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OBJECTIVE—The autoimmune destruction of �-cells in type 1
diabetes results in a loss of insulin production and glucose
homeostasis. As such, an immense interest exists for the devel-
opment of therapies capable of attenuating this destructive
process through restoration of proper immune recognition.
Therefore, we investigated the ability of the immune-depleting
agent antithymocyte globulin (ATG), as well as the mobilization
agent granulocyte colony–stimulating factor (GCSF), to reverse
overt hyperglycemia in the nonobese diabetic (NOD) mouse
model of type 1 diabetes.

RESEARCH DESIGN AND METHODS—Effects of each
therapy were tested in pre-diabetic and diabetic female NOD
mice using measurements of glycemia, regulatory T-cell
(CD4�CD25�Foxp3�) frequency, insulitis, and/or �-cell area.

RESULTS—Here, we show that combination therapy of murine
ATG and GCSF was remarkably effective at reversing new-onset
diabetes in NOD mice and more efficacious than either agent
alone. This combination also afforded durable reversal from
disease (�180 days postonset) in animals having pronounced
hyperglycemia (i.e., up to 500 mg/dl). Additionally, glucose
control improved over time in mice subject to remission from
type 1 diabetes. Mechanistically, this combination therapy re-
sulted in both immunological (increases in CD4-to-CD8 ratios
and splenic regulatory T-cell frequencies) and physiological
(increase in the pancreatic �-cell area, attenuation of pancreatic
inflammation) benefits.

CONCLUSIONS—In addition to lending further credence to the
notion that combination therapies can enhance efficacy in ad-
dressing autoimmune disease, these studies also support the
concept for utilizing agents designed for other clinical applica-
tions as a means to expedite efforts involving therapeutic
translation. Diabetes 58:2277–2284, 2009

T
ype 1 diabetes is characterized by the autoim-
mune destruction of �-cells, resulting in a loss of
insulin production and glucose control (1,2). In
both humans and the nonobese diabetic (NOD)

mouse model of type 1 diabetes, the disorder’s pathogen-
esis appears dependent on aberrant immune regulation
(3–6). A reversal of type 1 diabetes in NOD mice has been
achieved, with varying levels of success, through adminis-
tration of a limited number of immunosuppressive and
immunomodulatory agents, some of which are controver-
sial with respect to their translational capabilities (7–19).

Antithymocyte globulin (ATG) is currently in clinical
use for a variety of purposes, including the treatment of
acute rejection, graft versus host disease, and conditioning
for stem-cell transplantation (20–22). It has been shown to
target �40 epitopes and serves to induce lymphocyte
depletion, the extent of which depends upon the dose
administered. Previously, we have shown that murine ATG
is capable of late prevention of diabetes in NOD mice and,
importantly, that this agent was capable of inducing a
regulatory T-cell population (16). With this, we questioned
whether the efficacy of this therapy could be improved
through the use of a second immunomodulatory agent
differing in its presumed mechanism of therapeutic activ-
ity. To that regard, we elected to evaluate granulocyte
colony–stimulating factor (GCSF).

GCSF was initially developed as a means of mobilizing
neutrophils (23,24), but recent reports (25) have also
indicated a GCSF-induced immunoregulatory impact.
These studies indicated the ability of GCSF to induce an
immunoregulatory shift from a TH1 to a TH2 cytokine
phenotype (26), the induction of tolerogenic dendritic
cells (27), and the mobilization of regulatory T-cells. In
regards to type 1 diabetes, GCSF has successfully pre-
vented the onset of disease in the NOD mouse via the
induction of both tolerogenic dendritic and regulatory
T-cells (28) and prevented the cyclophosphamide-medi-
ated acceleration of diabetes (29).

Hence, in this report, we examined the therapeutic
efficacy of these two agents, ATG and GCSF, subject to
clinical use in settings outside of type 1 diabetes, for the
purpose of testing their ability to reverse disease in NOD
mice as well as to monitor their ability to reinstill self
tolerance. In this study, we also tested the hypothesis that
combination therapy will be more effective than either
monotherapy for the purposes of treating type 1 diabetes
in NOD mice.
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RESEARCH DESIGN AND METHODS

Female NOD mice were purchased from The Jackson Laboratory and housed
in specific pathogen-free facilities at the University of Florida. These studies
received the approval of the institution animal care and use committee at the
University of Florida. Suboptimal studies were also performed using female
NOD mice and were carried out at Genzyme’s specific pathogen-free facilities
(Oklahoma City, OK) according to approved protocols.
Type 1 diabetes reversal studies. Mice used in reversal trials were
monitored three times per week for hyperglycemia, defined as a blood glucose
�240 mg/dl, by tail bleed. Animals measuring above this threshold on 2
consecutive days were considered diabetic. Murine ATG was prepared by
immunizing rabbits with pooled lymph-node cells as previously described
(Genzyme Corporation). In standard dosing studies, murine ATG was admin-
istered via two intraperitoneal injections of 500 �g murine ATG or, as a
control, 500 �g rIgG (Jackson ImmunoResearch) given 72 h apart for a total
dose of 1 mg. These animals also received a subcutaneous LinBit insulin
implant (LinShin Canada), providing sustained release of insulin for �3
weeks. Failure of the therapy was defined as blood glucose levels �400 mg/dl
for two consecutive measurements. In the suboptimal dosing study, the dose
of murine ATG was reduced to 290 �g per animal, over two injections.
Neupogen (Amgen) was used for GCSF therapy for both suboptimal-and
standard-dosing studies. A dose of 6 �g/animal was diluted in 100 ul of 5%
dextrose per manufacturer’s recommendation and injected intraperitoneally
daily for a maximum of 8 weeks. Blood glucose was monitored three times per
week until either failure occurred (as described above) or animals reached the
end point postonset (as indicated).
Pre-diabetic time course study. Combination therapy of standard-dose
murine ATG and GCSF (as described above) was performed in pre-diabetic
female NOD mice beginning at 12 weeks of age and lasting up to 8 weeks. Four
groups were treated with control, murine ATG, GCSF, or ATG�GCSF. As with
the type 1 diabetes reversal studies, murine ATG was administered in two
doses 72 h apart. GCSF was administered for up to 8 weeks. Timed killings
were performed at weeks 0, 2, 4, and 8 postinitiation of therapy (n � 5 per
group per time point), and various analyses were performed.
Histology. The �-cell area was calculated using MetaMorph software (Mo-
lecular Devices) analysis with insulin stained with fast red on pancreatic
sections. The insulin-positive area was divided by the total acinar area to yield
a final percentage. Insulitis scoring was performed on hematoxylin and
eosin–stained pancreatic sections as described previously.
Leukocyte quantification in peripheral blood. Mice in the pre-diabetes
study were bled via tail perforation at predetermined time points (0, 2, 4, and
8 weeks) postinjection for determination of leukocyte counts. Blood samples
were collected in EDTA tubes (Fisher Scientific) and analyzed using a Coulter
ACT diff-Tainer Hematology analyzer (Beckman Coulter).
Flow cytometry. Splenocytes and/or peripheral blood were collected as
indicated at each time point or end point and stained for flow cytometric
analysis using a FACScalibur (Becton Dickinson) flow cytometer. All antibod-
ies were purchased from eBioscience, with the single exception of CD4–
peridinin chlorophyll protein complex (PerCP) and the corresponding isotype,
which were purchased from BD Biosciences. T-cells were stained for CD8–
fluorescein isothiocyanate (FITC) (clone 53-6.7), CD4-PerCP (clone RM4–5),
Foxp3-phycoerythrin (PE) (clone FJK-16a), and CD25-allophycocyanin (APC)
(clone PC61). Macrophages were stained with CD11b-FITC (clone M1/70),
CD14-PE (Sa2–8), and CD16/CD32-APC (clone 93). Neutrophils were stained
with F4/80-PE (clone BM8), as a negative marker, and Gr-1-APC (clone
RB6-8C5). All were added at a concentration of 1�g per 1 � 106 cells per tube.
Quantitative real-time PCR. Pancreatic lymph nodes and sections of spleen
were collected in RNAlater (Ambion) and frozen at �80°C until subsequent
RNA extraction. mRNA was extracted from the tissues using RNAqueous kits
(Ambion). cDNA was produced from the mRNA using SuperScript III Reverse
Transcriptase (Invitrogen). cDNA samples were analyzed with a 384-panel
mouse immunology 384 StellArray qPCR array (Bar Harbor Biotechnology).
Intraperitoneal glucose tolerance test. A 12-h food restriction was imple-
mented prior to testing. After 12 h, a blood glucose value was obtained and
glucose tolerance testing was initiated immediately. Blood glucose levels were
collected in the following manner: the tail was pricked with a lancet and blood
glucose (mg/dl) was measured by an ACCU-CHEK Compact Plus Blood
Glucose Meter. For glucose tolerance testing, each mouse was weighed and 2
g/kg of 20% D-glucose was drawn up via a 29-gauge 1⁄2 insulin syringe. The
glucose solution was then injected into the intraperitoneal cavity at time 0. At
15, 30, 60, and 120 min, blood glucose was sampled.
Immunoglobulin isotyping. Immunoglobulin isotyping was performed on
sera obtained at each killing time point using a mouse immunoglobulin
isotyping kit (Millipore) in order to measure IgA, IgM, IgG1, IgG2a, IgG2b, and
IgG3. Mouse isotyping serum diluent and mouse immunoglobulin isotyping
standard were ordered separately (Millipore).

Anti-GCSF antibody measurement. Sera was collected from mice at 0-, 2-,
4-, and 8-week time points in the pre-diabetic study. To determine whether the
immunoglobulin increases seen were GCSFspecific, Nunc-Immuno 96-well
plates were coated with 50 �l/well of 2 �g/ml GCSF (Amgen) overnight at 4o.
Plates were blocked for 2 h with 300 �L/well 5% BSA/PBS and washed five
times with PBS/Tween. Sera was diluted 1:10,000 and was incubated for 2 h on
a plate shaker. The plates were washed five times as before and were then
coated with either 50 �L/well 1:2,500 rat anti-mouse IgM–horse radish
peroxidase (HRP) or 1:5,000 donkey anti-mouse IgG-HRP (Southern Biotech)
for 1 h on a plate shaker. The plates were once again washed five times
followed by addition of 50 �l TMB (tetramethylbenzidine) protected from
light. After 5 min, the reaction was stopped with 50 �l stop solution
(Mercodia) and the plate read at a 450-nm wavelength on a Spectramax Plate
Reader (Molecular Devices).
Statistical analyses. Statistical analyses were performed using GraphPad
Prism 5.0 software (GraphPad Software). One-way ANOVA, unpaired t test
two-tailed testing, and Kaplan-Meier life table analysis were used. All data are
presented as means 	 SD, with P values 
0.05 considered significant.

RESULTS

GCSF enhances the long-term reversal of diabetes
afforded by murine ATG. Blood glucose levels were
monitored in all mice treated at diabetes onset and
throughout the studies duration (Fig. 1). Based on these
blood glucose values, the administration of murine ATG
alone to new-onset NOD mice resulted in durable (i.e.,
�180 days postonset) remissions from overt hyperglyce-
mia in 33% (5 of 15 mice) of treated animals, while neither
control (0 of 16 mice) nor GCSF monotherapy (0 of 14
mice) provided such reversions (Fig. 2). However, the
combination of murine ATG and GCSF therapy resulted in
a remission rate of 75%, a significantly greater rate of
remission than was seen with murine ATG monotherapy
(12 of 16 mice; P � 0.0000006 vs. control, P � 0.013 vs.
murine ATG). To provide further evidence for the notion
that the therapeutic efficacy of murine ATG was enhanced
by the addition of GCSF, studies were undertaken wherein
murine ATG was administered with suboptimal dosing
(i.e., 0.29 mg per mouse vs. 1.0 mg per mouse used in the
aforementioned efforts). Interestingly, GCSF dramatically
improved the therapeutic capacity for diabetes reversal
even when in combination with this suboptimal dose of
murine ATG (supplemental Fig. 1 [available at http://diabetes.
diabetesjournals.org/cgi/content/full/db09-0557/DC1]).
Combination therapy enables reversal of higher new-
onset glycemia than murine ATG monotherapy. Given
the higher rate of reversal observed with combination
therapy, it was necessary to examine how this higher rate
correlated with the blood glucose at the time of diabetes
onset. Indeed, a time course analysis following diabetes
onset revealed pronounced differences in the ability of
these therapies to remit based upon starting blood glucose
values (Fig. 3). Successful treatment with murine ATG was
largely limited to values of �380 mg/dl (mean 317.2 mg/dl
[range 256–398]), whereas combination therapy of murine
ATG and GCSF significantly increased the therapeutic
ceiling to �500 mg/dl (401.8 mg/dl [264–500]).
Glucose control improves with time in reversed NOD
mice. Having observed substantial rates of diabetes remis-
sion, we sought to determine whether this return to
euglycemia would be durable in the face of a glucose
challenge. To do so, during the course of the reversal trial
using the suboptimal dose of murine ATG, we measured
glucose control via intraperitoneal glucose tolerance tests
(IPGTTs) at 60, 90, and 120 days postonset in reversed
mice. An improvement in IPGTT, as measured by the area
under the curve from 0 to 120 min, was observed from the
60- to 120-day time points (Fig. 4). This improvement in
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glucose control occurred in spite of the cessation of both
murine ATG and GCSF therapies prior to the 60-day time
point.
Murine ATG plus GCSF combination therapy induces
immunomodulation. To address the question of whether
GCSF-mediated enhancement of diabetes reversal was due
to induction of immunoregulation, murine ATG and GCSF

(as both mono- and combination therapy) were adminis-
tered to pre-diabetic 12-week-old female NOD mice. Anal-
ysis of peripheral blood revealed marked leukocyte
depletion in murine ATG-treated mice versus all other
groups at 2 weeks (Fig. 5A), with movement back toward
pretreatment levels at 4 and 8 weeks postinduction. How-
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FIG. 1. Blood glucose values were obtained for up to 180 days postonset in NOD mice treated with control (A), GCSF (B), ATG (C), or ATG �
GCSF (D).

0 30 60 90 120 150 180
0

20

40

60

80

100

Days  Post  Onset

N
or

m
al

 G
ly

ce
m

ia
 (%

)

FIG. 2. Long-term diabetes reversal was achieved in 75% (12 of 16; P �
0.0000006 vs. control) of murine ATG � GCSF–treated mice, which was
significantly improved versus murine ATG monotherapy (P � 0.013),
which reversed 33% (5 of 15) mice. Long-term remission was observed
in neither GCSF (0 of 14) nor control-treated (0 of 15) mice. �,
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rine ATG therapy (F) was largely limited to starting blood glucose
values of 380 mg/dl and below with an average of 317.2 mg/dl. The
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starting average blood glucose of successful therapy (Œ) to 401.8/mg/dl
(P � 0.019).
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ever, the addition of GCSF to murine ATG afforded a
significant increase in leukocytes at 2 weeks versus
murine ATG alone. In particular, GCSF increased the
percentage of splenic macrophages (Fig. 5B) and neu-
trophils (Fig. 5C).

Both murine ATG as well as GCSF have been reported
to induce a population of regulatory T-cells in vivo, with
regulatory T-cells being conventionally defined as

CD4�CD25�Foxp3� cells. Predictably, all treatments uti-
lized in these efforts herein demonstrated a reduced
percentage of regulatory T-cells at 2 weeks versus control
animals (Fig. 5D), due to either short-term depletion by
murine ATG or mobilization of macrophages and neutro-
phils by GCSF. GCSF therapy led to an increase in
regulatory T-cells versus control as early as 4 weeks, while
combination therapy had the greatest increase in regula-
tory T-cells versus all other treatments at 8 weeks. As
indicated by the increase in regulatory T-cells, the immu-
nomodulatory alteration afforded by GCSF continued
through 8 weeks, despite the lack of mobilization of
macrophages (Fig. 5B) and neutrophils (Fig. 5C) beyond 2
weeks. In addition, murine ATG, both alone and in com-
bination with GCSF, induced a significant increase in the
splenic CD4�-to-CD8� ratio (Fig. 6) compared with con-
trol and GCSF-treated mice, with the increase peaking at 2
weeks and remaining significant at 4 and 8 weeks.
Anti-GCSF antibodies correlate with reduced action
of GCSF beyond 2 weeks of therapy. Of interest was
the short duration of this mobilization. To address this,
RT-PCR analysis was performed on pancreatic lymph
nodes (supplemental Table 1) and sections of spleen
(supplemental Table 2) obtained at the 8-week time point
from all treatment groups in the pre-diabetic study. These
analyses revealed significant GCSF-induced alterations but
overwhelmingly those involving B-cell activation. This
included a 10.6-fold increase in IgM and a 9.7-fold increase
in IgG1 versus control mice. This raised the possibility of
an antibody response in the mice against the human
protein.

Consistent with this hypothesis, immunoglobulin isotyp-
ing revealed significant GCSF-induced upregulation of
multiple isotypes versus control mice at 8 weeks, includ-
ing IgM and IgG1 (supplemental Fig. 2). To address
whether these antibodies were GCSF specific, anti-GCSF
enzyme-linked immunosorbent assays were performed.
This further analysis of sera revealed significant GCSF-
specific IgM and IgG antibody responses (supplemental
Fig. 3). These responses became evident beginning 2
weeks after initiation of GCSF administration and contin-
ued to increase out to 8 weeks of therapy.
Pancreatic islets are protected from further autoim-
mune destruction by murine ATG and GCSF. The
health of the islets at the end point of the pre-diabetic
study was also an important consideration. As such,
insulitis scoring (Fig. 7A) was performed to determine the
degree of lymphocytic infiltration over the 8 weeks of
therapy in pre-diabetic NOD mice. Combination therapy
resulted in markedly lower insulitis intensity scores when
compared with islets from control animals after 8 weeks
(Fig. 7B). In addition, insulin staining revealed improved
�-cell area in animals receiving combination therapy ver-
sus murine ATG monotherapy, while control animals
demonstrated a decline in �-cell area over the 8-week
period (Fig. 7C).

DISCUSSION

The pathogenesis of type 1 diabetes in both humans and
NOD mice appears dependent upon an aberrant immune
response that results in the destruction of insulin-produc-
ing �-cells. While prevention of type 1 diabetes in NOD
mice can be accomplished through a wide variety of
monotherapies, reversal of overt disease has considerably
fewer reported efficacious therapies (30,31). Of those that
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FIG. 4. IPGTT indicates improving glucose control from 60 to 120 days
postonset in combination therapy-treated NOD mice. NOD mice remit-
ted from diabetes using combination therapy were administered an
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curve analysis revealed a significant improvement at 120 (21,940 �
1,250, n � 7) days compared with 60 (26,840 � 1,068, n � 7) days (P �
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do show success, many combine two or more therapeutic
agents to achieve this reversal (32,33). Indeed, one of the
earliest demonstrations for the ability of combination
therapy to reverse hyperglycemia in NOD mice utilized a
somewhat similar form of murine ATG, anti-lymphocyte
serum, in combination with exendin-4, to effectively re-
verse disease in this animal model of type 1 diabetes (14).
Consequently, herein we have described an approach
using two clinically relevant therapies, ATG and GCSF,
for the purpose of immunomodulation that would pro-
vide benefit in terms of reversing type 1 diabetes, as
demonstrated in the NOD mouse. Aside from the ability
for combination therapy to provide improved reversal
rates, we also questioned whether this combination
would improve disease reversal in animals that would
not be subject to disease remission were they provided
monotherapy.

The observed enhancement of murine ATG’s ability to
reverse new-onset NOD mice with greater starting blood
glucose levels when used in combination with GCSF not
only demonstrated this latter notion, but it also likely
reflects the ability of combination therapy to induce
remissions in mice with greater loss in �-cells than possi-
ble with monotherapy; although this hypothesis is subject
to debate (34). The finding is especially important as
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previous studies using similar immune-depleting agents as
monotherapy (e.g., anti-CD3 monoclonal antibody) note a
diminished ability to reverse type 1 diabetes in NOD mice
in this metabolic range (i.e., �350 mg/dl) (8). It is conceiv-
able that monotherapies such as murine ATG or anti-CD3
monoclonal antibody may induce immunoregulation yet
still fail to remit diabetes due to a profound loss of �-cell
mass prior to the induction of the therapeutic regimen.
Future studies would be well served to measure C-peptide
in response to glucose challenge at the onset of therapy, as
well as to transplant islets into mice that fail to respond to
therapy. This will help to address the impact of starting
�-cell mass upon the efficacy of these therapies.

While several reports demonstrate an ability to induce
euglycemia in new-onset NOD mice, there often remains
some doubt regarding the long-term robustness of these
therapies. In our reversal trial using suboptimal murine
ATG in combination with GCSF, we attempted to alleviate
this concern by performing an IPGTT time course study.
We demonstrated that beginning at 60 days, by which time
all therapy has ceased, and continuing out to 120 days
postonset, the quality of glucose control significantly in-
creases as measured by area-under-the-curve analysis. The
exact reason for this improvement is uncertain but possi-
bly due to the recovery of endogenous �-cells (35). Previ-

ous reports (8,36) have indicated that the efficacy of
reversal therapies hinges upon the recovery of these cells
rather than the generation of new �-cells. A time course
analysis of the pancreas in future reversal studies may
address this hypothesis.

In our pre-diabetic study, the greatest percentage of
regulatory T-cells was observed in mice receiving combi-
nation therapy. This is not surprising given that both
murine ATG and GCSF individually have been shown to
induce a population of regulatory T-cells (16,37). The fact
that by combining the two therapies results in a greater
percentage of regulatory T-cells after 8 weeks of therapy
than either monotherapy lends additional support to the
use of combination therapy. Further studies, such as the
adoptive cotransfer of these regulatory T-cell populations
with effector T-cells into NOD.SCID mice, may be war-
ranted to more explicitly demonstrate their suppressive
potential. In addition, future efforts must expand on the
effects of this therapy on regulatory T-cell populations in
anatomic compartments beyond the spleen, such as the
pancreatic lymph nodes and the islet infiltrate.

The presence of anti-GCSF IgG1 and IgM antibodies may
explain the reduction in macrophages and neutrophils
after 2 weeks of GCSF therapy. It is also possible that a
reduction in GCSFR mRNA (supplemental Table 1) may
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also play a role (38–40). This response is not surprising
given that the recombination GCSF is a human protein
and, consequently, is recognized as foreign in the treated
mice (41). In spite of this apparent neutralization, the
combination therapy of murine ATG and GCSF remained
viable for both reversal of overt disease and for maintain-
ing the health of islets when administered to pre-diabetic
NOD mice. If this immune response against the GCSF
could be overcome, it is conceivable that the efficacy of
this treatment would be enhanced.

The apparent lack of �-cell durability in the murine
ATG-treated pre-diabetic mice reflects a similar finding in
a previous report in which 12-week-old pre-diabetic NOD
mice exhibited only transient protection following anti-
CD3 monoclonal antibody therapy (17). The transient
protection seen with GCSF monotherapy group reflects
the reversal study (Fig. 1A) in which GCSF only led to a
delayed return to hyperglycemia compared with control-
treated mice. By combining these two monotherapies,
however, the health of the islets was maintained relative to
control as measured by insulitis scoring and �-cell area.

These results indicate that combined treatment of mu-
rine ATG with GCSF offers a highly effective means for
reversal of type 1 diabetes in NOD mice. This combination
therapy provides for a series of beneficial mechanistic
actions (e.g., increased regulatory T-cell frequency, re-
duced islet inflammation, improved �-cell area, etc.) and
dramatically extends the range of �-cell dysfunction allow-
able for effective and durable disease remission. These
studies also provide support for the performance of hu-
man type 1 diabetes trials with this combination of agents
and suggest that this form of therapy may be amenable to
treatment of other autoimmune disorders.

With that notion, what has been attempted with ATG in
humans that might provide support for this potential
application? Studies involving human transplantation and
treatment of autoimmunity do, in fact, suggest that that
ATG provides therapeutic benefit that may involve toler-
ance. Transplant recipients have seen successful manage-
ment with ATG induction therapy followed only by limited
maintenance immunosuppression by tacrolimus (42),
while ATG has also been used successfully in the treat-
ment of refractory systemic autoimmune diseases such as
systemic lupus erythematosus, progressive systemic scle-
rosis, and rheumatoid arthritis (43). There has also been
promise for the efficacy of ATG in the treatment of type 1
diabetes. Early studies of equine ATG in combination with
prednisone in new-onset type 1 diabetic patients indicated
a prolongation of the honeymoon phase (44). As far as
more contemporary efforts, in a randomized, placebo-
controlled, single-blinded trial with RATG (ATG-Frese-
nius; Hoechst Marion Roussel, Frankfurt, Germany), type
1 diabetic participants aged 18–35 years received a total
dose of 18 mg/kg of ATG, which was administered in four
infusions. Of 17 study participants, 11 received the drug
and 6 received placebo. Increased glucagon-stimulated
C-peptide levels, a lower insulin requirement, and lower
glycosylated hemoglobin levels were observed in the ATG
group, but not in the placebo group, 12 months into the
study (45). Perhaps most promising were two ATG-treated
subjects that achieved disease remission (i.e., no exoge-
nous insulin for at least 1 month and a fasting glycemia

126 mg/dl). A pilot study is currently underway in
humans with new-onset type 1 diabetes, funded by the
Immune Tolerance Network, that seeks to determine
whether ATG will preserve C-peptide. This study will test

the notion that selective depletion of lymphocytes will
reset the immunologic rheostat, induce dynamic immune
regulation, and potentially induce and maintain tolerance
in type 1 diabetes. Since this study will also help establish
safety data for the use of ATG in humans in type 1
diabetes, the background adverse-event rate will be estab-
lished in this population, allowing for the study of combi-
nation therapies including ATG and additional tolerance-
inducing agents such as GCSF. With time, the equipoise for
utilizing agents having the potential for imparting delete-
rious side effects must be carefully weighed against the
benefits of preservation of C-peptide and/or insulin inde-
pendence for those with type 1 diabetes. The answer to
this equation is not simple to address. Clearly, additional
research is required with this particular application, as
well as others, to establish the parameters for safe and
efficacious translation of therapies from mouse to humans.
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