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Glioma constitutes the most common type of primary brain tumor with a dismal survival, often measured in terms of months or
years. The thin line between treatment effectiveness and patient harm underpins the importance of tailoring clinical management
to the individual patient. Randomized trials have laid the foundation for many neuro-oncological guidelines. Despite this, their
findings focus on group-level estimates. Given our current tools, we are limited in our ability to guide patients on what therapy
is best for them as individuals, or even how long they should expect to survive. Machine learning, however, promises to provide
the analytical support for personalizing treatment decisions, and deep learning allows clinicians to unlock insight from the vast
amount of unstructured data that is collected on glioma patients. Although these novel techniques have achieved astonishing
results across a variety of clinical applications, significant hurdles remain associated with the implementation of them in clinical
practice. Future challenges include the assembly of well-curated cross-institutional datasets, improvement of the interpretability of
machine learningmodels, and balancing novel evidence-based decision-makingwith the associated liability of automated inference.
Although artificial intelligence already exceeds clinical expertise in a variety of applications, clinicians remain responsible for
interpreting the implications of, and acting upon, each prediction.

1. Review

Glioma constitutes the most common type of primary malig-
nant brain tumor with an incidence of over 20,000 new cases
a year in the United States[1]. Treatment strategies signifi-
cantly improved over the last decades and include maximal
safe resection, temozolomide chemotherapy, radiotherapy,
and immunotherapy [2]. Gliomas are subgrouped into low
grade gliomas (LGG) and high-grade gliomas (HGG) which
include glioblastoma, on the basis of tumor genetic and
molecular markers [3]. However, they are noncurative, due
to the aggressive nature of the tumor. The current median
expected survival after diagnosis in glioma patients remains,

therefore, solely a few months for HGGs, and years for
LGGs, despite optimal treatment [1]. Furthermore, significant
morbidity is associated with both the disease condition and
its therapeutic solutions [4].

2. Classical Statistics, Machine Learning, and
Deep Learning

For much of the history of scientific inquiry, classical fre-
quentist statistics have formed the basis of data analysis, with
randomized clinical trial (RCT) design forming the pinnacle
of evidence-basedmedicine [5].There are presently 270 open
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Figure 1: Classical statistics, machine learning, and deep learning approaches as can be applied to the care of GBM patients.

and enrolling clinical trials for glioblastoma, which employ
a range of treatment modalities including investigational
drugs, biologics, standard-of-care treatment, radiation, and
surgical intervention to try to find an optimal cure for
glioblastoma. Recruitment into clinical trials is largely based
on a histological diagnosis of glioma, with or without specific
genetic markers such as isocitrate dehydrogenase (IDH)
and O6-methylguanine-DNA methyltransferase (MGMT)
gene methylation. Despite the huge advances in glioma
management that have resulted from these and prior RCTs,
the frequentist data analysis methods employed limit the
ability to draw conclusion about the efficacy of treatment in
individual patients, based on their unique characteristics.

Classical statistical methods were developed to evaluate
the strength of association or effect of covariates (e.g.,
treatment) and a single dependent variable (e.g., survival)
within a sample population, with the aim of generalizing
these conclusions to the larger population (Figure 1) [6]. In
that sense, the results of trials and cohort studies remain
averaged estimates based on the total study cohort but do not
necessarily apply to the same extent to individual patients.
For example, regression analysis can quantify the association
between chemotherapy and survival into a single coefficient,
thereby providing an understanding of its effect size; however,
the actual effect size remains different for each individual
patient. By design, classical statistical methods, such as
regression,make various assumptions about the relationships
within the data to make inferences about a larger population.

For this reason, these methods are limited in their ability
to assess the interactions between covariates and analyze
complex nonlinear relationships with the outcome. These
limitations make traditional statistical algorithms less well
suited tomodel real-life complex systems and for applications
in personalized clinical care in the era of Big Data [7].

The use of machine learning provides clinicians with
the analytical support for personalizing treatment decisions.
Machine learning is the branch of artificial intelligence
that gives computer algorithms the ability to learn through
experience rather than the explicit programming of a set of
rules. Statistical models typically describe the relationship
between clinical factors and the outcome, whereas machine
learning models typically seek to predict the outcome using
these factors as input features. In the context of glioma
patients, statistical approaches are particularly well suited for
identifying treatment strategies and other factors associated
with survival, whereas machine learning uses these factors
to predict survival. Although similar mathematical models
are used in both fields, modern machine learning algorithms
prioritize prediction over inference, even if it is achieved
at the cost of its interpretability [8]. This allows machine
learning algorithms to model complex structure within the
data, even those that are potentially undetectable or not
even understandable by humans, in order to achieve the
highest discoverable prediction performance. Characterizing
the interaction between a variety of features to pursue the
highest prediction performance has been, for example, of
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particular interest in genomic research on glioma patients.
The association of a single gene and the outcome is highly
dependent on the rest of the genetic profile.Machine learning
algorithms have demonstrated great performance in model-
ing interactions and subtle patterns within the genetic profile
[9, 10].

The application of traditionalmachine learning is limited,
however, to structured data. Typically, unstructured data
from diagnostic modalities is summarized in tabular format
to make the data more suitable for analysis. In the context
of imaging analysis in glioma patients, this means that a
neuroradiologist has to manually score predetermined vari-
ables, such as tumor location, size, extension, and contrast-
enhancement pattern. However, this simplification reduces
the amount of information that is contained in the raw data,
places a significant time burden on the clinician or researcher,
introduces human subjectivity with regard to the generation
and selection of input features, and limits this selection to
features that can only be measured by humans. As we are
entering an era of Big Data, more andmore patient-generated
health data on glioma patients is heterogeneous in format,
such as imaging scans, pathology slices, monitoring devices,
and free text clinical communications [11].

Deep learning has emerged as a family of techniques
to maximize our use of all of these data streams and
has demonstrated new and astonishing results in a variety
of fields [12]. Today, deep learning implies the fitting of
an artificial neural network. Artificial neural networks are
inspired by the neural network of the brain and organized in
hierarchical layers of interconnected nodes. By stackingmany
network layers, a deep learningmodelmay consist ofmillions
of parameters, each of which can be jointly optimized by
training on labeled data for prediction [13]. Instead of a
neuroradiologist that has to manually score the MRI scan
according to basic variables, deep learning algorithms can
ingest the rawMRI scan considering each voxel as individual
input feature, identify meaningful representations within
the data, and drop information that is not contributing.
For example, nodes in the lower layers of a deep learning
model for computer vision might be susceptible for simple
straight lines, hidden layers can learn how to detect shapes by
recognizing combinations of activations in the lower layers,
and the top layers use this condensed knowledge to produce
clinically meaningful estimates, such as for diagnostic classi-
fication, volumetric segmentation, and outcome prediction.
This process of condensing raw data to meaningful features
within the model is called feature extraction and allows raw
data to speak for itself [12].

3. Clinical Application

The wide use of complex diagnostic and therapeutic modal-
ities in neuro-oncology calls for automated methods to
analyze this data, but it also provides an opportune frame-
work for the development of machine learning models. The
utility of machine learning in neuro-oncology has, therefore,
been explored extensively and showed excellent results, at
times even beyond the performance of clinical experts [14].

Traditional machine learning methods have been widely
explored to develop diagnostic and prognostic prediction
tools based on structured data, but also as a final classifier for
complex data after feature extraction. For example, random
forest and support vector machines have been demonstrated
to accurately predict survival in glioma patients based on
basic clinical features alone [15] or features extracted from
MRI and functional imaging [16–19].

Deep learning is particularly well suited to enhance
the analysis of medical imaging data because the subtle
but relevant patterns within the digital information are
not always detectable by clinical experts [20]. Informing
clinical decision-making with insight extracted frommedical
imaging data can have a pivotal impact in the care of
glioma patients. Clinical management in glioma patients is
highly dependent on the histopathological subtype, tumor
grade, genetic profile, and spread of the tumor. Radiographic
scoring criteria, such as the Response Assessment in Neuro-
Oncology (RANO) criteria, have been developed to improve
the accuracy and consistency of radiological assessment by
neuroradiologists; however, the predictive performance of
these scoring criteria is limited. Pathological assessment
remains, therefore, the cornerstone of tumor characteriza-
tion, which drives clinical management towards surgery and
exposes patients to the perioperative risks associated with
highly invasive neurosurgical procedures.

Deep learning models trained on medical imaging data
achieve high accuracy with regard to histopathological diag-
nosis [21], genetic profile [22], tumor grade [23], and prog-
nosis [24], thereby enabling clinicians to derive insight into
tumor characteristics and anticipate expected outcomes of
glioma patients prior to any invasive diagnostic procedures.
This can be practice changing for patients suspected of disease
progression or malignant transformation, especially when
operative treatment is nonpreferential or even unnecessary
due to absence of the disease. Furthermore, deep learning is
capable of providing automated segmentations of the tumor
[25], critical brain structures [26], and even peritumoral infil-
tration that is not yet visible on the scan [27].These segmenta-
tions help neurosurgeons to target surgical resection to areas
at risk for infiltration and recurrence while preserving func-
tional tissue. Improving the extent of resection leads to fewer
subsequent surgeries, better response to adjuvant therapy,
longer progression-free and overall survival, and improved
quality of life [28]. Integrating radiological information with
clinical, genomic, and histopathological data facilitates the
construction of an individualized disease phenotype, thereby
providing an understanding of tumor progression, survival,
and treatment effectiveness [29].

4. Future Challenges

Given the unprecedented variety and accuracy of machine
learning algorithms in answering specific types of clinical
questions, the use of these methods in healthcare will
transform clinical care [30]. Machine learning provides very
powerful tools to solve critical problems with complex data;
however, it is not necessarily the best approach for all
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computational and clinical problems. Regression analysis and
other methods for statistical inference will remain central for
the implementation of novel treatment strategies by clarifying
effectiveness on group-level, while machine learning models
will later shift our understanding of treatment effectiveness
from group-level to patient-level estimates. Because this shift
fromgroup-level to patient-level estimates requires collection
of sufficient training data, high predictive performancemight
not be achieved until after the novel treatment strategy has
been implemented in clinical care.

4.1. Assembly of Training Datasets. Despite their significant
promise, some hurdles remain associated with the imple-
mentation of machine learning in clinical practice. Unlike
the data sources used in most commercial applications of
machine learning, health information including diagnostic
imaging, genetic testing, and pathology specimens is pro-
tected under the law. In the United States, this is regulated
by the Health Insurance Portability and Accountability Act
of 1996 (HIPAA) [31]. Research related access to private
health information requires approval through an institu-
tional review board. While these regulations are crucial
to maintain patient privacy, they limit the sharing of data
with collaborators at other institutions. As a result, research
endeavors are often limited to single-institutional data, which
negatively impacts the performance and generalizability of
the resulting model. One way to overcome this barrier is
through the use of deidentified databases, such as the national
Surveillance, Epidemiology and End Results (SEER) pro-
gram that contains deidentified information about oncologic
patients [32]. Though a potentially powerful and large-scale
data resource, these population-based databases have limited
practical utility as the included data are often limited to basic
clinical features.

The volume and complexity of the unstructured data,
such as MRI, genomics, and free text clinical notes, hamper
the assembly of multicenter, or even nationwide data sets.
These types of datasets are still in their infancy and will
require a more rigorous organizational backing, such as
systematizing the inclusion criteria of studies and providing
quality assurance of both image quality and veracity of
associated clinical data [33]. Variation in image acquisition
methods poses a barrier to image-based modeling across
institutions. Imaging results acquired on different scanners
may not be directly comparable. Similarly, the exact acqui-
sition parameters for a given MR sequence (e.g., contrast-
enhanced T1-weighted axial image) may vary within and
between institutions [34]. Besides the technical hurdles, the
cross-institutional aggregation of complex unstructured data
is complicated by privacy issues as well. Although images can
be deidentified and defaced (modified so that the patient’s
face cannot be reconstructed from the cross-sectional images
slices) prior to submission, these deidentification and encryp-
tion methods may still fail because the data remains so rich
in personal detail. Even if anonymization systems are put
in place, combining multiple data points might still reveal
an individuals’ identity. Currently, most models developed
in the scientific realm have been trained on well-curated
institutional datasets. It is yet unknown how well models

trained on local research data generalizes to real-world
clinical data.

4.2. Validation of Models and Acceptance by Clinicians.
Machine learning algorithms are typically left unequipped
with explanations that accompany their predictions, which
conflicts with the fundamental inquisitive human nature
that drives scientific inquiry [24]. However, artificial intel-
ligence technology holds the potential of producing accu-
rate and individualized prediction. Nevertheless, clinicians
may remain uncomfortable trusting clinical decision-making
to such “black-box” algorithms for which the underlying
mechanisms are not fully understood. This tradeoff is not a
new concept in medicine; many pharmaceutical drugs are
approved based on the simple observation that they are safe
and effective, yet often lacking a complete understanding of
the therapeutic mechanism [35]. The key difference is that
the safety and efficacy of machine learning algorithms are
dynamic and dependent on multiple factors including the
quality of the data on which these algorithms are trained,
evaluated, and utilized. These factors are, however, highly
subject to change. A sudden and undetected change in patient
population or data acquisition reduces model performance,
and a delay in detecting these deviating performance trends
can result in detrimental patient outcomes. For this reason,
occasional revalidation of these models may prove necessary
in a way that is not for drugs and medical devices (i.e.,
once they are approved for use, drug or device efficacy
does not necessarily need to be reexamined unless new
adverse events are reported in stage IV trials). Furthermore,
the dynamic performance and lack of interpretability of
advanced prediction models also pose challenges regarding
liability when these models serve as decision-support tools
for clinicians [36].

Asmachine learning algorithms are trained on retrospec-
tive data, these algorithms may also mirror human biases in
clinical decision-making [37]. For example, including race or
ethnicity in a clinical prediction model may contribute to its
performance because race can, to a degree, be an approximate
of biogenetic constitution; however, it may also be associated
with socioeconomic status, which may cause issues of health
equity and care accessibility to affect model prediction in
unforeseeable ways. As machine learning algorithms learn
from existing patterns, there is the possibility that models
might adopt or even amplify these healthcare disparities.

Currently, there is a growing interest in developing
healthcare indicators for quality assessment and reimburse-
ment, such as length of stay, thirty-day complication rate,
non-routine discharge rate, unplanned readmissions, and
patient reported outcome measures. Although these metrics
are highly suitable as outcome measures in machine learning
models, these algorithms do not have an understanding of
good clinical practice, let alone a moral compass. They just
aim to optimize the performance according to themetric that
is used for analysis, regardless of any other clinical or ethical
considerations. It is important, however, to understand that
most of these indicators are constructs to measure, objectify,
and perhaps quantify clinical care, but do not reflect good
practice in itself. For example, improving overall survival is
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not necessarily desirable if it drastically reduces health related
quality of life, and reducing the length of stay is not effective
if it comes at a cost of increased thirty-day complication
or readmission rate. Besides this unintentional divergence
between quality indicators and good clinical practice, models
can also be trained for this purpose intentionally. A decision-
support tool can be programmed to increase profits for
stake holders while ensuring to meet the minimum quality
standards. It is therefore imperative that the potential power
of such tools is monitored and regulated to ensure they are
used for improving patient care above all else. While it is not
possible to regulate the internal mechanisms and calculations
derived by the algorithm, it will still be possible tomonitor the
input data, output results, the training datasets used, and the
way these models are used to guide clinical care.

5. Future Direction

To facilitate a safe and effective implementation of machine
learning in the clinical care of glioma patients, we rec-
ommend several solutions. As large-scale, high-quality data
is the cornerstone of model performance, future research
should focus on harmonizing data acquisition parameters,
such as the MRI machine settings, pathology specimen
preparation protocols, and reporting standards for free text
clinical notes. Furthermore, cross-institutional collaboration
should be encouraged to gain sufficient training data but also
improve external generalizability.

To ensure transparency with regard to the intent and
construction of each model, we support the concept of
open-source coding as a requirement for the acceptance
of manuscripts submitted to journals or for models that
are eligible for implementation in clinical care. Making the
code available on data repositories, such as GitHub, allows
for reproducible research, external validation, and a timely
detection and resolution of coding errors.

A better understanding of the promises and pitfalls
among clinicians can facilitate a safe and effective deploy-
ment of machine learning in clinical practice. By improv-
ing the interpretability of constructed models but also the
computational knowledge among clinicians, a dependency
on “black-box” algorithms can be reduced, and a doctor-
versus-machine paradigm can be shifted to a doctor-and-
machine paradigm. Several studies that evaluated the com-
bined performance of clinical experts and machine learning
models demonstrated a better performance compared to
clinicians or models on their own [14]. Furthermore, a better
understanding allows clinicians to contribute tomodel devel-
opment and timely anticipate deviating performance trends
of implemented models, instead of responding to negative
patient outcomes further down the line. It is therefore of great
importance that a basic level of understanding of machine
learning is incorporated into the education and training
requirements for physicians.

Although machine learning can produce highly accurate
models, clinicians remain responsible for interpreting the
clinical and personal implications of these predictions. After
all, personalized medicine is not a concatenation of decisions
that follow directly from series of accurate predictions.

Machine learning-informed decision-making can be very
different in two patients even if their predicted outcomes
are the same. Machine learning should, therefore, not be
considered as a substitute for clinical decision-making, but
as a very powerful tool to unlock insight from untapped data
sources and an adjunct to clinical decision-making.

6. Conclusion

The thin line between treatment effectiveness and patient
harms underpins the importance of tailoring clinical man-
agement to the individual glioma patient.The use of machine
learning provides clinicians with the analytical support for
personalizing important treatment decisions. Machine learn-
ing, and deep learning in particular, is capable of detecting
patterns in large and complex data sets that might not
even be detectable or understandable by clinical experts,
thereby allowing clinicians to analyze the increasing amount
of imaging, genomic, pathology, and free text data that is
generated in glioma patients. The astonishing performance,
as well as the lack of interpretability, raises ethical concerns
in the way clinical decision-making is balanced betweenman
and machines. Future challenges include the assembly of
well-curated cross-institutional datasets, improvement of the
interpretability of machine learning models, and balancing
novel evidence-based decision-making with its associated
liability of automated inference. Although artificial intel-
ligence already exceeds clinical expertise in a variety of
applications, clinicians remain responsible for interpreting
the implications of, and acting upon, each prediction.
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