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Abstract

Neural activity is coordinated across multiple spatial and temporal scales, and these patterns of coordination
are implicated in both healthy and impaired cognitive operations. However, empirical cross-scale investiga-
tions are relatively infrequent, because of limited data availability and to the difficulty of analyzing rich multivar-
iate datasets. Here, we applied frequency-resolved multivariate source-separation analyses to characterize a
large-scale dataset comprising spiking and local field potential (LFP) activity recorded simultaneously in three
brain regions (prefrontal cortex, parietal cortex, hippocampus) in freely-moving mice. We identified a constella-
tion of multidimensional, inter-regional networks across a range of frequencies (2–200Hz). These networks
were reproducible within animals across different recording sessions, but varied across different animals, sug-
gesting individual variability in network architecture. The theta band (;4–10Hz) networks had several promi-
nent features, including roughly equal contribution from all regions and strong inter-network synchronization.
Overall, these findings demonstrate a multidimensional landscape of large-scale functional activations of corti-
cal networks operating across multiple spatial, spectral, and temporal scales during open-field exploration.
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Significance Statement

Neural activity is synchronized over space, time, and frequency. To characterize the dynamics of large-
scale networks spanning multiple brain regions, we recorded data from the prefrontal cortex, parietal cortex,
and hippocampus in awake behaving mice and pooled data from spiking activity and local field potentials
(LFPs) into one data matrix. Frequency-specific multivariate decomposition methods revealed a cornucopia
of neural networks defined by coherent spatiotemporal patterns over time. These findings reveal a rich, dy-
namic, and multivariate landscape of large-scale neural activity patterns during foraging behavior.

Introduction
Neural activity is coordinated across multiple spatial

and temporal scales, ranging from spike-timing correla-
tions across pairs of neurons (Gray et al., 1989) to resting-
state fMRI networks (Gusnard et al., 2001), and from
ultra-fast 600Hz v oscillations in primary sensory cortex
(Timofeev and Bazhenov, 2005) to infra-slow fluctuations
linked to 0.05-Hz oscillations in the gastric system
(Richter et al., 2017). Coordinated activity is thought to

allow for neural circuits to maximize communication effi-
ciency, multiplex information, flexibly route information
flow, and functionally bind cell assemblies (Singer, 2009;
Jensen and Mazaheri, 2010; Wang, 2010).
However, most neuroscience investigations are limited

to a single spatial scale [e.g., action potentials or local
field potential (LFP)], and cross-scale investigations are
often based on univariate or bivariate measures (e.g., co-
herence between action potentials from one neuron with
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the LFP recorded on the same or different electrode;
Pesaran et al., 2018). Mass-univariate and mass-bivariate
approaches have been crucial to the development of neu-
roscience, for example, understanding computational
principles such as neural tuning (Hubel and Wiesel, 1959;
Carandini, 2005; Hebart and Baker, 2018) and inter-re-
gional synchronization (Fries et al., 2001). However, these
approaches may obscure spatiotemporal patterns em-
bedded across populations of neurons within and across
brain regions (Kriegeskorte and Kievit, 2013; Cunningham
and Yu, 2014; Ritchie et al., 2019; Williamson et al., 2019).
In contrast, multivariate data analysis methods have

proven useful at identifying spatially distributed patterns
that reflect lower-dimensional dynamics or that encode
sensory representations or memories (Pang et al., 2016).
Furthermore, correlational patterns may provide a “con-
textual activation” that shapes subsequent local compu-
tations (Cohen and Kohn, 2011; Priesemann et al., 2014;
Kohn et al., 2016; Alishbayli et al., 2019).
Multivariate analyses are often used to identify “func-

tional networks” in the brain. Network neuroscience is re-
ceiving growing attention in the literature (Bassett and
Sporns, 2017; Bassett et al., 2020), because of its poten-
tial for revealing patterns and dynamics in the brain that
might be inaccessible in univariate analyses. Although the
term functional network does not have a specific and
widely agreed-on definition (Power et al., 2011), we use
that term to indicate a set of data channels that are com-
bined in a way that maximizes their time series covariance
patterns.
In the present study, a recently developed set of multi-

variate methods [generalized eigendecomposition (GED);
Cohen, 2017] enabled us to discover multiscale, inter-re-
gional functional networks during active behavior, by
combining data from multiunits and LFPs. We found a sa-
lient, empirical grouping of the networks into a small num-
ber of frequency bands (average of 7). Within each
frequency band, multiple subnetworks were both simulta-
neously and independently active. Some networks (e.g.,
in theta) were spatially distributed across the brain, while
other networks (typically in higher frequencies) were more
localized to one or two regions. Spiking activity contrib-
uted less systematically to brain-wide networks com-
pared with LFP. The analyses revealed both idiosyncratic
and reproducible network characteristics within-animals
and across-animals, which suggests that the spatial orga-
nization of large-scale networks is subject to individual

variability. Overall, our findings reveal a complex land-
scape of dynamic neural activity that spans multiple spa-
tial, spectral, and temporal scales.

Materials and Methods
Data acquisition
Six male mice with Bl57/6jbackground (B6;129P2-

Pvalbtm1(cr)Arbr/J or Ssttm2.1(cre)Zjh/J) between four
and fivemonths of age, weighing between 27 and 34 g,
were used in this study. All experiments were approved
by the Dutch central commission for animal research
(Centrale Commissie Dierproeven) and implemented ac-
cording to approved work protocols from the local
University Medical Centre animal welfare body (approval
number 2016-0079).
Each animal was implanted with 32 electrodes divided

into three regions of the brain (see Fig. 1A): 16 electrodes
targeted to the prefrontal cortex [spread in the coordi-
nates anterior-posterior (AP): 0.5 and 1.5; medial-lateral
(ML): 0.25 and 0.75; in three columns of electrodes in dif-
ferent depths: 2.0, 1.5, and 1.0], eight electrodes targeted
to the parietal cortex [AP: �2 and �2,25; ML: 1.0 and
1.75; dorsal-ventral (DV): 0.5], and eight electrodes tar-
geted to the hippocampus (AP: �2 and �2,25; ML: 1.0
and 1.75; DV: 0.5). Interelectrode distance was 250mm
and typical impedances were between 0.1 and 0.9 MV.
More details about how to build these kinds of custom-
designed electrodes are presented elsewhere (França et
al., 2020). A metal reference screw was placed on the
skull over the cerebellum (AP: �5, ML: 1.0, DV: 0.5), which
was lowered until contact with the cerebrospinal fluid but
avoided contact with the superior sagittal sinus and infe-
rior cerebellar vein. Offline, an average reference was
computed for each brain region and subtracted from each
electrode in the corresponding region.
Although the anatomic targets were identical in all ani-

mals, minor differences in implantation and in individual
brain anatomy mean that the electrode recording tips may
have been in slightly different cortical and hippocampal
fields in different animals.
Animals were recorded in the sessions depicted in

Figure 1B. The recording sessions alternated between
their familiar home cage and an unfamiliar location that
contained novel objects. In particular, each mouse went
through the same succession of six experiment sessions.
(1) Home cage recording of 5min. (2) Training phase of
10min, in which the animal was placed in an unfamiliar
environment that contained two novel objects. (3) Home
cage recording of 5min. One hour then passed (in the
home cage) with no recordings. (4) Home cage recording
of 5min. (5) Testing phase, in which the animal was re-
turned to the unfamiliar environment that contained one
object seen during the training phase and one novel ob-
ject. (6) Home cage recording of 5min. Mice were con-
nected via electrode fibers to the data acquisition board
via a cable that hung from top of the Faraday cage, but
were otherwise unrestrained. There was no particular task
or objective that was trained, nor were any rewards
provided.
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Figure 1. Overview of recording locations, task design, data analysis, and sample data. A, 32-channel custom-designed electrode
array (HIP: hippocampus; PAR: parietal cortex; PFC: prefrontal cortex). The line drawing underneath illustrates the approximate lo-
cations of the electrodes on a sagittal slice. B, Task flow and timing (HC1-4: home cage sessions 1-4; TR: training; TE: testing). The
red diamonds and green square indicate objects placed in the arena. The picture underneath is from a camera placed overhead.
C1, A data matrix with combined LFP and multiunits (smoothed with a 30-ms FWHM Gaussian) from three different regions. C2,
Data covariance matrices for the data snippet shown in C1, either narrowband-filtered (S) or broadband (R). A generalized eigende-
composition of these two matrices (panel C3) provides a set of eigenvectors (w) and corresponding eigenvalues (l ), from which
three pieces of information are extracted: The component spatial map (the eigenvector multiplied by the covariance matrix), the
component time series (the eigenvector multiplied by the data matrix), and the separability of narrowband vs. broadband activity
(the eigenvalue for one frequency; the eigenvalues over frequencies creates an eigenspectrum). Illustrated here is one eigenvalue
solution for one frequency; in practice, the number of solutions (w/l pairs) corresponds to the number of data channels, and this en-
tire procedure is repeated across a range of frequencies. D, Multiple components can be isolated from each frequency, with distinct
temporal dynamics. Example component power time series are illustrated from 20 seconds of a recording; each row corresponds to
a distinct component. Frequency groups are based on empirical frequency boundaries (described later) and components are sorted
within each frequency band based on total component energy.
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Mice tended to explore the objects for brief periods of
time (hundreds of milliseconds to seconds), whereas our
data analysis approach used longer windows for temporal
filtering and averaging to ensure high signal-to-noise
quality. We therefore focused on possible state changes
across the different task sessions, as opposed to time-
locking to the on/offsets of transient object exploration
periods.
LFP data were down-sampled to 1000Hz. Excessively

noisy channels, determined based on visual inspection,
were removed (0–4 per recording session; average of 1.2).
Independent components analysis (ICA) was run using
the eeglab toolbox (Delorme and Makeig, 2004) and the
jade algorithm (joint approximation diagonalization of
eigen-matrices), which defines components by maximiz-
ing kurtosis (the fourth order statistical moment used to
index non-Gaussianity; Cardoso, 1999). Components
clearly identifiable as non-neural origins were projected
out of the data. Non-physiological noise components are
characterized by sharp transients or slow deflections that
are usually several orders of magnitude larger than the
neural dynamics, and are therefore identified by visual in-
spection using the data viewer in eeglab. We removed, on
average 1.9 (range: 0–5) components per dataset, out a
maximum of 32. The recording sessions began and
ended with some contact with the experimenter, and we
therefore excluded the first and last 10 s of each recording
session to exclude possible artifacts and neural activity
patterns associated with being handled or moved into or
out of the box.
Data and MATLAB analysis code are available at

https://data.donders.ru.nl/collections/di/dcmn/DSC_
4546_462.

Spike-sorting andmultiunit extraction
The raw (30 kHz) voltage recordings were regional-aver-

age-referenced to eliminate possible volume-conduction
artifacts, and were then filtered between 300 and 6000Hz
using a zero phase-shift FIR1 filter kernel. Spike-sorting
was done for each electrode separately given the intere-
lectrode spacing of 250mm, which makes it unlikely to ob-
serve the same neuron on multiple electrodes. Indeed, we
did not find excessive correlations across units from dif-
ferent electrodes (see Extended Data Fig. 1-1 for an ex-
ample between-unit correlation matrix).
Because our goal here was to obtain information about

neural spiking activity as it related to the population and
to LFP dynamics, rather than evaluating tuning properties
of individual neurons, we chose an automatic spike-sort-
ing approach that separated multiunits from noise or arti-
facts (Trautmann et al., 2019). We therefore term these
signals “multiunit” to indicate that the resulting time series
may reflect a mixture of action potentials from multiple
neurons.
Multiunits were extracted via a general-purpose spike-

sorting suite (autoSort, available via our open code repos-
itory https://bitbucket.org/benglitz/controller-dnp/src/
master/Access/SpikeSorting/), implemented in MATLAB.
Briefly, autoSort performs the following sequence of

steps to achieve automatic and unbiased sorting of neural
signals:

• Candidate spike waveforms (“spikes”) were detected
based on a negative threshold of 4 SDs of the back-
ground noise (estimated as 1.48 times the median ab-
solute deviation, to avoid artifacts that inflate the SD).

• Candidate spikes were then aligned to their minimum
after the trigger and cut out within a window of
[–0.7,1.2] ms relative to the alignment time.

• Principal components analysis (PCA) was performed
on a random subset of spikes (NS = 5000 per record-
ing) to estimate a projector to a six-dimensional sub-
space that retained most of the variance in the data.

• Hierarchical clustering (based on Ward distance) with
a set maximal number of clusters (NC = 3) was per-
formed on this representation, and all spikes beyond
the NS selection were assigned to these clusters on
the basis of their Euclidean distance to the cluster
centers.

• Clusters were then post hoc automatically selected
and fused on the basis of the shape and similarity be-
tween their average waveforms, i.e. (1) clusters were
excluded if they had no significantly positive “hump”
after the negative alignment peak, if they had a signifi-
cantly positive peak before the negative alignment
peak, or if the waveform was longer or larger than ex-
pected for an extracellular spike; and (2) clusters were
fused if the correlation and Euclidean distance be-
tween their average waveforms were above or below
preset thresholds, respectively.

These steps and criteria led to an extraction of 0–2 mul-
tiunits per electrode. The average rate of spikes per sec-
ond from all animals and recordings was 13.2 (SD 5.9,
minimum 0.07, maximum 51.6). A binary spike time series
was constructed for each multiunit, and smoothed with a
30-ms full-width at half-maximum Gaussian to create a
continuous signal. This continuous signal was entered
into the data matrix as one channel (Fig. 1C).

Frequency-specific components using GED
We followed existing procedures for extracting multi-

variate components that have been detailed and validated
in several previous publications, based on the mathemati-
cal framework of GED. Using ground-truth simulations, it
has been shown that GED is more accurate and robust to
noise compared with other common multivariate methods
such as PCA and ICA (Tomé, 2006; Nikulin et al., 2011; de
Cheveigné and Parra, 2014; Cohen, 2017). A brief over-
view of the analysis procedure is provided here.
The goal is to identify a spatial filter that provides a sca-

lar weight for each data channel (LFP and multiunits) such
that the weighted sum of narrowband-filtered channel
time series is maximally different from the broadband
channel time series. The method is based on data covari-
ance matrices because they contain all pairwise linear re-
lationships, making the method multivariate. As described
below, two covariance matrices are compared, one matrix
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(R) based on the broadband (non-temporally filtered)
data, and one matrix based on the narrowband filtered
data (S).
Channel-by-channel covariance matrices were created

by multiplying the mean-centered data matrices by their
transpose. To increase covariance stability, we cut the
continuous data into a series of non-overlapping 2-s seg-
ments, and computed the covariance matrix of each seg-
ment. The even-numbered epochs were used to create
the S (signal) covariance matrix and the odd-numbered
epochs were used to create the R (reference) covariance
matrix. This was done to have non-identical data across
the two matrices. After computing covariance matrices
for each segment (there were around 70 segments in the
home cage sessions and 140 segments in the training/
testing sessions), the average covariance matrices S and
R were computed across segments. Euclidean distance
from each individual covariance matrix to the average
was computed (this is equivalent to the Frobenius norm of
the matrix difference), and any segments with a distance
.3 SDs from the average were excluded, and the final co-
variance matrix was re-computed without the outliers. On
average, 0.85% of covariance matrices were excluded
per analysis (range: 0–3%).
To create the spatial filter per frequency, we start from

maximizing the Rayleigh quotient:

Wmax ¼ argmax
w

WTSW

WTRW
; (1)

where S and R are channel covariance matrices ob-
tained from the narrowband filtered data and the broad-
band data, respectively (Fig. 1C). One can think of
Equation 1 as a multivariate signal-to-noise ratio, and the
goal is to find a channel vector w that maximizes this
ratio. The solution comes from a generalized eigenvalue
decomposition on the two matrices:

SW¼RWK: (2)

The diagonal matrix K contains the eigenvalues, each of
which is the ratio of Equation 1 for the corresponding col-
umn of W, which is a matrix in which the columns are the
eigenvectors. Thus, we obtain m spatial filters for an m-
channel dataset. The solutions are linearly independent
from each other, though they are not constrained to be or-
thogonal as with PCA (this is because eigenvector ortho-
gonality is guaranteed only for symmetric matrices, and
R�1S is non-symmetric). Equation 2 is repeated for a
range of temporal frequencies (see below), each using a
different Smatrix (the covariance matrix created from nar-
rowband filtered data) with the same Rmatrix.
A small amount of shrinkage regularization (1%) was

applied to the R matrix to improve the quality of the de-
composition (Lotte and Guan, 2011). In our experience,
1% shrinkage has no appreciable effect on decomposi-
tions of clean, full-rank, and easily separable data, and
considerably improves the decompositions of noisy or re-
duced-rank data. In Equation 3 below, g is the amount of
shrinkage (0.01, corresponding to 1%), a is the average of
all eigenvalues of R, and I is the identity matrix:

~R ¼ ð1� gÞR1gaI: (3)

In Results, we refer to each spatial filter as a “compo-
nent,” and when speculating on the interpretation of these
components, we use the term “network” to indicate that
each component reflects a combination of data channels
that maximizes a covariance pattern, which is consistent
with the idea of a functional network (Bassett and Sporns,
2017; Power et al., 2011). The component time series was
obtained by multiplying w by the channels-by-time data
matrix (this is how the eigenvector acts as a spatial filter).
For all signals, any time series values exceeding 4 SDs
from the mean of the time series were excluded, which re-
duced the possibility of residual non-representative data
from influencing the results. The component map was ob-
tained by multiplying w by the S covariance matrix (Haufe
et al., 2014).
The component map is anatomically interpretable as

the projection of the spatial filter. However, the eigenvec-
tors w have higher spatial frequency characteristics be-
cause they invert volume conduction and suppress
irrelevant channels. We therefore used the correlations of
eigenvectors across frequencies to define empirical fre-
quency bands (Cohen, 2021). This was implemented by
identifying clusters in the matrix of squared correlations
across the top eigenvector from all frequencies using the
dbscan algorithm. Unlike some clustering methods such
as k-means or hierarchical clustering, dbscan does not
necessarily assign each frequency to a cluster. Thus,
clusters are formed only if strong correlations are present,
and frequencies without strong intercorrelations are left
unclustered. As shown in Figure 3, this grouping was
quite salient in the data. After identifying empirical fre-
quency boundaries within each recording session, a sub-
sequent k-means clustering was performed to identify
consistencies in frequency boundaries across sessions
and animals.
The entire procedure described above was repeated in-

dependently for each animal, experiment session, and fil-
tering frequency. This allowed us to examine the
reproducibility of the components both within and across
animals.
Data were temporally narrowband filtered by convolu-

tion with a Morlet wavelet, defined here as a Gaussian in
the frequency domain (Cohen, 2019). Extracted frequen-
cies ranged from 2 to 200Hz in 100 logarithmically
spaced steps. The full-width at half-maximum of the
Gaussian varied from 2 to 5Hz with increasing frequency.
The multiunit channels were not narrowband filtered (they
were already smoothed with a 30-ms Gaussian). Any
large-scale spike-field coherence patterns would manifest
as cross-channel terms in the frequency-specific covari-
ance matrices.
We computed a “region bias score” to determine

whether the components were driven by one region or
whether all regions contributed to the component. This
was quantified as the square root of the average of the
squared eigenvector elements per region. That produced
a three-element vector, which we normalized to sum to 1.
The region bias score was defined as the Euclidean dis-
tance between this empirical vector and an “ideal shared
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region” vector of [1 1 1]/3. The idea is that if all brain re-
gions have average eigenvector components that are
equal in magnitude, then that vector will be close to [1 1
1]/3, and thus the empirical distance to the ideal vector
will approach zero. As one or two regions start to domi-
nate the component, the normalized average eigenvector
elements vector (e.g., producing an empirical vector of
[0.6 0.3 0.1]) will move further away from the ideal vector.
The maximum possible distance is 1.
Subspace dimensionality was computed via permuta-

tion testing. The ability to derive inferential statistical val-
ues is one of the important advantages of GED over
descriptive decompositions such as PCA or ICA. The idea
here was to generate a distribution of maximal eigenval-
ues that could be expected under the null hypothesis that
S and R contain the same information (note from Eq. 1
that the expected eigenvalue under the null hypothesis is
1, but maximum eigenvalues could be larger because of
sampling variability). In the real data, each 2-s data seg-
ment has two covariance matrices: one from the narrow-
band filtered signal and one from the broadband signal.
To generate null-hypothesis eigenvalues, we randomly
assigned each covariance matrix to average into the S or
R covariance matrices. GED was performed and the larg-
est eigenvalue was stored. This procedure (randomizing
covariance matrices into S or R and storing the largest ei-
genvalue) was repeated 200 times for each frequency.
Finally, the maximum of the largest eigenvalues was
taken as the most extreme eigenvalue that can be ex-
pected under the null hypothesis that there are no differ-
ences between the S and R matrices (per frequency). The
number of actual eigenvalues (from the analysis without
shuffling) above this extreme H0 value was taken as
the dimensionality of the subspace. Note that this

permutation method accounts for multiple comparisons
over M components because it selects the most extreme
value of M components on each iteration. Cleaning the
covariance matrices via Euclidean distances was per-
formed during permutation testing as described above.
Entropy was computed for each data channel using

k=40 bins for discretization:

H ¼
Xk

i¼1

yilog2yi: (4)

Finally, within-frequency, intercomponent phase syn-
chronization was computed via the weighted phase-lag
index (Vinck et al., 2011), which is a modification of phase
synchronization designed to remove any possible arti-
facts of volume conduction. This was important for our
analyses because all networks were derived by different
weightings of the same channels, and because the sepa-
rate components at the same frequency were not con-
strained to orthogonality.

Distribution shape via kurtosis
Non-Gaussianity is considered an indicator of an informa-

tion-rich signal. This comes from the central limit theorem,
which leads to the assumption that randomnoise, and random
linear mixtures of signals, will produce Gaussian distributions.
We therefore quantified the kurtosis (4th statistical moment of
a distribution; the kurtosis of a pure Gaussian distribution is 3)
as a measure of the non-Gaussianity of the component time
series. We computed kurtosis for the narrowband filtered sig-
nal and its amplitude envelope at each component.
Component time series kurtosis was computed as the

4th statistical moment of the component time series. We

Figure 2. Generalized Eigendecomposition enables spectrally resolved source separation across 3 areas for a single recording. A,
Spatial maps over all three regions per frequency (each column corresponds to one frequency). The thick horizontal dashed lines
show inter-regional boundaries, and thin horizontal dashed lines show within-region boundaries between LFP (top) and multiunit
(bottom) channels. Within-region rows are ordered according to the channel index in the dataset, not according to anatomical loca-
tion. The colors indicate the strength of the contribution of that channel to the brain-wide component (data were per-frequency nor-
malized prior to GED, so the color values are comparable across frequencies), vertical dashed lines show the empirically defined
frequency boundaries (detailed later): red lines indicate the lower bounds of the frequency band and blue lines indicate the upper
bounds. B, Eigenspectra from the largest three components per frequency, which highlights that there can be multiple separable
components at the same frequency. The map in panel A is only for the top eigenspectrum (blue line). C, Example topographical
maps of the anatomical distribution of the filter projections for the indicated frequency ranges. Each black dot is the location of an
electrode. In all columns, medial is to the left and anterior is to the top.
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extracted kurtosis from both the real part of the narrow-
band signal and the amplitude envelope (extracted via the
Hilbert transform). The amplitude envelope had overall
higher kurtosis (Extended Data https://doi.org/10.1523/
ENEURO.0494-20.2021.f2-1), which is not surprising
considering that amplitude is a strictly non-negative
quantity.
Nearly all frequencies had kurtosis higher than 3, indicating

leptokurtic distributions characterized by narrow peaks and
fatter tails. This is consistent with suggestions that brain activ-
ity is characterized by extreme events and long-tailed distribu-
tions (Buzsáki and Mizuseki, 2014). Curiously, all six animals
exhibited a dip in kurtosis in the theta band (;9 Hz) (Extended
Data https://doi.org/10.1523/ENEURO.0494-20.2021.f2-1B),
indicating a platykurtic distribution with data values clustered
towards zero and relatively fewer data points having extreme
values (the tails of the distributions) (Extended data https://doi.
org/10.1523/ENEURO.0494-20.2021.f2-1C). This may be re-
lated to the known sawtooth-like shape of hippocampal theta
(Scheffer-Teixeira and Tort, 2016.
Note that unlike independent components analysis,

GED is based purely on the signal covariance (second
moment) and not on any higher-order statistical moments.
Thus, non-Gaussian distributions are not trivially imposed
by the decomposition method, but instead arose from the
data without bias or selection.

Results
Data matrices and narrowband source separation
We created channels X time data matrices with 50–80

channels per animal (28–32 LFP channels plus all detected
multiunits; Fig. 1), and applied a dimensionality-reduction and
guided source-separation method that isolates features of
the data that maximally separate narrowband from broad-
band activity based on GED of covariance matrices (Cohen,
2017). GED was applied after narrowband filtering the data
from 2 to 200Hz in 100 logarithmically spaced steps, produc-
ing a succession of narrowband components. Each compo-
nent is a weighted average of channels that maximizes
energy at that frequency. There are multiple components per
frequency that were sorted according to their eigenvalue,
which encodes the separability between the narrowband and
broadband energy.
Figure 2 illustrates results from one example recording

session. This example highlights several consistent fea-
tures that are expanded on later, including (1) different fre-
quencies engage different electrodes across different
regions; (2) some frequencies (e.g., theta) recruit multire-
gional networks whereas other frequencies preferentially
engage one or two regions; (3) large-scale networks were
dominated by LFP whereas multiunits made relatively little
(though significant) contributions; (4) the local regional

Figure 3. Distinct frequency bands separate clearly in the LFP data with specific spectrotemporal profiles. A, R2 correlation matrix
across all pairs of frequency-specific eigenvectors, with pink boxes drawn around empirically derived clusters (based on the dbscan
algorithm), from one recording. The cluster boundaries separate spatially distinct topographies across different frequency ranges.
B, Topographical maps of the spatial filter from the frequency bands in panel A. White/black numbers indicate corresponding
bands/maps. C, Aggregated results of the number of empirical frequency bands per experiment session (H1-4 indicate home ses-
sions; Tr indicates training session; Te indicates test session). Error bars show standard deviations across the six animals. D,
Center frequencies for each group as defined by k-means clustering analysis over animals. Error bars show standard deviations
across 100 repeats of the k-means clustering algorithm with different random initializations, and the numbers above each data point
shows the average center frequency from that band.
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referencing ensured that the components reflected the
coordination of multiple local dipoles (seen as the balance
between blue and red colors in the map) instead of long-
range volume-conducted fields. The components time se-
ries had non-Gaussian distributions, indicative of true sig-
nals rather than noise, which is expected to be Gaussian-
distributed (Extended Data Fig. 2-1).

Empirically derived frequency bands
Electrophysiology data are often grouped into fre-

quency bands according to integer boundaries (e.g., 4–
10Hz), which may miss, artificially separate, or artificially
combine the rhythms naturally occurring in the brain.
We therefore applied a recently established method
(gedBounds) to derive empirical frequency bands based
on the definition of a “frequency band” as a range of fre-
quencies that have highly correlated spatiotemporal dy-
namics (Cohen, 2021). GedBounds works by clustering
the matrix of squared correlations across the eigenvec-
tors from all frequencies (Fig. 3A). It is a purely data-driven
alternative to labeling frequencies based on a priori
expectations.
This analysis revealed an average of seven bands in the

range of 2–200Hz (Fig. 3B). The number of frequency
bands was not significantly different between experiment
sessions (one-way ANOVA, F(5,25) = 0.45). Average center
frequencies were computed by k-means clustering on the
empirical frequencies. Because k-means can produce dif-
ferent clusters on each run, we re-seeded the clustering
100 times. The average cluster center frequencies, along

with their SDs, are shown in Figure 3D. The dbscan algo-
rithm used to identify clusters within each dataset groups
frequencies together only when strong correlations are
present (Cohen, 2021), and there is no constraint that
neighboring frequencies belong to the same cluster.
Thus, the consistency in number of bands, and the boun-
daries of those bands, across sessions and animals is not
a trivial result of forcing each frequency to belong to its
neighbor’s cluster.
These results show that grouping electrophysiology

time series into spectral bands has an empirical basis
and is not arbitrary or an artifact imposed by narrowb-
and filtering. The empirically derived frequency ranges
varied over animals and task sessions, and were not sys-
tematically affected by the task session. However, we
treated frequency as a continuous variable in subsequent
analyses rather than grouping into discrete bins.

Component reproducibility
The anatomic targets of the electrode implants were

identical in all animals. However, individual variability in
functional organization can mean that the GED patterns
are idiosyncratic and thus different across animals.
Likewise, if the spatiotemporal patterns that GED isolates
reflect stable features of the brain, then the patterns
should be highly similar in different experiment sessions
within the same animal. On the other hand, it is possible
that the spatiotemporal patterns are dynamic and are
more affected by cognitive factors than by individual
differences.

Figure 4. Component topographies are reproducible within animals in different sessions, yet differ across animals. A, R2 spatial cor-
relations per frequency. The analysis was run on the components with the largest eigenvalue per frequency (“top comp.”), and by
selecting the largest correlation amongst the top two components (“max”). B, Each individual correlation, separated according to
the experiment sessions from which the spatial map pairs were drawn (“T-T” indicates train-test pairs, “H-H” indicates home-home
pairs). Black bars indicate the mean R2. The color of each dot is the average of the eigenvalues of the component pair (which indi-
cates the separability of the narrowband from broadband signals), and the r-value on top of each column is the correlation between
the spatial map R2 and the average eigenvalue.
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To address questions about component map reliability,
we measured map reproducibility, quantified as spatial
correlations, both across experiment sessions within
each animal, and in the same session across animals.
When pooling across all experiment sessions, we ob-
served robust within-animal component topographies (R2

spatial correlations in the range of 0.4–0.8 over the fre-
quency spectrum; see Fig. 4A). In contrast, spatial corre-
lations across animals were low, with averaged R2 values
below 0.2. Because the decompositions were performed
on the data from each session independently, this pattern
of results indicates that (1) the components were stable
within each animal over different sessions (over the
course of the ;2-h recording), and that (2) component
maps are idiosyncratic, with different spatial patterns in
different animals.
The spatial correlations described above were done

using only the component with the largest eigenvalue for
each session and each frequency. It is possible that the
same neurophysiological network was identified as “com-
ponent 1” in one experiment session and “component 2”
in a different session. We therefore modified the

correlation analysis to compute the four unique correla-
tions across the top two components from each session/
frequency, and stored only the largest correlation coeffi-
cient. Although this selection procedure is biased be-
cause we selected the strongest correlation out of a set,
the same bias was applied within-animals and across-ani-
mals. The correlations were overall stronger, but the con-
clusion is the same as when correlating only the top
components: spatiotemporal patterns were stable within
animals, and variable across animals.
We next assessed whether the maps were modulated

by the different experiment sessions by separating R2 val-
ues according to experiment session. Figure 4B, scatter
plots, shows all frequencies (each dot is an animal-fre-
quency pair), but we averaged frequencies together for
the statistics because Figure 4A indicates comparable re-
lationships across the frequency domain. We then tested
the correlation coefficients in a one-way ANOVA with the
factors train-test, home-home, and train/test-home. In
other words, we tested whether the maps were more
similar to each other when the animals were in a similar

Figure 5. All recorded regions contributed to the components per frequency, with some frequencies showing regional dominance.
A, The region bias index for each animal (A1) and averaged over animals for each experiment session (A2). Values close to 0 indi-
cate equal spread of components across all three brain regions, whereas values close to 1 indicate that a single region dominates
the component. B, The fraction of total component energy attributable to each region, normalized to the sum over all three regions
(thus, the sum per frequency is 1). Each panel is a different animal, averaged over experiment sessions. Patches indicate one stand-
ard deviation above and below the mean across sessions, which illustrates the reproducibility of these characteristics over time (six
sessions spanning 2 hours). All panels have the same tick marks and axis labels as the lower-left panel. The group-average regional
fractions are shown in panel C. Horizontal lines at 1/3 and 2/3 indicate equal contribution of all three regions to the component. D,
The modality dominance spectrum quantitatively showed that components were predominantly driven by LFP instead of by multiu-
nits. E, Entropy spectrum shows that LFP channels had higher entropy compared to the multiunits (multiunits’ entropy is the same
for all frequencies). F, The multiunits made significant contributions to the components over most frequencies except in the range of
20-90 Hz. Positive values indicate better separability when multiunits are included. The black line is the average over all animals,
and the surrounding patch indicates one standard deviation around that average. Red lines show significant changes relative to
zero at p,.05, FDR corrected for multiple comparisons over frequencies.
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experiment context. However, this effect was not statisti-
cally significant (F(2,10) = 2.17, p=0.16).
Inspection of the distribution of R2 values in Figure 4B

show considerable spread of the correlations, which was
only partially resolved by selecting the maximum correla-
tion of the top two components. We suspected that at
least some of this variation could be because of the sepa-
rability of the components from broadband. “Separability”
in a GED analysis is quantified as the eigenvalue, which is
the multivariate ratio between the narrowband from the
broadband covariance matrices along the direction of the
eigenvector. We therefore correlated the R2 values with
the average of the eigenvalues of each component-pair.
Most correlations between map-similarity and eigenvalue
were in the range of 0.1–0.2. Thus, it appears that, to
some extent, the narrowband components that are better
separated from the background spectrum are more likely
to be stable over time.

Region specificity of components
Given that our data matrices included signals from

three brain regions, we next determined whether the com-
ponents truly reflected inter-regional temporally coherent
networks, or whether they were driven by a single region.
This was assessed through a regional bias score, in which
a score of zero indicates exactly equal contributions from
all three regions, whereas a bias score of one indicates
that the component is driven entirely by one region with
no contributions from the other two regions (Fig. 5A).

The bias scores were mostly between 0.4 and 0.6 within
each animal (Fig. 5A), indicating that all three regions con-
tributed to the components to varying degrees. The fre-
quency range that stood out was theta, which exhibited a
notable dip in the bias score. Thus, all three brain regions
contributed to large-scale networks in the theta range.
This bias score is an aggregate measure; we next investi-

gated the contributions of each region to each frequency,
separately for each animal. Figure 5B shows both diversity
and commonalities in the regional contributions across the
different animals. In these plots, overlapping lines at y=1/3
indicates that all three regions contributed equally to the
components, whereas regional dominance is reflected by a
separation of lines on the y-axis. Figure 5C illustrates the
commonalities across all six animals that are identified
through averaging. For example, across animals, Pre-
Frontal Cortex (PFC) generally dominated the low-frequency
(,8Hz) networks whereas the hippocampus generally do-
minated high-frequency networks between 80–150Hz.

Contributions of LFP versus multiunits
We next investigated the relative contribution of spikes

and LFPs to the components. This was quantified as modal-
ity dominance (Zuure et al., 2020), which is the normalized
difference between the root-mean-square of the LFP eigen-
vector elements and the root-mean-square of the multiunit
eigenvector elements. A modality dominance value of zero
indicates equal contribution of LFP and multiunits, whereas
a value of one indicates no contribution of multiunits (a value
of –1 would indicate no contribution of LFP channels).

Figure 6. Generalized eigendecomposition reveals that narrowband subspaces are multidimensional (quantified as the number of
statistically significant components), and components within each frequency are partially synchronized but non- redundant. A-B,
Subspace dimensionality across animals (A) and experiment sessions (B). C, The distribution of all component dimensionalities, nor-
malized to percent of the maximum possible dimensionality (the rank of the covariance matrices), revealed that the narrowband
components spanned around 10% of the total possible signal dimensionality. D-F, Phase synchronization between the top two
components per frequency indicates both coordination and independence across within-frequency networks. Volume-conduction-
independent phase synchronization tended to decline with frequency except for a prominent peak in theta/alpha (;7-13 Hz) and a
smaller prominence in beta ((;15-30 Hz). The patterns were similar over different animals (D) and different sessions (E). F, Average
synchronization in the theta/alpha range for the different sessions.

Research Article: New Research 10 of 14

May/June 2021, 8(3) ENEURO.0494-20.2021 eNeuro.org



The modality dominance values were close to one
for all animals, recording sessions, and frequencies
(Fig. 5D). This was not attributable to a difference in
signal scaling between LFP and multiunits, because
all time series signals were normalized to a mean of 0
and a variance of 1. However, normalizing to the
first and second statistical moments does not pre-
clude the possibility of differences in higher-order
statistical characteristics. For example, the LFP chan-
nels had overall higher entropy (around 4 bits, aver-
aged over all channels, animals, and experiment
sessions) compared with the multiunits (1.7 bits on
average; Fig. 5E).
On the other hand, it was not the case that multiunits

made no contributions to the GED-identified networks.
We re-ran the source separation for each frequency, ex-
cluding all multiunits from the dataset, and computed a t
test at each frequency between the top eigenvalues from
the multiunit-including and multiunit-excluding datasets.
The difference was statistically significant (correcting for
multiple comparisons using the false discovery rate
method (Benjamini and Hochberg, 1995) for most fre-
quencies except around 30–90Hz (Fig. 5F).
Thus, the (Gaussian-smoothed) multiunits made a

minor although statistically significant contribution to the
matrix decomposition. This overall pattern is not surpris-
ing, considering that the LFP samples a larger volume and
thus more neurons. On the other hand, there were more
multiunit channels in the data matrix than LFP channels,
and many of our multiunits may have reflected a combina-
tion of several neurons; thus, we interpret this finding to
indicate that LFP signals are a richer source of information
regarding cross-regional network formation than are ac-
tion potentials.

Within-frequency component dimensionality
The eigenvectors from the GED analysis carve out a

low-dimensional subspace of narrowband activity, and
we defined the dimensionality of that subspace as the
number of eigenvalues that were larger than a significance
threshold based on a null-hypothesis distribution of ei-
genvalues derived from permutation testing (Zuure et al.,
2020).
The subspace dimensionality ranged from 2 to 16, and

generally increased with higher frequencies (Fig. 6A,B).
Higher dimensionality corresponds to the number of stat-
istically separable networks operating at the same fre-
quency. It is noteworthy that there is no pronounced
“bump” in the theta range (;4–10Hz).
Note that this measure is not the total dimensionality

of the signal; it is the dimensionality of the subspace
that differentiates narrowband from broadband activ-
ity. Normalizing these raw numbers to the total dimen-
sionality of the signal (assessed as the rank of the
corresponding data covariance matrix) revealed that
most narrowband subspaces occupied around 8–10%
of the total signal space (Fig. 6C).
We investigated the dynamics within these subspaces

by computing a volume-conduction-independent mea-
sure of phase synchronization (weighted phase lag index)

between the top two components for each frequency and
task session (note that GED eigenvectors are not con-
strained to orthogonality as with PCA, and thus within-fre-
quency components can be correlated as long as they
remain linearly separable). Synchronization strength var-
ied between around 0.2 and 0.6 depending on the fre-
quency, with strongest synchronization around theta and
a smaller departure from the 1/f decay around the
beta band (Fig. 6D–F). A repeated-measures ANOVA on
session differences in the 7- to 12-Hz range indicated no
main effect of task session (F(5,25) = 1.3, p=0.29).

Discussion
In this study, we explored multivariate LFP and multiunit

data from three brain regions in awake behaving mice
using a combination of established and novel multivariate
analysis methods to decompose the data into multiple
spatial-spectral-temporal modes. We found that these
were stable within each animal but variable across ani-
mals. These findings reveal a rich and multidimensional
landscape of brain dynamics that highlight the complexity
of on-going neural activity.

Feature-guided source separation identifies large-
scale narrowband networks
There are several dimension-reduction methods that

are regularly applied in neuroscience, including PCA and
ICA, factor analyses, and Tucker decompositions
(Cunningham and Yu, 2014). It is often unclear which al-
gorithms or which parameters are optimal (Cohen and
Gulbinaite, 2014), and different algorithms can give similar
or divergent results (Delorme et al., 2012; Cohen, 2017)
depending on their maximization objectives.
GED has several advantages, including that it (1) separates

narrowband from broadband activity while holding constant
behavioral, cognitive, and other factors; (2) reduces the im-
pact of artifacts or non-brain sources that have a relatively
wide frequency distribution; (3) is amenable to inferential sta-
tistical thresholding, whereas other decompositions are de-
scriptive and thus selecting components for subsequent
interrogation may be subjective or biased; (4) takes into ac-
count both spatial and temporal dynamics instead of only
spatial or only temporal features; (5) has higher signal-to-
noise ratio characteristics and is more accurate at recovering
ground truth simulations compared with PCA or ICA (Nikulin
et al., 2011; de Cheveigné and Parra, 2014; Cohen, 2017;
Zuure and Cohen, 2020).
An important finding here is the discovery that a single

frequency band can group multiple distinct but spatially
overlapping networks. In typical univariate or bivariate
analyses, the LFP from a single electrode is treated as an
independent statistical unit, based on the implicit as-
sumption that the volume of tissue recorded by an elec-
trode contains only one functional circuit. But a more
likely scenario is that each electrode records a mixture of
signals from multiple local circuits in the scale of hun-
dreds of microns to a few mm, particularly in the presence
of local coherence (Lindén et al., 2011). Thus, LFP is
prone to the same kind of source mixing that affects MEG
and EEG (Nunez and Srinivasan, 2006), although to a
lesser extent. This, however, is fortuitous for multichannel
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recordings, because it means that linear separation meth-
ods that have been established in the EEG community are
likely to be fruitful in invasive recordings.
The high reproducibility across sessions within each ani-

mal (Morrow et al., 2020), coupled with the low reproducibil-
ity across animals, suggests that the large-scale networks
that manifest as coordinated LFP dynamics develop in idio-
syncratic ways across different individuals. It is likely that at
least some of the lower reproducibility across animals can
be attributable to variability in surgical implantation and indi-
vidual anatomy. On the other hand, aggregating data across
animals based on a common xyz coordinate is standard
practice in neuroscience, and our findings highlight the po-
tential difficulties of this approach. Indeed, future research
may gain more traction by combining data across individu-
als according to multivariate and functional/statistical prop-
erties, in addition to anatomic coordinates.

The special role of theta in large-scale network
formation
The theta frequency band, typically defined as 4–10Hz

in rodents in 4–8Hz in humans, is widely implicated in a
large range of cognitive processes, including spatial ex-
ploration, memory, motor function, and executive func-
tioning. Clearly, there is no simple mapping of frequency
band to cognitive process and indeed, even the same
brain regions can generate multiple sources of theta inde-
pendently (López-Madrona et al., 2020; Zuure et al.,
2020), which may serve different cognitive functions
(Töllner et al., 2017; Mikulovic et al., 2018). In the rodent
brain, theta is most robust in the hippocampus, but also
synchronizes with independent theta generators in the
medial prefrontal cortex (O’Neill et al., 2013; Sigurdsson
and Duvarci, 2015). Intracranial EEG studies in humans
have confirmed that theta synchronization is widespread
and linked to cognitive operations (Solomon et al., 2017).
The theta band stood out in many of our analyses, for

example by having relatively strong within-frequency,
cross-component synchronization (Fig. 6), sub-Gaussian
kurtosis (Extended Data Fig. 2-1), and roughly equal con-
tribution from all three regions (Fig. 5). Additionally, theta-
band networks appeared to have the most anatomically
consistent topographies across animals (see the small
peak around theta in Fig. 4A). On the other hand, the sub-
space dimensionality of theta was not higher than other
frequencies (Fig. 6A,B), suggesting that the theta is im-
portant for computational reasons, and is not simply the
dominant frequency in general.

LFP versus multiunit contributions to large-scale
networks
It is perhaps unsurprising that the multiunits made rela-

tively little statistical contribution to the narrowband compo-
nents, considering that LFP samples a larger volume, has
more signal complexity, and can be meaningfully separated
into narrow frequency bands. On the other hand, the multiu-
nits were recorded from the same electrodes, added unique
information to the narrowband covariance matrices, and im-
proved the overall separability of the narrowband compo-
nents from broadband across most frequency ranges.

It is possible that LFP carries most of the inter-regional
signaling (Yuste, 2015), considering that LFP reflects a
multitude of intracellular and extracellular processes
(Buzsáki et al., 2012; Reimann et al., 2013) that are modu-
lated by population dynamics of excitatory and inhibitory
cells (Mitzdorf, 1985). It is also possible that spikes carry
important information that is spatiotemporally targeted
and sparse, and therefore make contributions at a spatial
scale smaller than what we investigated. Indeed, the ei-
gendecomposition will prefer larger patterns of covari-
ance over patterns driven by a single data channel. On the
other hand, LFP is generally considered a proxy of the
local input to a circuit while spikes are considered a proxy
of the output of the circuit. Nonetheless, multiunits and
LFP are rarely incorporated into the same data matrix as
we have done, so their relative contributions should be
quantitatively evaluated rather than intuitively inferred.

Implications for novelty andmemory
The main network characteristics we identified were

stable across the task sessions. This seems to suggest
that the weightings for combining the data channels, as
defined by the GED, reflect stable neural architectures as
opposed to transiently fluctuating cognitive states.
It is, however, possible that behavior modulates these

network dynamics at a faster timescale than experiment
sessions. Indeed, neural signatures of novelty processing
may be transient, lasting only hundreds of milliseconds
(Ranganath and Rainer, 2003) or tens of seconds when
first introduced to a novel environment (França et al.,
2014). For example, our camera tracking data (not re-
ported here) revealed that animals tended to explore the
objects for brief windows of time, sometimes only a few
hundred milliseconds. These windows may have been too
brief for sufficient neural network estimation, and because
of the novelty of the data analysis methods, we chose to
focus on characterizing the neural networks using maxi-
mal data to ensure high data quality. This could be ex-
plored in future studies by ensuring that a particular
behavior is expressed for a longer period of time.
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