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Abstract

The Mesio-Temporal Lobe Epilepsy syndrome is the most common form of intractable epi-

lepsy. It is characterized by recurrence of focal seizures and is often associated with hippo-

campal sclerosis and drug resistance. We aimed to characterize the molecular changes

occurring during the initial stages of epileptogenesis in search of new therapeutic targets for

Mesio-Temporal Lobe Epilepsy. We used a mouse model obtained by intra-hippocampal

microinjection of kainate and performed hippocampal whole genome expression analysis at

6h, 12h and 24h post-injection, followed by multilevel bioinformatics analysis. We report sig-

nificant changes in immune and inflammatory responses, neuronal network reorganization

processes and glial functions, predominantly initiated during status epilepticus at 12h and

persistent after the end of status epilepticus at 24h post-kainate. Upstream regulator analy-

sis highlighted Cyba, Cybb and Vim as central regulators of multiple overexpressed genes

implicated in glial responses at 24h. In silico microRNA analysis indicated that miR-9, miR-

19b, miR-129, and miR-223 may regulate the expression of glial-associated genes at 24h.

Our data support the hypothesis that glial-mediated inflammatory response holds a key role

during epileptogenesis, and that microglial cells may participate in the initial process of epi-

leptogenesis through increased ROS production via the NOX complex.

Introduction

Most brain diseases are a result of a progressive cascade of molecular and cellular events that

go by undetected over a period of several years, until a pathological phenotype becomes clini-

cally detectable [1]. Although the genetic background may influence the occurrence of these

pathologies, it is often one or more initial insults earlier in life that serve as triggers [2]. A

major challenge in the treatment of these conditions is the identification of the primary steps
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of the process that could serve as an effective therapeutic target [3]. Mesio-Temporal Lobe Epi-

lepsy (MTLE), the most common form of intractable epilepsies, is a prime example of such a

progressive disease. Numerous reports describe that all MTLE patients experience one or sev-

eral “trigger” insults such as complex febrile seizures, head trauma, intracerebral infections and/

or ischemic episodes during early childhood [4,5]. These initial insults trigger a cascade of

molecular events over a period of several years, during which no clinical symptoms are observed

(“silent period”), which ultimately leads to recurrent focal seizures, the main symptoms, gener-

ated in the mesio-temporal limbic structures [2,6]. The latency period of MTLE epileptogenesis,

appears to span the time window from the initial insult to the occurrence of the first spontane-

ous seizures [3]. Studies on animal models have demonstrated that this latency period is a time

of intense functional and morphological reorganization including neurodegeneration, neuro-

genesis, gliosis, axonal damage or sprouting, dendritic plasticity, blood–brain barrier (BBB)

damage, recruitment of inflammatory cells into brain tissue, reorganisation of the extracellular

matrix and reconstruction of the cyto-architecture of individual neuronal cells [3,7].

Recent advances in systems biology, high-throughput technologies and sophisticated data

mining approaches have emerged as a powerful way to discover new therapeutic targets in pro-

gressive brain diseases. In the case of MTLE, microarray and RNA-seq approaches are increas-

ingly used for the study of representative animal models. Yet no effective therapeutic targets or

accurate biomarkers for epileptogenesis have arisen to date [8–14]. Limiting factors associated

with this slow progress are likely associated with the choice of specific animal models, time-

points post status epilepticus (SE), brain structures, experimental design and data analysis [15].

For example, many of these studies have used systemic injections of an excitotoxin, kainate

(KA), a glutamate analogue, to induce a SE for several hours in the rat [16]. This approach

results in bilateral lesions in different brain structures and leads mainly to generalized convul-

sive seizures, two features that differ from what is observed in MTLE patients and may be con-

founding [17]. In addition, in the vast majority of studies, brain samples were collected while

the animals were experiencing seizures, either during the SE or, later, during (i) epileptogen-

esis when spikes and bursts of spikes occur without behavioral symptoms and/or (ii) the

chronic phase when seizures occur regularly, raising the concern that most changes observed

could be the consequence of seizure occurrence [13]. Importantly, most analyses have largely

aimed at describing the molecular pathway changes without extending the investigation to the

upstream regulators (e.g. transcription factors) orchestrating these modifications that could

provide the basis for the discovery of new therapeutic targets.

In the present study, our objective was to determine the early mechanisms of epileptogen-

esis so as to effectively block disease progression at the earliest possible stage. In the clinical set-

ting, it is critical to have treatments available that will act during, or at the end, of the SE,

before the drastic morphological and functional reorganization that is associated with epilep-

togenesis occurs [3]. We chose the established intra-hippocampal KA-injection induced

mouse model of MTLE, since it reproduces most of the histopathological and electrophysio-

logical features of human MTLE [18,19]. In this model, spontaneous focal epileptic seizures

associated with mild behavioral expression develop progressively in the hippocampus, leading

to a stereotypical EEG pattern at 16–18 days post KA-injection. This phenotype remains stable

for several months, with only occasional propagation of the seizures to the cortex, similarly to

MTLE patients [20–22]. In addition, cell loss in the CA1, CA3 and hilus areas, as well as astro-

cyte proliferation and granule cell dispersion are observed in the injected hippocampus, find-

ings highly reminiscent of the hippocampal sclerosis observed in most MTLE patients

[18,19,23–27]. Furthermore, in this model, differential effects of antiepileptic drugs on focal

seizures were reported, with weak response to several classical drugs, as in MTLE patients

[19,28,29]. Altogether, this mouse model meets many clinicians’ requirements for modelling
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human MTLE [17,22]. Using this model, a microarray-based study indicated important gene

expression changes at 6h after KA injection, i.e. during the SE, as well as 14 days later, i.e.,

when recurrent focal seizures are recorded in the hippocampus [13]. However, during these

two time-points, we have described important epileptiform activities [19,21,30] that likely lead

to important gene regulations per se, which are not necessarily involved in epileptogenesis.

Here, we rather focused on the epileptogenic mechanisms activated during SE (6 and 12h) and

once SE activity is over (24h), before isolated or bursts of spikes occur [21,30]. Through a com-

prehensive transcriptomics and multi-level bioinformatics approach, comprising functional

classification signaling network prediction and in silicomicroRNA analysis, we were able to

depict the early molecular pathway changes implicated in epileptogenesis, and identify key reg-

ulatory molecules that deserve further investigation of their potential as therapeutic targets.

Results

The status epilepticus is completed at 24h post KA

All KA-injected animals included in this study (n = 9/time-point) displayed the behavioral

characteristics of SE (mild asymmetric clonic movements of the forelimbs, clonic deviations of

the head, rotations and/or prolonged periods of immobilization, occasional bilateral clonic sei-

zures of the forelimbs). These behavioral features have been shown to be associated with hip-

pocampal and cortical EEG spikes and bursts of spikes, 3-4h post KA and for up to 18h

[19,30]. In our current study this was confirmed in the 6 animals implanted with cortical and

hippocampal electrodes, where we first observed isolated spikes, bursts of spikes and poly-

spikes in the hippocampus during the 2-3h that follow KA injection, i.e. when animals recov-

ered from anesthesia. We then recorded hippocampal bursts of spikes and polyspikes every

minute for up to 18h-20h in all animals (Fig 1A). This activity was interrupted about every

hour by hippocampal discharges of spikes and polyspikes lasting up to 20 s, which were associ-

ated with mild clonic movements of the forelimbs. We observed bursts of spikes in the cortex

that first occurred 4-6h post-KA and then regularly in concomitance with hippocampal bursts,

in line with our previous reports [21].When we recorded these animals between 22h and 24h

post KA, we observed only occasional spikes in either the cortex or the hippocampus (Fig 1A).

This indicated that the SE was completed at that time, as reported previously [21]. These data

confirm that, in this model, the focal SE is terminated at 24h post-KA.

Advanced stage of cell loss at 24h post KA

Fluoro-jade B staining was performed in 6 animals sacrificed 24h post KA injection, as a mea-

sure of the ongoing neuronal insult. A strong signal was observed across the CA1, CA3 and

hilus regions of the injected hippocampi (Fig 1B), as compared to saline-injected animals or to

the contralateral side of the hippocampus, where only scattered cells were stained (Fig 1C). Fur-

thermore, Nissl staining, widely used for the study of neuronal morphology and pathology,

revealed an almost total loss of neurons in the CA1, CA3 and hilus areas at 24h (Fig 1D), as

compared to saline-injected animals (Fig 1E), with only pyknotic cells being observed in these

regions, in accordance with previous reports in this model [18,30]. These data confirm that the

phase of increased cell death is largely completed in the KA-injected hippocampus 24h post KA.

Kainate injection triggers significant transcript changes in the mouse

hippocampus during the first 24 hours

To determine if KA treatment had an effect on hippocampal gene expression we performed

correlation coefficient analysis across all saline- and KA-injected microarray datasets. Primary
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evidence confirming the KA effect on gene expression involved the reduced inter-group (KA-

injected vs. saline-injected mice) correlation coefficient values (average 94.9%) compared to

intra-group (KA- or saline-injected mice) values (average 98.1%). KA therefore, appears to

induce several changes in hippocampal gene expression, across all the investigated time-points,

with a more prominent effect towards 24h post-injection (inter-group correlation coefficients

of 6h KA vs saline samples was 96.2% and 24h KA vs saline samples 93.5%).

To determine the specific gene expression changes induced to the hippocampus by KA

exposure, SAM was applied for the analysis of KA- versus saline-injected hippocampi at each

post-injection time point. The number of highly and significantly changed probe sets per time

point ranged from 294 at 6h to 929 at 12h and 379 at 24h post-injection (S1–S3 Tables). The

fold changes of individual probe sets ranged from 69.3 (neuronal PAS domain protein) to

-20.35 (arachidonate 12-lipoxygenase, 12R type). Interestingly, at 24h, most of the significant

changes involved probe set over-expression (~77%), in contrast with the earlier time points,

during which the levels of over- and under-expressed probe sets were approximately equal

(~55% genes were under-expressed). Cross comparison of the three probe set lists revealed

that 155, 662, and 209 probe sets were uniquely changed at 6, 12 and 24, whereas 36 probe sets

were consistently changed across all time-points (Fig 2).

Representative transcripts that were significantly changed in at least one of the time points

were further evaluated by qRT-PCR. The results were consistent with our microarray findings,

with the latter fold estimates being overall more modest, a likely reflection of the distinct

nature of the two technical approaches and in agreement with the literature [31,32] (S4 Table).

Molecular mechanisms implicated in the mouse hippocampus response to

kainate at 6, 12 and 24 hours

To identify the significantly changed biological processes, molecular functions, and cellular

components for each time point of the present study, we analysed the significantly changed

transcripts using the geneXplain “Mapping to ontologies (TRANSPATH1)” workflow. All

different levels of GO terms were assessed, so as to determine the most detailed and compre-

hensive level for the specific set of data. Level 6 was selected for the biological process (S2–S4

Figs and S5–S7 Tables) and molecular function analysis (S8–S10 Tables), whereas level 5 was

best suited for the cellular component categorization (S11–S13 Tables).

The GO Biological Process analysis revealed that the end of KA-induced SE is followed by

several distinct significant changes. Specifically, ~35% of the significantly changed biological

processes are unique at 24h, i.e. they are not observed during SE (i.e., at 6 and 12h) in our

study. These include categories related to glial cells (e.g. “regulation of glial cell proliferation”,

“astrocyte development”), neuronal network reorganization (e.g. “neuron projection develop-

ment”, “axon regeneration”), immune and inflammatory response (e.g. “regulation of phago-

cytosis”, “positive regulation of leukocyte activation”), and lipid metabolism (e.g. “regulation

of lipid metabolic process”, “regulation of lipid transport”) (S8 Table).

Fig 1. Electroencephalographic and histological consequences of kainate injection into the dorsal hippocampus in

mice. A. EEG recordings performed at 6, 12 and 24h post-KA (n = 6), showing examples of EEG patterns recorded

during the focal status epilepticus in the cortex (Cx) and injected hippocampus (Hipp). At 6 h post-KA there was no

epileptiform activity in the cortex, whereas a discharge of spike and poly-spikes was observed in the hippocampus. At

12h, bursts of spikes were regularly observed in the hippocampus and ipsilateral cortex, whereas only occasional spikes

were recorded in either the cortex or the hippocampus between 22 and 24h. B. Fluoro-jade B labeling 24h post-

injection in saline-injected mouse (left) and KA-injected mouse (right), indicating the presence of injured cells in CA1,

CA3 and hilus area. C. Nissl staining 24h post-injection in saline-injected mouse (left) and KA-injected mouse (right)

indicating that most cells were pyknotic in CA1, CA3 and hilus area. Bar = 500 μm. � = track of the injection cannula.

https://doi.org/10.1371/journal.pone.0201742.g001
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Uniquely changed biological processes were also observed during both time points of SE

investigated. Specifically, at 6h post KA injection ~18% of the enriched groups including e.g.

“protein de-phosphorylation” and “regulation of cellular ketone metabolic process” (S5 Table)

were not observed at other time points. Conversely, at 12h ~43% of uniquely changed biological

processes that were observed, consist of responses to endogenous stimuli (“cellular response to

cytokine stimulus”, “response to hydrogen peroxide”) and ions (e.g. “response to calcium ion”),

neuronal transmission (e.g. “positive regulation of transmission of nerve impulse”), immune

cell differentiation (“regulation of myeloid leukocyte differentiation) and migration (regulation

of leukocyte migration), apoptosis (e.g. “regulation of apoptotic signalling pathway”), and car-

bohydrate metabolism (e.g. regulation of carbohydrate metabolic process) (S6 Table).

Fig 2. Comparison of the significant transcript changes across 6, 12 and 24h post KA injection. Area-proportional Venn diagram with the number of

significantly changed probe sets at each post-injection time point. A total of 54 animals were used (n = 9/time-point/treatment) for the microarray analysis,

and SAM was applied for the analysis of KA- versus saline-injected hippocampi at each time point interrogated (thresholds: fold change� |2|, FDR = 0%).

https://doi.org/10.1371/journal.pone.0201742.g002
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Interestingly, the biological processes that changed only during SE (i.e. 6 and 12h) comprise

~23% and ~6.5% of the enriched categories at 6 and 12h, respectively. These groups include

“transcription, DNA-dependent”, “small GTPase mediated signal transduction” and “regula-

tion of synaptic transmission” (S5 and S6 Tables). Since they do not remain significantly

changed once SE is completed at 24h, they are likely to be associated with the epileptiform

activity and/or the neuronal cell death observed during SE.

Importantly, the comparison of the SE at 12h and the end of SE (24h) revealed a consider-

able overlap. Specifically, ~44% of the changes in biological processes that were enriched at

24h appear to be initiated at 12h. These include groups related to cell migration (e.g. “regula-

tion of cell migration”, “positive regulation of cell motility”), cytoskeletal organisation (e.g.

“cytoskeleton organisation”), reactive oxygen species (e.g. “regulation of reactive oxygen spe-

cies metabolic process”) and inflammation and immune response (e.g. “positive regulation of

immune response”, “regulation of inflammatory response”) (S6 and S7 Tables). The persis-

tence of these changes, despite the absence of epileptiform activity at 24h, suggests that these

gene regulation events are triggered during SE but are unlikely to depend upon the occurrence

of epileptiform activity.

The consistent changes across all time points of the study represent approximately ~55%,

~15% and ~19% of the enriched biological processes observed at 6, 12 and 24h (S2–S4 Figs

and S5–S7 Tables). These categories are associated with essential cell functions such as gene/

protein expression/modification, cell proliferation/cell death, cell communication/signal trans-

duction and ion homeostasis and transport, and also include groups related to response to

external stimulus, stress and wounding. The number of significantly changed genes in each of

these categories appeared to peak at 12h post KA injection, when the total number of signifi-

cantly changed genes is almost tripled in comparison with 6h and 24h. These observations

imply that these changes may be associated with the response to KA in this model (cell death,

epileptiform events) and are less likely to be implicated in epileptogenesis per se.
The GO Molecular Function analysis revealed that ~30%, ~43% and 47% of the enriched

categories at 6, 12, and 24h respectively, were uniquely changed (S8–S10 Tables). Specifically,

the end of SE (24h) was associated with distinct changes in molecular functions that included

ligand-receptor binding (e.g. “insulin-like growth factor I binding”, “interleukin-1 receptor

binding”) and enzyme activity (e.g. “cysteine-type peptidase activity”, “aldo-keto reductase

(NADP) activity”) (S10 Table). The unique changes observed at 6h included “phosphatase

activity” and “transcription regulatory region sequence-specific DNA binding” (S8 Table),

whilst the enrichment of molecular functions such as “nuclear hormone receptor binding”,

“chemokine receptor binding”, “neuropeptide Y receptor activity” and “ionotropic glutamate

receptor activity” was limited to the 12h time-point (S9 Table). Groups that were found to be

enriched only during the two time points of SE include “transition metal ion binding” and

“transcription regulatory region DNA binding” (S8 and S9 Tables). Significantly changed cate-

gories observed for the first time at 12h, that remain enriched after the end of SE at 24h,

include groups related to ion homeostasis (e.g. “calcium ion binding” “gated channel activity”),

and kinase activity (“protein kinase activity”, “protein kinase binding”) (S9 and S10 Tables).

Of note, the only molecular functions that changed across all time points are “gated channel

activity” and “heparin binding”.

The GO Cellular Component analysis showed that the distinct changes following the end of

epileptiform activity at 24h include cytoskeletal components (e.g. “cytoskeleton”, “microtubule

organizing center”) and specific parts of the plasma membrane (e.g. “extrinsic to plasma mem-

brane”, “internal side of plasma membrane”) (S13 Table). The uniquely changed groups at 12h

included other specific subcellular membrane components (e.g. “neuron projection mem-

brane” “intrinsic to endoplasmic reticulum membrane”), sub-nuclear regions (e.g. “nucleolus”
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“chromatin”), and “tight junction”, amongst others (S12 Table). Conversely, at 6h only one

uniquely changed group was identified, i.e. “nucleoplasm part”, whilst the two points of SE

shared only “nuclear lumen” (S11 and S12 Tables). The 12h time-point shared more changed

groups with the end of SE (24h), such as “cytosol”, neuron-specific topologies (e.g. “dendrite”,

“axon”, “neuron spine”) and groups related to vesicles (e.g. “cytoplasmic membrane-bounded

vesicle lumen”) (S12 and S13 Tables). Notably, the cellular component “nucleus” was identi-

fied as the most enriched category across all time points of the study, which is in line with the

extensive changes related to regulation of gene expression observed over the course of the first

24h post KA injection.

In silico prediction of upstream regulators modulating the 24h transcript

changes

A master regulator analysis was performed using the geneXplain software to identify hierar-

chically high regulatory molecules of significantly upregulated genes, which could potentially

serve as candidate therapeutic targets for early disease stages, upon successful translation of

the findings in human MTLE. For this purpose, we focused on the analysis of significantly

changed genes at 24h, hypothesizing that these reflect molecular pathways triggered during SE

(i.e. before 24h) and remain high, or reach significant upregulation levels in the period that fol-

lows SE and precedes the occurrence of the first spikes, when no epileptiform events are yet

observed. Therefore, this analysis was performed for the 24h time point considering only the

upregulated transcripts and enabled the prediction of central regulators likely orchestrating

the observed gene overexpression at this time-point.

For the 291 overexpressed transcripts at 24h, 79 different master regulators were identified

(Score >0.2, Z-Score >1), each one regulating a range of 16 to 96 overexpressed genes (data

not shown). Importantly, 26 master regulators were themselves overexpressed: 25 showed

increased expression at 24h (Calca, S1pr3, Spp1, Lgals1, Cd9,Gcg, Itgav, Vim, Nfkbia,Hmgn1,

Il11, Tgm2, Lif, Icam1, Cybb, Rnd3, Nek6, Eif2ak2, Nedd9, Yes1, Pak3, Birc3, Rfwd2,Myd88
and Capn2), 11 of which were already overexpressed at 12 hours (S1pr3, Spp1, Vim, Nfkbia,

Il11, Tgm2, Icam1, Cybb, Rnd3, Nedd9 and Birc3), whilst one (Cyba) was only overexpressed

at 12 hours (S14 Table). The finding of predicted master regulators being themselves sig-

nificantly overexpressed at 12h and 24h is not only a valuable proof of concept, but impor-

tantly, enables the mapping of the extended molecular mechanisms regulating the observed

changes.

Specifically, each of the 26 overexpressed master regulators regulates a total of 16 to 67 over-

expressed genes at 24h. Three of the 26 overexpressed master regulators were of particular

interest because of their biological role in the CNS and the genes they regulate. These 3 genes,

namely: i) cytochrome b, alpha subunit (Cyba or p22-phox) which codes for a component of

the NADPH oxidase (NOX); ii) cytochrome b, beta subunit (Cybb or p91-phox or Nox2),

which forms a heterodimer with p22-phox (Fig 3); and, ii) vimentin (Vim), which codes for a

cytoskeletal protein (Table 1), may be of interest for consideration as potential therapeutic tar-

gets and merit further investigation.

The analysis was performed using the “Master regulators in networks (TRANSPATH1)”

workflow (geneXplain 2.2 web edition), for all the significantly changed transcripts at 24h,

applying the thresholds Score >0.2 and Z-Score >1. The predicted upstream regulators were

filtered to exclude those that did not present with statistically significant overexpression them-

selves at 12h or 24h, and those that were overexpressed at 6h. The number and symbol of their

respective significantly overexpressed downstream gene targets at 24h is included. (n/c: not

changed).
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MicroRNAs associated with the 24h gene expression changes

The search for central regulators of multiple changed genes at 24h was extended to the post-

transcriptional level, aiming to explore the potential of microRNAs as potential therapeutic

targets for epileptogenesis. Both upregulated and downregulated transcripts were considered

in this analysis. Although the overexpression of a target mRNA would be typically accompa-

nied by decreased levels of the regulatory microRNA [33], a microRNA could also promote

their target’s mRNA expression, e.g. via binding to the 5’UTR of their target mRNA and accel-

erating mRNA interaction with polysomes [34].

The retrieval of experimentally validated microRNA-mRNA interactions via miRWalk

identified 98 microRNAs that target at least two transcripts each, and in total 163 out of the

379 significantly changed transcripts ("124 genes, S15 Table; #39 genes, S16 Table). Among

Fig 3. Schematic representation of the network of downstream molecules regulated by Cybb at 24h. The analysis was performed using the “Master regulators in

networks (TRANSPATH1)” workflow (geneXplain 2.2 web edition) (thresholds: Score>0.2 and Z-Score>1), for all the significantly changed transcripts detected by

microarrays in KA- versus saline-injected hippocampi at 24h (SAM analysis, thresholds: fold change> |2|, FDR = 0%, n = 9/time-point/treatment). Red: genes

overexpressed at 24h, blue: genes not significantly changed, p: phosphorylation.

https://doi.org/10.1371/journal.pone.0201742.g003

Table 1. Selected, predicted, statistically significant upstream regulators of the transcripts significantly changed at 24h.

Upstream

regulator

Fold Change

at 12h

Fold Change

at 24h

Z-Score Number of significantly

changed genes at 24h

Significantly changed genes at 24h

Cyba 2.23 n/c 1.81 42 Bag2, Bgn, Birc3, C3ar1, Calca, Capn2, Casp8, Ccl9, Cdkn1a, Cybb, Eif2ak2,

Eif4ebp1, Elk3, Eng, Fcgr2b, Fos, Fosl2, Gfap, H3f3a,H3f3b,Hmgn1, Hspb1,

Icam1, Il1rn, Itgav, Klf4, Lif, Msn,Mybbp1a, Nedd9, Nfkbia, Pdcd6ip, Pla2g4a,

Ptpn12, Rai14, Rnd3, Tgm2, Timp1, Tubb6, Vim, Wwtr1, Yes1
Cybb 2.92 4.75 4.52 15 Capn2, Cdkn1a, Cybb, Eif4ebp1, Elk3, Fos, H3f3b,Hmgn1, Klf4,Mybbp1a,

Nedd9, Nfkbia, Pla2g4a, Ptpn12, Rai14
Lgals1 n/c 2.73 6.58 20 Capn2, Cdkn1a, Eif4ebp1, Elk3, Fcgr2b, Fos, Gfap, H3f3b,Hmgn1, Klf4, Lgals1,

Mybbp1a, Nedd9, Nfkbia, Pdcd6ip, Pla2g4a, Ptpn12, Rai14, Vim, Yes1
Nedd9 4.16 4.70 3.83 41 Arf6, Arpp21, Birc3, C3ar1, Capn2, Casp8, Ccl9, Cdkn1a, Cybb, Eif2ak2,

Eif4ebp1, Elk3, Eng, Fcgr2b, Fos, Gfap, H3f3b,Hbegf,Hmgn1, Hspb1, Icam1,

Il1rn, Itgav, Klf4,Msn,Mybbp1a, Nedd9, Nfkbia, Pdcd6ip, Pla2g4a, Plek, Ptpn12,

Rai14, Rnd3, S100a10,Timp1, Tnc, Tubb6, Vim, Wwtr1, Yes1
Vim 2.79 3.65 5.47 15 Capn2, Cdkn1a, Eif4ebp1, Elk3, Fos, H3f3b,Hmgn1, Klf4,Mybbp1a, Nedd9,

Nfkbia, Pla2g4a, Ptpn12, Rai14, Vim

https://doi.org/10.1371/journal.pone.0201742.t001
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them,miR-466 presented with the largest number of experimentally validated target transcripts

(i.e., 22 over-expressed and 10 under-expressed genes) at 24h post KA. In-depth literature

mining identified those microRNAs that targeted >10 significantly changed genes, so as to

pinpoint central regulatory microRNAs that may be implicated in epileptogenic processes.

Four microRNAs emerged as likely modulators, namelymiR-9, miR-19b,miR-129 andmiR-
223, because of their established role in the CNS and/or epilepsy, as well as the biological role

of their target genes in microglia, astroglia and/or the NOX and ROS pathways, as elaborated

in the Discussion.

Discussion

The end of the focal status epilepticus is a critical period for targeting

epileptogenesis

In the present study, we used focal SE induced by intra-hippocampal injection of KA in the

mouse to model an initial insult that could trigger the progressive evolution towards chronic

MTLE. In addition to its close similarities with key features of MTLE associated with hippo-

campal sclerosis [17], this model offers several methodological advantages for performing high

throughput analyses such as global gene expression screening. Specifically, when induced in

C57/Bl6 mice, the focal SE is reproducible across animals and rarely leads to death, unlike sys-

temic injection of KA or pilocarpine [19]. Consequently, no subsequent injection of benzodi-

azepine is required to interrupt the SE, which could have interfered with the gene regulation,

as suggested by previous work in the same model [35]. Whether the anesthetic used (Chloral

hydrate) interfered with gene regulation remains possible. However, all data collected in KA-

injected animals were compared to data collected in saline-injected mice under the same anes-

thesia conditions. Furthermore, the duration of the focal SE is rather stereotyped in this

model, with a termination around 15-18h, as demonstrated by previous reports [19,21,24,30]

and as confirmed by the EEG recordings at 22–24 h post-KA in the present study. Following

intra-hippocampal injection of KA, cell death is triggered rapidly, is restricted to the dorsal

hippocampus, around the injection site, and is highly reproducible across animals [30]. Our

data, in line with previous reports, suggest that most cell death was completed by 24h post KA

and that epileptiform activities observed during epileptogenesis [21] have not yet begun.

Therefore, the 24h time-point appears as an important pivot where processes involved in the

initiation of epileptogenesis can be studied without interfering with processes associated with

the recurrence of epileptiform activities observed during SE or epileptogenesis. In addition,

this time-window appears as most relevant for potential therapeutic targeting in the clinic, i.e.,

during patient hospitalization, generally a few hours after a SE [36].

Our analysis spanned the first 24h post KA, in an effort to gain insight on the molecular

mechanisms that are affected by the initial insult and remain changed after the end of SE. We

suggest that these changes reflect the epileptogenic processes that take place in this model. Spe-

cifically, we aimed at identifying the pathways and the timeline involved in the early phase of

epileptogenesis, which focuses on the affected biological pathways and processes rather than

on the specific transcripts involved, and addressed the time points when those appeared to be

modified. Further, we sought the predictive power of the network by using advanced bioinfor-

matics tools. In that aspect, what we advocate is the type of network and cell types to which

future therapeutic agents could be addressed.

Interestingly, at the first time point of our study, 6h post KA injection, amongst the top

enriched biological functions that are associated with regulation of transcription, we observed

multiple transcription factor modifications that overlap with the findings of previous studies

investigating the acute phase post KA administration [9,13]. Importantly, most of the
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overlapping genes (i.e. Fos, Fosb, Jun, Junb, Nr4a1, Nr4a2, Nr4a3) are associated with the

immediate response to neuro-excitatory stimuli in the CNS, such as KA [37], electrical stimu-

lation [38–40] or exercise [41], and are widely known as immediate and early genes (IEGs).

The list of significantly changed IEGs extends to the upregulated Bdnf, Arc andHomer1 that

have been associated with synaptic plasticity regulation [42,43]. Notably, the expression

changes in these IEGs persist at 12h post injection, but the effect ceases after the end of epilep-

tiform activities, at 24h, suggesting that their expression is mostly associated with the over-

excitation provoked by KA in the hippocampus during the SE. These observations are in

agreement with our recent proteomic findings, showing downregulation of immediate

response proteins associated with synaptic plasticity at 24h post injection [44].

This transient gene expression pattern peaks at 12h post injection, where the number of sig-

nificantly changed genes almost triples in comparison to the 6 and 24h time points. A represen-

tative example of this observation is the downregulation of many gene categories that are

associated with seizure manifestation and often targeted by anticonvulsants, including gluta-

mate receptors (Gria1, Gria3,Grin1, Grm1,Grm5,Grm8), GABA receptors (Gabrg2, Gabra5),
voltage-gated potassium channels (Kcna2, Kcnab1, Kcnc1, Kcnc2, Kcnh3, Kcns2, Kcnq5, Kcnq3),
sodium channels (Scn1a, Scn2a1, Scn2b, Scn3b, Scn8a,Nalcn) and calcium channels (Cacna1b,

Cacna 1d, Cacna1h). Importantly, only a few of these genes remain under-expressed at 24h.

These observations suggest that a large number of the transcript changes at 6 and 12h post

injection is associated with the intense hyperactivity associated with the focal SE and may only

be indirectly associated with epileptogenesis. Consequently, an emphasis was given on the

analysis of the 24h changes, which should be better suited for the search of new therapeutic tar-

gets in MTLE.

Glial responses during epileptogenesis point at novel central regulators of

epileptogenesis

Our extensive bioinformatics analysis of the 24h time-point data, in combination with in

depth data mining and cross-disciplinary expert input, led to the delineation of a subset of sig-

nificantly changed biological functions which may play a critical role in MTLE epileptogenesis.

Accordingly, the prominent changes we observed in genes orchestrating the immune and

inflammatory responses in the CNS, in combination with experimental evidence on increased

glial proliferation in experimental and human MTLE, directed our search for central regula-

tors of epileptogenesis.

Immune and inflammatory responses mediated by glia

Focusing on the evidence for immune and inflammatory processes at 24h, we observed multi-

ple enriched GO biological processes associated with these functions. The enriched categories

range from more inclusive ones such as “positive regulation of immune response” and “regula-

tion of inflammatory response” (S7 Table), to more specific functions such as “regulation of

phagocytosis”, “positive regulation of chemotaxis” “positive regulation of leukocyte migra-

tion”, “regulation of interleukin-1 production”, and extend to the level of molecular pathways,

e.g. “cytokine-mediated signaling pathway” “pattern recognition receptor signaling pathway”

and “Toll signaling pathway”. These data complement and extend the only previous study at

24h, on a rat model of electrically induced SE, where evidence for the manifestation of stress

response, along with a prominent immune and inflammatory response were noted [12]. The

observed similarities between this model and our KA-induced mouse model suggest the pri-

mary association of these mechanisms with the MTLE phenotype, independently of the epilep-

togenic trigger.
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Notably, neuronal responses in the CNS are usually accompanied by the activation of astro-

cytes and microglial cells. Consistently with this association, we detected marked overexpres-

sion of genes that serve as markers of microglial activation (Tspo f = 4.18) [45,46] or reactive

astrocytes (Gfap f = 3.9, Vim f = 3.65) [47–49]. Importantly, these changes are consistent with

our immunohistochemistry and proteomics data showing upregulation of these proteins at

24h (Gfap) and 3 days post injection (Gfap, Vim), [44]. In addition, pro-inflammatory genes

previously shown to be expressed by glial cells during inflammatory response, such as Pla2g4a
(a.k.a. cPLA2, f = 2.65) [50–52] and Klf4 (f = 4.05) [53,54], were significantly upregulated,

along with Il11 (f = 12.44), which acts to suppress inflammation [55,56]. The molecular players

of hippocampal inflammation described herein, allow the delineation of the biological basis of

the previously described massive proliferation of astroglial cells over the sclerotic hippocampus

in the same mouse model [18,24,30], in agreement with findings in MTLE patients [57,58],

[59]. In particular, we had previously shown in the MTLE mouse, using immunohistochemis-

try, that such astroglia proliferation occurred early after the initial KA-induced insult [24,26]

and then extend radially-orientated fibers, forming a dense glial scaffold in close contact with

the dentate granule cells [24]. Furthermore, we demonstrated that this glial reorganization

develops progressively in the dentate gyrus within the same time-frame as epilepsy develop-

ment in this structure [21].

These inflammatory processes are thought to play a central role in epileptogenesis and MTLE

progression [60–63], according to studies in both animal models [30,63,64] and human epileptic

tissue [65]. In particular, exacerbation of inflammatory response is observed after the initial

insult in experimental models of epilepsy with SE, suggesting that uncontrolled inflammatory

response may contribute to epileptogenesis [62,65]. Moreover, proliferation and/or morphologi-

cal changes of microglia have been reported in the hippocampus during the first 4–5 days after

SE induced by systemic KA or pilocarpine in mice and rats [24,66–69]. This was associated with

the expression of several pro-inflammatory cytokines (IL-1b, IL-6, TNFβ) and the important cell

loss that occurs during the first days that follow SE [30,61,70,71]. In reverse, depletion of micro-

glia reduced seizure susceptibility and epileptogenesis in SE-induced models [72,73]. Therefore,

the molecular players emerging from the present study, and especially an understanding of the

upstream regulators and microRNAs orchestrating these processes, in combination with follow-

up translational research could unveil promising new therapeutic targets.

Towards this direction and building on our findings at 12h, when several of these processes

(including: astrocyte and microglial activation, inflammatory response regulation and leuko-

cyte recruitment and extravasation) appear to be initiated, we performed an extensive

upstream (master) regulator analysis. Among the master regulators identified, of particular

interest was Vim, as it was both significantly overexpressed itself in our data (f = 3.65), and a

predicted master regulator of 15 overexpressed genes at 24h (Fig 4 and Table 1). According to

the literature, some of these 15 genes (e.g., Capn2, Nfkbia, Pla2g4a, Ptpn12) may play a critical

role in MTLE epileptogenesis through the modulation of inflammatory processes mediated by

astrocytes. Consistently with these findings, an increase of Vim immunohistolabeling was

observed in elongated astrocytes of the dentate gyrus in the KA-MTLE mouse model [24]. Fur-

thermore, recent studies conducted in Vim KOmice described an essential role for Vim in

microglia activation induced by both LPS treatment in vitro and cerebral ischemia in vivo,
whilst Vim deletion also conferred neuroprotection via the inhibition of the detrimental

inflammatory effects of microglia [74]. Importantly, Vim’s downstream targets include the

overexpressed Klf4 gene, which is associated with microglia activation [53], thus supporting a

role for Vim in facilitating glial-mediated inflammation in KA-MTLE. Overall, the present

results are in full agreement with a critical role of astroglial and microglial changes in the pro-

gressive development of MTLE, and suggest that Vim could play a central role in this process.
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Our in-silicomicroRNA analysis complements these findings, with the identification of

microRNAs that may act as central regulators of glial responses at 24h post KA. MicroRNAs

have been implicated in a number of molecular processes impaired in epilepsy and are being

explored as potential biomarkers and therapeutic targets [75]. In the present analysis, four

microRNAs emerged as experimentally validated regulators of a multitude of the KA-MTLE

significantly changed genes in our 24h experiments, including genes involved in glial

responses. In specific,miR-223 emerged as an experimentally validated regulator of Vim, and

has been previously reported to be overexpressed in the rat hippocampus, at 24h post electri-

cally-induced SE (Fig 4) [76].miR-19b, is an experimentally validated regulator of genes impli-

cated in phagocytosis signaling (e.g. Pros1, Tub) [77,78], a microglial function significantly

altered in epilepsy. Importantly, it was recently highlighted as a potential biomarker of human

TLE [79]. In addition,miR-9, one of the most abundant microRNAs in the rodent hippocam-

pus, has been shown to target Gfap, a key component in astrocyte reactivity [80,81].miR-129
emerged as another likely regulator of mRNA changes at 24h post KA. To date,miR-129 has

been shown to increase seizure susceptibility in chronic epilepsy, specifically at 21 days post

KA in the rat, by repressing the expression of the potassium channel Kcna1 (Kv1.1) [82]. Our

analysis suggests that its involvement may start earlier and impact multiple molecular path-

ways in experimental epilepsy.

Fig 4. Summary diagram of the key biological changes detected during epileptogenesis. At 6h multiple neuroexcitation-induced immediate and early response genes

are significantly changed. At 12h specific ion conduction, neurotransmission, astrocyte/microglial activation, inflammation and apoptosis related mechanisms are

significantly altered. Importantly, at 24h, the silent phase of epileptogenesis,Nox2 (Cybb) and Vim are predicted to act as upstream regulators of key biological processes

ultimately leading to activated glia, NOX-mediated ROS, neuroinflammation and neurodegeneration. The presence or absence of KA-induced epileptiform activity is

denoted with orange and white color, respectively. The spontaneous epileptiform activity is marked with blue color.

https://doi.org/10.1371/journal.pone.0201742.g004
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The NOX and ROS pathways play a critical role in MTLE epileptogenesis

Beyond regulation of transcript levels by microRNAs, our master regulator analysis identified

two subunits of the membrane-bound NADPH oxidase (NOX) hexamer complex, namely Cybb
and Cyba, as upstream regulators of a multitude of overexpressed genes at 24h post KA injection

(Fig 3 and Table 1). Importantly, both Cybb ("12h, f = 2.92; 24h, f = 4.75) (Fig 4) and Cyba
("12h, f = 2.31) were also significantly overexpressed themselves in our study. The NOX com-

plex is located in the membranes of phagosomes and endoplasmic reticulum, as well as in the

plasma membrane, and catalyzes the production of reactive oxygen species (ROS, e.g. O2
-.,

H2O2) [83]. The increased production of ROS via the NOX complex of activated microglial cells

[84–90] and neurons [87,91–93] has been shown to induce the transcription of pro-apoptotic

genes, as well as the activation of apoptotic mechanisms. In the pilocarpine model of MTLE,

NOX activation triggered the upregulation of NMDA receptors [94] and led to neurodegenera-

tion [95,96]. The central role of NOX in these processes was confirmed with the use of a NOX

complex inhibitor, which appeared to limit them [96,97]. Excitation via glutamate receptors has

also been shown to induce ROS production via NOX [85,87,93,98,99], whilst KA-induced sei-

zures in rats trigger NOX complex activation and increased O2
-., in parallel to microglial activa-

tion [100]. Recently, ROS were found to be elevated in neurons in a model of SE induced by

perforant pathway stimulation, and to contribute to cell death whereas a NADPH oxidase

inhibitor showed protective effects [101]. These findings are in line with a recent study showing

high levels of lipid peroxidation by-products, in combination with increased protein levels of

two other NOX subunits, Ncf1 (p47phox) and Ncf2 (p67phox), in neurons in hippocampal sam-

ples resected from drug-resistant MTLE patients [102]. Consequently, the role of NOX enzymes

appears to be central in acquired epilepsy (Fig 4). However, their involvement in established

MTLE may be different than the early stage of epileptogenesis and remains to be explored.

Interestingly, NOX may also be subject to post-transcriptional regulation by microRNAs,

according to our in silicomicroRNA analysis. Specifically,miR-129 has been shown to interact

with the ROS-producing NOX subunit Cybb, whilst it also targets the inflammation suppressor

Il11, both of which were found to be overexpressed at 24h post KA in this study (Fig 4).

Conclusions

Our findings support the hypothesis that microglial cells participate in the neurodegeneration

observed in the KA-induced MTLE mouse model through increased ROS production via the

NOX complex. Since neurodegeneration is mostly completed by 24h in this model, it is likely

that NOX activation in microglial cells, but also neurons, orchestrate other mechanisms that

lead to epileptogenesis, consistently with the multiple significantly changed downstream tar-

gets of Cyba and Cybb. The spatiotemporal pattern of the seizure-induced alterations in the

NOX complex activity within the epilepsy focus is yet to be determined. Consequently, the

NOX complex merits further investigation to fully characterize its role in the establishment of

MTLE, and determine its potential in combating the disease.

Materials and methods

Animals

All animal procedures were carried out in accordance with the rules of the European Commit-

tee Council Directive 2010/63/EU. The detailed protocol was first submitted to our local ethi-

cal committee (Comité Local Grenoble Institut Neurosciences, agreement # C2EA-04), then,

upon approval, to the French Ministry of Education and Research via the APAFIS website. It

was approved under the registration n˚ 01 389 02.
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Experiments were conducted on adult C57Bl/6j male mice (Janvier, Le-Genest-St-Isle,

France), 8–10 weeks of age, and 20-25g of weight (n = 72, S1 Fig). Following surgery, they

were housed in individual cages with food and water ad libitum and kept in a 12h light-dark

cycle (room temperature = 22 ± 1˚C). All efforts were made to minimize animal suffering and

reduce the number of animals used in each series of experiments.

Intra-hippocampal injection

Mice were stereotactically injected with either 50 nL of a 20mM solution of KA (Sigma-Aldrich

Chimie, St Quentin Fallavier, France) in NaCl 0.9% (i.e., 1 nmol) or saline (50 nL of NaCl

0.9%) unilaterally in the dorsal hippocampus, while under chloral hydrate (400 mg/kg, i.p.)

generalized anesthesia, [anteroposterior (AP), -2; mediolateral (ML), -1.5; dorso-ventral (DV),

-2] with bregma as the reference [103], as previously described [19,21,24,30]. The use of chloral

hydrate was preferred since anesthetics that are antagonists of the glutamate receptors (e.g.,

ketamine) or that act as an antiepileptic (e.g., barbiturates) could block or reduce the initial sta-
tus epilepticus or alter the development of epileptogenesis [35]. Similarly, the use of halothane

or isoflurane was avoided because of their effects on the blood brain barrier [104] and on the

development of epileptogenesis [105]. Once they recovered from anesthesia (i.e., about 2h),

the mice were visually inspected for up to 8h, to determine their behavior during the KA-

induced SE. Indeed, following intra-hippocampal KA injection, the animals displayed mild

asymmetric clonic movements of the forelimbs, clonic deviations of the head, rotations and/or

prolonged periods of immobilization and, in most cases, bilateral clonic seizures of the fore-

limbs associated with rearing [19,21,24,30]. Only mice showing this characteristic behavioral

pattern of SE following KA injection were included in the subsequent stages of the analysis.

Electroencephalographic recordings of status epilepticus

After KA injection, a group of six mice were implanted with a bipolar electrode in the injected

hippocampus, at the same coordinates as the injection site, and with three monopolar elec-

trodes over the left and right fronto-parietal cortices and the cerebellum (reference electrode)

as previously described [19,21,24]. Electroencephalographic (EEG) activity was recorded using

a digital acquisition computer-based system (Coherence, Deltamed, France; sampling rate 256

Hz), in freely moving mice placed in Plexiglas test cages contained in a Faraday cage. Record-

ings were initiated immediately after recovery from anesthesia (about 2h post KA injection)

and for 8h, to verify that SE was initiated. Recordings (2h) were then performed at 12h and

then at 22h post KA.

Histological assessment of cell loss

KA- or saline-injected mice (n = 6/group) were sacrificed at 24 h post KA injection with a lethal

dose of pentobarbital (Nembutal, 100 mg/kg, i.p.) and perfused with PFA 4%. Their brains were

removed, cryo-protected in 30% sucrose overnight and frozen in iso-pentane (-40˚C). Twenty-

μm thick sections were collected and mounted on 2% gelatine coated slides and air dried at 50

˚C for 30 min. The slides were first immersed in a solution containing 1% sodium hydroxide in

80% ethanol (20 ml of 5% NaOH added to 80 ml absolute ethanol) for 3 min. This was followed

by 2 minute incubations in 70% ethanol and distilled water. The slides were transferred to a

0.06% potassium permanganate solution for 10 min and rinsed in distilled water. After 20 min

in a 0.0004% Fluoro-jade B staining solution, the slides were rinsed for 3x1 min in distilled

water, dried at 50˚C for 5 min and then cleared by immersion in xylene for 1 min before

“cover-slipping” with p-xylene-pyrimidinium bromide. Brain slices were examined for fluores-

cence using a Leica DMI 6000 fluorescent microscope and the METAMORPH1 image analysis
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software. Adjacent sections were stained with cresyl violet (Sigma-Aldrich Chimie, Saint-Quen-

tin Fallavier, France), and examined to localize each recording and injection site with reference

to the mouse brain atlas [103]. Only data from animals with (i) correct location of the hippo-

campal electrode, (ii) correct histological features in the injected hippocampus [19] were used.

Gene expression microarray experiments

For the gene expression studies, KA- or saline-injected mice were decapitated at either 6h, 12h

or 24h post-treatment (n = 9/time-point/treatment, i.e., total = 54 samples). Their brain was

rapidly removed from the skull at 4˚C, the injected hippocampus was dissected, and the ante-

rior part was snap frozen in liquid nitrogen. The entire procedure was completed within 2

minutes.

Total RNA was extracted from dissected hippocampi using the Trizol extraction protocol as

previously described [31]. The RNA obtained from the hippocampus of 9 different mice for

each time point (6, 12, 24 hours post treatment) and treatment (KA or saline injection), was

used for the preparation of 3 different RNA pools for each set of conditions (time-point/treat-

ment), with each pool comprising the RNA of 3 different mice. Consequently, three biological

replicate pools were used for each set of conditions (time-point/treatment). Each RNA pool

was processed according to the recommended Affymetrix protocols for target preparation,

and hybridization to Affymetrix Mouse Genome 430 2.0 GeneChips (each containing 45,100

probe sets, representative of 39,000 transcripts and variants from over 34,000 well character-

ized mouse genes).

Identification of significant gene expression changes

The 18 data sets, originating from the 54 hippocampal samples, were first processed by the

Affymetrix GeneChip Operating Software (GCOS), and signal values (reflecting expression

levels) and “present/absent” calls (an Affymetrix computed measure representing confidence

in gene expression presence) were computed for each probe set. The raw microarray data gen-

erated during the current study are available at the Gene Expression Omnibus (GEO) reposi-

tory web site under the series number GSE88992.

For correlation coefficient analysis, r-values for overall, un-normalized gene expression sig-

natures were calculated for all 18 data set pairwise comparisons. All data sets were then nor-

malized to a slope of 1 with a reference data set (Sal 6hr-1). For filtering purposes, all the probe

sets in each dataset were assessed for present/absent calls and only those with�3 present calls

across the datasets of each time point were included in further analysis [106].

Significance Analysis of Microarrays (SAM) was used to identify significant fold changes

between KA and saline injected hippocampi, for each post-injection time-point, as described

[107]. A two-class unpaired data analysis was performed using a Δ threshold of 4.6–4.8 [the

“Δ” parameter enables the user to examine the effect of the false-positive rate in determining

significance] and a fold threshold of 2 [where “fold” is calculated as (average expression in KA

injected specimens)/ (average expression in saline injected specimens)]. Probe sets were con-

sidered significantly changed in KA compared with saline samples if they were selected at a

median false discovery rate (FDR) cut-off of 0% [108].

Bioinformatical functional enrichment analysis

In order to discover functional enrichment amongst the differentially expressed probe sets of

each time point, the geneXplain platform (geneXplain 2.2 web edition) [http://www.

genexplain.com/] was utilized. The probe sets representing the significantly changed tran-

scripts (fold change� |2|, FDR = 0%) were subjected to the “Mapping to ontologies
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(TRANSPATH1)” workflow, which aids the classification of an input gene set to ontologies,

whilst identifying terms that are overrepresented in the dataset. The functional classification

was done according to the Gene Ontology (GO) categories “Biological process”, “Cellular com-

ponent”, and “Molecular function”. All different levels of GO terms were assessed.

Bioinformatical upstream regulator analysis

The significantly overexpressed transcripts (fold�2, 0% FDR) at the 24h time point were sub-

jected to the “Master regulators in networks (TRANSPATH1)” workflow (geneXplain 2.2

web edition) to identify common signaling molecules upstream of the significantly changed

genes [109,110]. This process perceives each upstream reaction as one distinct “step”, and

results in the identification of “key nodes” or regulatory molecules that are up to ten (10) steps

upstream of the input molecules. The regulatory molecules, namely “master regulators” or

upstream regulators, are common for multiple genes of the input list. For each master regula-

tor, the FDR, Specificity Score and Z-Score were calculated. FDR represents the probability for

a given master regulator to occupy the observed or higher ranks by random chance, and the

Z-Score is used as a measure of statistical significance (calculated as the deviation of the

observed rank for each key node from the expected rank by random chance, divided by the

standard deviation). The Specificity Score, referred to as “Score”, expresses the ratio of true

positives to false positives for a given key node. Master regulators with FDR<0.05 were

considered statistically significant, and the cutoff thresholds applied were Score >0.2 and

Z-Score >1.

MicroRNA in silico analysis

In order to identify microRNAs that may act as regulators of gene expression, the “Validated

module” of miRWalk 2.0 database was utilized (Dweep, 2015). In detail, the official Gene sym-

bols corresponding to the significantly changed transcripts (fold change� |2|, FDR = 0%) at

24h post KA were submitted to the “Validated gene-microRNA interaction information

retrieval system”, which performs elaborate data mining across the PubMed scientific litera-

ture, to retrieve experimentally validated microRNA-mRNA interactions for the input set of

transcripts.

Real-time quantitative RT-PCR analysis

Total RNA was quantitatively and qualitatively assessed using the Nanodrop ND-100

(Thermo, Wilmington, DE) and 1% agarose gel electrophoresis, respectively. All samples had a

28S:18S ribosomal RNA ratio equal to 2:1. The cDNA synthesis (Promega, Madison, WI)

involved 0.4 μg RNA samples in 20 μl reactions. Duplicate real-time quantitative reverse tran-

scriptase qRT–PCR reactions were run on the ABI prism 7900HT, using the SYBR green mas-

ter mix (Applied biosystems, Foster City, CA) ROX as a passive reference dye for signal

normalization across the plate and Gapdh as a reference control transcript. The annealing tem-

perature was 60˚C for all primers (S17 Table). Serial dilution of samples served to evaluate

primer efficiency and determine the cDNA concentration that yields linear changes. RT con-

trols verified lack of genomic DNA.

Fold change was calculated by the formula
2cyc:sal� cyc:kataget gene
2cyc:sal� cyc:kaGAPDH , where the cycle of amplification

of the non-treated sample (saline) was subtracted from the treated sample (kainate) as an expo-

nent of two for each transcript in question, divided by the same for the reference control

transcript.

All qRT-PCR experiments were performed by scientists “blind” to the microarray results.
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Statistical analysis

Following real-time quantitative RT-PCR, relative quantitation was calculated with the Δ Δ CT

method, using Gapdh as the reference gene for normalization purposes and the ΔCT values

were then expressed relative to the respective group of samples that served as baseline for each

set of comparisons. The significance threshold was set at p<0.05.

Supporting information

S1 Fig. Design of experiments conducted using the KA-MTLE mouse model. A total of 72

animals were used: 39 injected with KA, and 33 injected with saline as controls. EEG record-

ings were performed in 6 KA-injected animals. Hippocampal samples from 27 KA- and 27

saline-injected animals (3 different pools [biological replicates] of 3 mice/treatment/time

point; 3 time points: 6h, 12h, 24h post injection) were used for microarray and qRT-PCR anal-

yses. Hippocampal samples from 6 KA- and 6 saline-injected animals were used for histologi-

cal assessment of cell loss.

(TIF)

S2 Fig. GO biological processes (level 6) at 6h post KA injection. Level 6 GO Biological Pro-

cess terms via REVIGO for all the significantly changed transcripts detected by microarrays in

KA- versus saline-injected hippocampi at 6h post injection (SAM analysis, thresholds: fold

change> |2|, FDR = 0%; n = 9/time-point/treatment). Highly similar GO terms are linked by

edges and the line width indicates the degree of similarity. Increasing bubble color intensity is

associated with increased numbers of significantly changed genes in each GO term, while

increasing bubble size is associated with higher frequency of the GO term in the Gene Ontol-

ogy Annotation database (UniProt-GOA), i.e. higher frequency denotes a more general term.

Network images processed via Cytoscape.

(TIF)

S3 Fig. GO biological processes (level 6) at 12h post KA injection. Level 6 GO Biological

Process terms using REVIGO for all the significantly changed transcripts detected by microar-

rays in KA- versus saline-injected hippocampi at 12h post injection (SAM analysis, thresholds:

fold change > |2|, FDR = 0%; n = 9/time-point/treatment). Highly similar GO terms are linked

by edges and the line width indicates the degree of similarity. Increasing bubble color intensity

is associated with increased numbers of significantly changed genes in each GO term, while

increasing bubble size is associated with higher frequency of the GO term in the Gene Ontol-

ogy Annotation database (UniProt-GOA), i.e. higher frequency denotes a more general term.

Network images processed via Cytoscape.

(TIF)

S4 Fig. GO biological processes (level 6) at 24h post KA injection. Level 6 GO Biological

Process terms using REVIGO for all the significantly changed transcripts detected by microar-

rays in KA- versus saline-injected hippocampi at 24h post injection (SAM analysis, thresholds:

fold change > |2|, FDR = 0%; n = 9/time-point/treatment). Highly similar GO terms are linked

by edges and the line width indicates the degree of similarity. Increasing bubble color intensity

is associated with increased numbers of significantly changed genes in each GO term, while

increasing bubble size is associated with higher frequency of the GO term in the Gene Ontol-

ogy Annotation database (UniProt-GOA), i.e. higher frequency denotes a more general term.

Network images processed via Cytoscape.

(TIF)
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S1 Table. Significant gene expression changes detected by microarrays following SAM

analysis at 6 hours post-injection (thresholds:� 2 fold and 0% median FDR).

(PDF)

S2 Table. Significant gene expression changes detected by microarrays following SAM

analysis at 12 hours post-injection (thresholds:� 2 fold and 0% median FDR).

(PDF)

S3 Table. Significant gene expression changes detected by microarrays following SAM

analysis at 24 hours post-injection (thresholds:� 2 fold and 0% median FDR).

(PDF)

S4 Table. qRT-PCR validation of selected microarray statistically significant gene expres-

sion changes in KA-versus saline-injected hippocampi, with reference to Gapdh. (n/c: not

changed)

(PDF)

S5 Table. Significantly changed GO biological processes (level 6) at 6 hours post KA treat-

ment, using the "Mapping to ontologies (TRANSPATH1)" workflow. All significantly

changed genes at 6h were considered, and a threshold of p-value <0.05 was applied.

(PDF)

S6 Table. Significantly changed GO biological processes (level 6) at 12 hours post KA treat-

ment, using the "Mapping to ontologies (TRANSPATH)" analysis tool. All significantly

changed genes at 12h were considered, and a threshold of p-value<0.05 was applied.

(PDF)

S7 Table. Significantly changed GO biological processes (level 6) at 24 hours post KA treat-

ment, using the "Mapping to ontologies (TRANSPATH)" analysis tool. All significantly

changed genes at 24h were considered, and a threshold of p-value<0.05 was applied.

(PDF)

S8 Table. Significantly changed GO molecular functions (level 6) at 6 hours post KA treat-

ment, using the "Mapping to ontologies (TRANSPATH1)" workflow. All significantly

changed genes at 6h were considered, and a threshold of p-value <0.05 was applied.

(PDF)

S9 Table. Significantly changed GO molecular functions (level 6) at 12 hours post KA

treatment, using the "Mapping to ontologies (TRANSPATH1)" workflow. All significantly

changed genes at 12h were considered, and a threshold of p-value<0.05 was applied.

(PDF)

S10 Table. Significantly changed GO cellular components (level 5) at 6 hours post KA

treatment, using the "Mapping to ontologies (TRANSPATH1)" workflow. All significantly

changed genes at 6h were considered, and a threshold of p-value <0.05 was applied.

(PDF)

S11 Table. Significantly changed GO cellular components (level 5) at 12 hours post KA

treatment, using the "Mapping to ontologies (TRANSPATH1)" workflow. All significantly

changed genes at 12h were considered, and a threshold of p-value<0.05 was applied.

(PDF)

S12 Table. Significantly changed GO cellular components (level 5) at 24 hours post KA

treatment, using the "Mapping to ontologies (TRANSPATH1)" workflow. All significantly

Altered glial functions in epileptogenesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0201742 August 16, 2018 19 / 26

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201742.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201742.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201742.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201742.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201742.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201742.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201742.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201742.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201742.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201742.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201742.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201742.s016
https://doi.org/10.1371/journal.pone.0201742


changed genes at 24h were considered, and a threshold of p-value<0.05 was applied.

(PDF)

S13 Table. Significantly changed GO molecular functions (level 6) at 24 hours post KA

treatment, using the "Mapping to ontologies (TRANSPATH1)" workflow. All significantly

changed genes at 24h were considered, and a threshold of p-value<0.05 was applied.

(PDF)

S14 Table. Predicted statistically significant upstream regulators of the 24h gene expres-

sion changes. The analysis was performed using the "Master regulators in networks (TRANS-

PATH1)" workflow, for all the significantly changed transcripts at 24h, applying the

thresholds FDR<0.05, Score >0.2 and Z-Score >1. The predicted upstream regulators were

filtered to exclude those that did not present with statistically significant overexpression them-

selves at 12h or 24h. The number and symbol of their respective significantly overexpressed

downstream gene targets at 24h is included. (n/c: not changed)

(PDF)

S15 Table. Experimentally validated mRNA-microRNA interactions for the underex-

pressed genes at 24h, according to the miRWalk search tool. The microRNAs are sorted by

descending number of target genes in the dataset.

(PDF)

S16 Table. Experimentally validated mRNA-microRNA interactions for the overexpressed

genes at 24h, according to the miRWalk search tool. The microRNAs are sorted by descend-

ing number of target genes in the dataset.

(PDF)

S17 Table. Primer sequences used for the evaluation of gene expression by qRT-PCR analy-

sis.

(PDF)
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