activation of cAMP-induced YAP/TAZ nuclear exclusion and subsequent suppression of
YAP/TAZ-dependent profibrotic gene transcription [85].

PGI2 negatively regulates the fibrotic response of cells in various tissues by activating
the corresponding receptors. However, the instability of PGI2 and its analogs limits their
application. The discovery or synthesis of additional receptor agonists with non-PGI2
structures will have strong clinical application prospects.

4.4. PGF2α

4.4.1. Production of PGF2α

PGF2α is produced from PGH2 by PGFSs that are present in almost all tissues. PGF2α
produced by these enzymes plays multiple and important roles in the female reproductive
system, regulating oogenesis, ovulation, luteolysis, contraction of uterine smooth muscle,
and initiation of parturition [8,13]. In addition to its actions in the reproductive system,
PGF2α also mediates processes in the kidney, contraction of arteries, myocardial dysfunc-
tion, brain injury, and pain [13]. Due to their ability to decrease intraocular pressure, PGF2α
derivatives, such as latanoprost, bimatoprost, and travoprost, are first-line drugs for the
treatment of glaucoma worldwide [86].
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Three types of PGFS have been identified, PGH 9,11-endoperoxide reductase, PGD
11-ketoreductase, and PGE 9-ketoreductase, which catalyze the formation of PGF2α from
PGH2, PGD2, and PGE2, respectively. However, PGD 11-ketoreductase converts PGD2 to
9α,11β-PGF2α, a PGF2α stereoisomer [8,87]. These enzymes function in the presence of
NADH or NADPH, and PGD 11-ketoreductase and PGE 9-ketoreductase are members of
the aldo-keto reductase (AKR) superfamily [88].

PGF2α binds to the receptor FP, which couples with the Gq protein to induce the pro-
duction of intracellular inositol phosphates (IPs) that in turn increase the intracellular Ca2+

level by promoting its release from the endoplasmic reticulum of cells and activating PKC.
In addition, other protein kinases, including MAPK and Rho kinase, are activated [89,90].
Two different splice variants of the FP receptor named FPA and FPB have been identified,
which differ from each other in the length of the C-terminal tails [13]. Binding between
PGF2α and the FP receptor is not completely specific. Reports have shown that PGF2α
binds to EP1 and EP3 receptors with significant affinity, and some effects of PGF2α may be
mediated by an EP receptor [22]. Moreover, the FP receptor binds PGD2 and PGE2 with
EC50 values in the nanomolar range [13]. The human FP receptor is widely expressed in
the lung tissue and is an attractive target for the treatment of fibrotic lung diseases [90].

Endogenous PGF2α is swiftly degraded in various organs to 13,14-dihydro-15-keto
PGF2α (15-keto-dihydro PGF2α), a stable metabolite of PGF2α with a longer half-life in
the circulation that has been used as a reliable indicator of PGF2α biosynthesis in vivo [91].

4.4.2. Effect of PGF2α on Fibrosis

After several years of research, PGF2α was shown to exert a relatively clear effect
on the process of fibrosis, promoting the development of fibrosis without involving TGF-
β. In the lung, PGF2α is abundant in the bronchoalveolar lavage fluid of subjects with
IPF [92], and the concentrations of 15-keto-dihydro PGF2α (a stable degraded form of
PGF2α) are increased in the plasma of patients with IPF; these values correlate with indices
of disease severity and prognosis in patients with IPF [91]. PGF2α/FP signaling induces
pulmonary fibrosis independently of TGF-β by promoting fibroblast proliferation and
collagen production via FP activation [92]. Additionally, the binding activates the small
GTPase Rho signaling pathway, leading to collagen synthesis of the lung fibroblast [93].
In addition, PGF2α/FP receptor activation facilitates the pathogenesis of myocardial
fibrosis in individuals with diabetic cardiomyopathy, accompanied by elevated cholesterol,
triglyceride, glucose, and insulin levels, increased collagen deposition, and severe insulin
resistance by activating PKC/Rho pathways, while FP receptor gene silencing alleviates
myocardial fibrosis mainly by inhibiting this process [94,95]. Systemic sclerosis affects the
skin and internal organs, leading to fibrosis. α2-Antiplasmins (α2AP) activate calcium-
independent PLA2 through adipose triglyceride lipase and then promote PGF2α synthesis,
which induces the expression of TGF-β and the development of dermal fibrosis in mice [96].

Because PGF2α clearly promotes fibrosis, antagonizing the FP receptor may be an
antifibrotic strategy for the treatment of fibrosis. BAY-6672 is a novel synthetic antagonist
that was first reported to exert beneficial effects on preclinical animal models of silica-
induced pulmonary fibrosis, and it is expected to be a new therapeutic approach for
IPF [90]. OBE022 is the only FP receptor antagonist currently in clinical development
for the treatment of preterm labor [89]. Other FP receptor antagonists, including PGF2α
dimethylamine, phloretin, gliben, AL-3138, AL-8810, THG113, PDC31, PDC113.824, and
AS604872, have been discovered; However, their functions in fibrotic diseases remain
unclear, and further research into their effects on fibrotic disease is needed in the future.

4.5. TXA2

TXA2 is another important AA metabolite that is mainly produced and secreted by
platelets and is involved in regulating multiple physiological and pathological functions,
such as platelet accumulation, smooth muscle contraction, allergies, modulation of acquired
immunity, atherogenesis, neovascularization, and metastasis of cancer cells, by binding to
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its receptor [97]. In addition to platelets, macrophages, monocytes, neutrophils, and the
lung parenchyma are also sources of TXA2 [98]. However, due to its instability, with a
half-life of 30 seconds, TXA2 is often nonenzymatically degraded into another stable but
inactive form of TXB2 [13].

4.5.1. Production of TXA2

TXA2 is produced from PGH2 through a reaction catalyzed by thromboxane synthase
(TXAS), a ferrihemoprotein and a CYP enzyme [8]. TXAS deficiency improves the effects of
insulin and attenuates adipose tissue fibrosis by decreasing the expression and deposition
of fibrotic collagens (Col1 and Col3) [99].

The TP receptor is the cognate receptor of TXA2, which belongs to the transmembrane
G protein-coupled receptor family. The G proteins coupled with TP receptors mainly
include Gq, G13, and multiple small G proteins (Gs and Gh), among which the activation
of Gq leads to increased cytosolic Ca2+ concentrations that activate PKC; activation of G13
activates Rho kinase and is involved in the physiological response mediated by the Rho
signaling pathway [97]. TP receptors are identified as two isoforms, TPα and TPβ, which
are different from each other in the C-terminal region and have different actions. According
to a previous study, TPα and TPβ exert opposite effects on activating adenylate cyclase,
leading to an increase and decrease in the level of cAMP due to the coupling of Gs and Gi,
respectively [100]. The expression of TPα on the cell surface is greater than that of TPβ,
which is related to the hydrolysis of the TPβ C-terminal domain by a protease [101].

4.5.2. Effect of TXA2 on Fibrosis

TXA2 has long been considered a proinflammatory and profibrotic lipid mediator
in humans. In both human and murine platelets, the production of TXA2 is associated
with COX-1 activity. COX-1 deletion in mouse platelets along with a deficiency of TXA2
highlights the role of platelet-derived TXA2 in the development of colitis and fibrosis
induced by epithelial damage by inhibiting the proliferation and migration of myofibrob-
lasts [102]. Due to the profibrotic effect of TXA2, various TP receptor antagonists have
been used in antifibrosis research. For example, KP-496 and NTP42, TP antagonists that
suppress acute or chronic lung inflammation and pulmonary fibrosis by inhibiting mast cell
recruitment and pulmonary collagen deposition, may be expected to be new therapeutic
agents for lung diseases characterized by inflammation and fibrogenesis, such as IPF and
chronic obstructive pulmonary disease [103,104]. Moreover, the selective TP antagonist
terutroban significantly prevents both TGF-1β and HSP47 expression, both of which play
an important role in the onset and progression of various fibrotic diseases, to inhibit colla-
gen deposition in the aortic wall of salt-loaded spontaneously hypertensive stroke-prone
rats (SHRSPs) [105].

Based on the results described above, either inhibiting the production of TXA2 or an-
tagonizing the function of the TP receptor reverse the profibrotic effect of TXA2. However,
the inhibition of TXA2 synthesis through either of the pathways described above is widely
accepted to shift the enzymatic conversion of the common precursor endoperoxide sub-
strates PGG2/PGH2 away from TXA2 biosynthesis towards the generation of PGI 2 [104].
Therefore, we hypothesize that the antifibrotic effect produced by inhibiting TXA2 may
also be partially mediated by PGI2.

5. Other Therapeutic Modalities Exert Antifibrotic Effects by Altering Endogenous
PG Expression

Due to the unstable chemical properties of various PGs, exogenous drug delivery
methods are limited. Therefore, increasing/decreasing endogenous PG expression using
other approaches are also important strategies for the treatment of fibrosis. As mentioned
above, PGE2, PGD2, and 15D-PGJ2 all inhibit the progression of fibrotic disease, and
thus treatments designed to alter their production and degradation will achieve the same
antifibrotic effect.
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Mesenchymal stem cells (MSCs) are a type of pluripotent cell that has the ability
to differentiate into other functional cells, such as epithelial cells and endothelial cells,
to promote tissue regeneration and are currently well used in clinical studies related to
various degenerative and/or inflammatory diseases [106]. One study revealed that an
infusion of human adipose-derived MSCs inhibits the development of radiation-induced
lung fibrosis and preserves the architecture of the irradiated lung, as represented by a
lack of transformation of fibroblasts into myofibroblasts and reduced ECM formation
within injured sites. This function is achieved by increasing the levels of the endogenous
anti-fibrosis substances hepatocyte growth factor (HGF) and anti-fibrosis lipid PGE2 in
serum and bronchoalveolar lavage fluid [107]. Although MSCs are quickly metabolized
after injection, the antifibrotic effects persist for a long time. In addition to the function of
MSCs in promoting the release of antifibrosis factors, they have also been used as gene
carriers to participate in gene therapy. For example, MSCs modified with HGF or the
TGF-β type II receptor (TβR) gene migrate to the site of lung injury and then release a large
amount of HGF or TβR. HGF inhibits the fibrosis process by reducing the expression of
proinflammatory factors and profibrotic proteins [108], and the released TβR neutralizes
TGF-β in lung tissues, thereby blocking the profibrotic signaling pathway induced by
TGF-β [109]. Therefore, MSCs can also be used to transfer PG-related genes, such as related
PG synthases or receptors, to enhance/neutralize the role of PGs in target tissue and
provide new ideas for the treatment of related fibrotic diseases.

Exosomes are also a hot topic in current research and have been used as a new
therapeutic approach in the treatment of various diseases. Exosomes are an important
structure containing a variety of active substances that transmit signals between cells,
such as mRNAs and microRNAs. Some stimulating factors, such as inflammatory factors
and cytokines, induce target cells to release exosomes and transmit signals between cells.
IL-1β induces and activates human lung fibroblasts to secrete a large number of PGE2-
containing exosomes. PGE2 contained in exosomes is delivered to the receptors expressed
on fibroblast or epithelial cell surfaces and then exert its antifibrotic effects by activating
EP2/EP4, which is also the mechanism by which IL-1β exerts its antifibrotic effects [110].
Moreover, exosomal transmission of information can concentrate a large number of active
PGE2 molecules on the surface of target cells, prolong the action time of PGE2, strengthen
the activation of receptors, and thus exert a stronger antifibrotic effect.

As described above, 15-PGDH regulates the degradation of PGs. Due to the extensive
antifibrotic effect of PGE2, many studies have focused on its degradation pathway, espe-
cially the enzyme 15-PGDH, to evaluate its role in fibrotic diseases. Pulmonary endothelial
cells, macrophages, and mast cells express PGDH, which is the direct cellular target of
PGDH inhibitors [111], and 15-PGDH is expressed at high levels in the residual alveo-
lar tissues of patients with IPF compared with normal individuals [30].Inhibition of this
enzyme decreases alveolar epithelial cell apoptosis, fibroblast proliferation and fibrocyte
differentiation, reduces collagen production in IPF precision-cut lung slices and in the
bleomycin model, inhibits inflammatory pathology, and subsequently improves the lung
function of a mouse bleomycin model by increasing the production of PGE2 [30,111]. TD88,
as a 15-PGDH inhibitor based on the thiazolinedione structure, prevents the excessive
accumulation of collagen and improves the re-epithelization of a dermal wounded surface
due to the downregulated expression of PDGF, CTGF, and TIMP-2 mediated by PGE2 [112].
These findings highlight the role of 15-PGDH in IPF and skin wound healing, suggesting
that 15-PGDH inhibition is a promising therapeutic approach.

In conclusion, in addition to the application of exogenous PG analogs or receptor
agonists/antagonists, the aforementioned approach to alter the level of resistant PGs
in vivo undoubtedly has new prospects for inhibiting fibrosis development. Moreover,
we have concluded in the previous chapter that PGE2 is able to reverse already formed
IPF. The fibrosis process is easier to reverse by changing the endogenous PGE2 level using
the methods described above, and these treatments are safer and are not affected by the
chemical properties of PGE2.
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6. Conclusions and Perspectives

In this review, we summarized the roles of PGs in different fibrotic models involving
PG synthases, specific receptors, corresponding analogs or receptor agonists/antagonists,
and the downstream signaling participating in these processes.

PGE2, PGD2, 15d-PGJ2, and PGI2 mainly mediate antifibrotic reactions by binding to
their homologous receptors and activating downstream G protein-related kinase reactions
along with the induction of cAMP synthesis, leading to the inhibition of proliferation and
migration, transformation of interstitial cells such as fibroblasts into myofibroblasts, and the
promotion of apoptosis to reduce the deposition of ECM proteins in various organs, which
are summarized in Figure 2. Moreover, these PGs inhibit the apoptosis of parenchymal
cells, thereby reducing organ structural failure and dysfunction. However, PGE2 and
PGD2 also play a role in promoting fibrosis in certain tissues and cells. These contradictory
findings are related to the type of receptors, EP1/EP3, and the cells studied. However,
PGF2α and TXA2 exert opposite effects compared to the aforementioned PGs and mainly
promote the occurrence of fibrotic reactions summarized in Figure 3. Through sorting, we
found that the level of PGs changes in different disease states. For example, in patients
with IPF, the levels of COX-2/PGE2 in alveolar lavage fluid are decreased, and the level of
PGF2α is increased. Although these changes in PGs are different, the combined effect of
these changes contributes to the development of fibrosis in patients.
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Figure 2. The antifibrotic effects of PGD2, PGE2, and PGI2. PGD2, PGE2, and PGI2 activate cAMP
by binding to corresponding receptors, and then inhibit the proliferation, transformation, and ECM
generation of fibroblasts, and promote cell apoptosis by affecting downstream signals. At the same
time, PGD2 also acts on the CRTH2 receptor on γδT cell, promoting its release of anti-fibrosis IL-10 to
inhibit fibrosis. PGE2 can act on EP2/4 receptors in epithelial cells and Tubular Cells in an autocrine
way, thereby inhibiting the apoptosis of these functional cells.

Due to the instability of PGs, an increasing number of studies are now focusing on
inhibiting synthetases or synthesizing corresponding receptor agonists/antagonists to
mimic or antagonize the responses mediated by related PGs (Table 2). These agents will
undoubtedly be able to simulate or block the response of PGs to the fibrosis process and pro-
vide additional alternative treatment methods for fibrotic diseases. Although many studies
have described the effects of these PG analogs or receptor agonists/antagonists, most of
these studies have focused on animal experiments, and few clinical studies have been
conducted. In the future, relevant clinical trials may be needed to further determine the
value of these PG analogs or receptor agonists/antagonists in the prevention or treatment
of fibrotic diseases in humans. Moreover, in addition to the abovementioned drug therapy,
we also summarized the positive effects of MSCs, exosomes, and 15-PGDH inhibitors on
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fibrotic diseases. By altering the levels of endogenous PGs, these novel therapies may better
mimic the effects of PGs in vivo and have a higher safety profile. The emergence of these
novel therapeutic modalities not only provides new targets for the treatment of the disease
but also provides a new method to exogenously administer PGs and the abovementioned
analogs and agonists/antagonists.
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Figure 3. The pto-fibrotic effects of PGF2α and TXA2. PGF2α acts on the FP receptor on
the surface of fibroblasts to induce cell proliferation and collagen expression by activating
PKC/Rho kinase—ROCK (Rho-associated kinase) pathway. TXA2 secreted by platelets
acts on TP receptors and promotes fibrosis by activating cAMP signaling.

Table 2. Effects of analogs or receptor agonists/antagonists of PGs on fibrosis.

Name Experimental Subjects Functions and Mechanisms

Butaprost
(EP2 receptor agonist)

Madin-Darby canine kidney cells/
unilateral ureteral obstruction mouse model/

human precision-cut kidney slices

Reduce the expression of α-SMA, fibronectin,
and col1 by inhibition of TGF-β/Smad

signaling pathway [38,40]
ONO-0260164

(EP4 receptor agonist)
cardiac fibroblasts/

cardiac hypertrophy mouse model
Downregulate collagen type 1 and type 3

through PKA activation [51]

BW245C
(DP receptor agonist)

pulmonary fibroblasts/
bleomycin induced pulmonary fibrosis

mouse model

Inhibit TGF-β-induced proliferation of
fibroblasts in vitro;

ameliorate the accumulation of inflammatory
cells and collagen in the lungs in vivo [60]

Rosiglitazone
(PPAR-γ receptor agonist)

myocardial fibroblast/
Ang II-infused rats

Suppress Ang II-induced production of PAI-1
and ECM via interactions between PPAR-γand

TGF-β1/Smad2/3 and JNK signaling
pathways [68]

Beraprost,
(PGI2 analog) cardiac fibroblast

Inhibit cardiac fibroblast proliferation by
activating IP via suppressing TGF-β/Smad

pathway [78]

HUVECs/
Kidney UUO mouse model

Improve damaged peritubular capillaries,
inhibit inflammation and oxidative stress, reliev

EndoMT and ECM deposition in mice [79]
Cicaprost,

(PGI2 analog) noncardiomyocyte Inhibit proliferation of noncardiomyo-cytes via
activation of the IP receptor in vitro [71]

Iloprost
(PGI2 analog)

cardiac fibroblasts/
Angio-obliterative pulmonary arterial

hypertension and right ventricular(RV) failure
rat model

Improve RV function and reverse established
RV fibrosis by preventing collagen synthesis

and increasing collagen degradation [80]
bleomycin induced pulmonary fibrosis

rat model inhibit pulmonary fibrosis [81]
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Table 2. Cont.

Name Experimental Subjects Functions and Mechanisms

ONO-1301
(PGI2 analog)

ONO-1301SR/ONO-1301MS
(sustained-release form of ONO-1301)

cardiac fibroblast/
transverse aortic con-striction mouse model

Suppress TGF-β-induced fibroblast
proliferation, migration and

myofibro-blast transition
Downregulate fibrosis-related cytokines
α-SMA, ECM, and TGF-β, upregulate

cardioprotective cytokines HFG, VEGF,
SCDF-1 [82]

chronic dust mite-induced asthma
house model

Suppress airway hyperresponsiveness, allergic
inflammation, the development of

remodeling [83]
dibutyltin dichloride induced chronic

pancreastitis rat model
Attenuate pancreatic fibrosis by inhibiting

monocyte activity [84]

ACT-333679
(IP receptor agonist) lung fibroblasts

Induce YAP/TAZ nuclear exclusion and
suppress YAP/TAZ-dependent profibrotic

gene transcription via activation of cAMP [85]
BAY-6672

(FP receptor antago-nist) silica-induced pulmonary fibrosis model Exert beneficial effects via antagonizing FP [90]

KP-496
(dual antagonist of the cysLTs and TXA2

receptors)

bleomycin induced pulmonary fibrosis
mouse model

Decrease the numbers of macrophages,
neutrophils, eosinophils and

hydroxyl-L-proline content in BALF [103]

NTP42
(TP receptor antago-nist)

monocrotaline
induced pulmonary arterial hypertension

rat model

Reduce pulmonary vascular remodelling,
inflammatory mast cell infiltration and

fibrosis [104]
Terutroban

(selective TP receptor antagonist) SHRSPs Prevent expression of TGF-1β and HSP47 [105]

Moreover, regardless of whether PGs inhibited or promoted the response to fibrosis,
the effect was mediated by the activation of the corresponding receptor and its downstream
G protein, and different G proteins induced different effects. For example, the Gs protein is
related to antifibrotic effects, while the Gq and Gi proteins promote fibrosis. In conclusion, if
we can synthesize non-PG structural agonists, antagonists targeting PG receptors, or small-
molecule compounds that stimulate G protein alone, these drugs will further promote the
development of antifibrotic treatments with fewer side effects. Therefore, these molecules
will be valuable in future clinical applications.
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