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Purpose: To examine the efficacy of a deep learning-based algorithm to quantify the nonperfusion area
(NPA) on montaged widefield OCT angiography (OCTA) for assessment of diabetic retinopathy (DR) severity.

Design: Cross-sectional study.
Participants: One hundred thirty-seven participants with a full range of DR severity and 26 healthy

participants.
Methods: A deep learning-based algorithm was developed for detecting and quantifying NPA in the su-

perficial vascular complex on widefield OCTA comprising 3 horizontally montaged 6 � 6-mm OCTA scans from
the nasal, macular, and temporal regions. We trained the algorithm on 978 volumetric OCTA scans from all
participants using 5-fold cross-validation. The algorithm can distinguish NPA from shadow artifacts. The F1 score
evaluated segmentation accuracy. The area under the receiver operating characteristic curve and sensitivity with
specificity fixed at 95% quantified network performance to distinguish patients with diabetes from healthy control
participants, referable DR from nonreferable DR (nonproliferative DR [NPDR] less than moderate severity), and
severe DR (severe NPDR, proliferative DR, or DR with edema) from nonsevere DR (mild to moderate NPDR).

Main Outcome Measures: Widefield OCTA NPA, visual acuity (VA), and DR severities.
Results: Automatically segmented NPA showed high agreement with the manually delineated ground truth,

with a mean � standard deviation F1 score of 0.78 � 0.05 in nasal, 0.82 � 0.07 in macular, and 0.78 � 0.05 in
temporal scans. The extrafoveal avascular area (EAA) in the macular scan showed the best sensitivity at 54% for
differentiating those with diabetes from healthy control participants, whereas montaged widefield OCTA scan
showed significantly higher sensitivity than macular scans (P < 0.0001, McNemar’s test) for detecting eyes with
DR at 66%, referable DR at 63%, and severe DR at 62%. Montaged widefield OCTA showed the highest cor-
relation (Spearman r ¼ 0.74; P < 0.0001) between EAA and DR severity. The macular scan showed the strongest
negative correlation (Pearson r ¼ e0.42; P < 0.0001) between EAA and best-corrected VA.

Conclusions: A deep learning-based algorithm for montaged widefield OCTA can detect NPA accurately and
can improve the detection of clinically important DR. Ophthalmology Science 2021;1:100027 ª 2021 by the
American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Numerous studies have reported on the association between
the OCT angiography (OCTA) nonperfusion metric and
diabetic retinopathy (DR) clinical severity. Because the
metrics are quantitative and objective, in contrast to the
qualitative clinical grading, they offer the possibility of
improving the management of diabetic retinopathy through
reliable automated evaluation of eyes at risk. However, the
reported approaches have significant limitations that prevent
wide application of OCTA for evaluation of DR. First is the
small 3 � 3-mm central field that most studies evaluated.
The first generation of OCTA devices provided capillary-
level resolution in 3 � 3-mm fields only. Increasing
evidence suggests that a subset of DR eyes that have pre-
dominantly peripheral lesions and nonperfusion may be
present outside the central area.1e3 A widefield evaluation
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of nonperfusion would increase the sensitivity of detecting
capillary damage secondary to diabetes.

However, even with 3 � 3-mm scans, only approxi-
mately 60% of OCTA images may be usable for quantitative
analysis.4 Widefield OCTA presents additional technical
challenges. It is more prone to the artifacts related to
defocus, vignetting, and vitreous opacities. Normative
interpapillary space varies dramatically from the optic disc
to peripheral region. This makes the quantification of
nonperfusion in a wider OCTA field of view even more
challenging.

Currently, few reports of nonperfusion quantification
using widefield OCTA exist in the literature. Alibhai et al3

described quantification of nonperfusion in widefield
OCTA with a 12 � 12-mm single scan. This study
1https://doi.org/10.1016/j.xops.2021.100027
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required manual exclusion of low-signal artifacts, which
would be impractical in clinical settings. Other studies
quantifying nonperfusion with widefield OCTA have used
manual delineation of nonperfusion.5e8 To the best of our
knowledge, no study has demonstrated automated
quantification of nonperfusion in widefield OCTA.

In this study, we examined automated quantification of
nonperfusion area (NPA) on montaged widefield OCTA
with a 17 � 6-mm field of view on diabetic eyes. Although
we previously reported on a deep learning algorithm that can
discriminate true nonperfusion versus low-signal artifact on
6 � 6-mm central macular scans,9,10 one cannot assume the
same network will be valid for wider peripheral views
because the nature and extent of low-signal artifacts
change with widening field of view and montaging. This
study introduced a novel idea by using a deep learning
method to quantitate nonperfusion automatically, to exclude
widefield specific artifacts, and to validate the technique
against clinically meaningful end points.

Methods

Data Acquisition

The Oregon Health and Science University institutional review
board approved the study, which adhered to the tenets of the
Declaration of Helsinki. Patients with diabetes and healthy par-
ticipants were recruited at a tertiary academic ophthalmology
department, and informed consent was obtained. All participants
underwent 6 � 6-mm volumetric scans centered at the macula and
the immediate areas nasal and temporal to the macular scan using a
70-kHz OCT AngioVue system (RTVue-XR; Optovue, Inc) with 2
repeated B-scans obtained at each of 400 raster positions and each
B-scan containing 400 A-lines. The split-spectrum amplitude-
decorrelation angiography algorithm11 computed the OCTA data.
Widefield OCTA was achieved by montaging the 3 scans. We
also obtained fundus photographs of the patients with diabetes,
which were graded by a trained, masked grader (L.G.) based on
the standardized 7-field color fundus images according to the
Early Treatment of Diabetic Retinopathy Study12 scale. An Early
Treatment Diabetic Retinopathy Study protocol visual acuity
(VA) was obtained for each participant.

A total of 1092 volumetric OCT scans from 182 participants
(30 healthy control participants, 36 participants with diabetes
without retinopathy, 72 participants with mild or moderate non-
proliferative DR [NPDR], and 44 participants with severe
NPDR or proliferative DR [PDR]; mean age � standard deviation,
57 � 15 years) were collected from a DR study. We excluded 114
invalid scans from 19 participants (4 healthy control participants, 6
participants with diabetes without retinopathy, 6 participants with
mild or moderate NPDR, and 3 participants with severe NPDR or
PDR) because of scanning failure when the OCT system could not
acquire valid signals because of strong eye movements or an
inability to complete a scan because of the volunteers being unable
to fixate well. All the scanning was conducted with participants’
eyes in mydriasis.

Dataset Preparation

In this study, we segmented NPA in the superficial vascular
complex (SVC) from en face angiograms. To create an SVC en
face angiogram, a guided bidirectional graph search algorithm13

segmented the retinal layer boundaries. A maximum projection
method14 was used to project OCTA data within the slab.
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Vitreous floaters, pupil vignetting, or eyelash shadows can cause
localized shadow artifacts. A simple NPA detection algorithm
using apparent flow signal loss can mistake these artifacts for
NPA. However, an algorithm that is aware that shadow artifacts
reduce both the OCTA and structural OCT signal
simultaneously, whereas true NPA has a loss of flow signal and
preservation of structural OCT signal, potentially can distinguish
these artifacts from NPAs. Although this can help to differentiate
some artifacts from true NPA, in practice, a substantial variation
in OCT reflectance between imaging subjects, between imaging
sessions, and even between different regions of the eye make
this approach to artifact detection imprecise. In particular, near
the central macula where the retina is thin, structural OCT often
exhibits low reflectance. This means that a conventional rule-
based algorithm cannot distinguish NPA from low-signal artifacts
reliably.

In contrast, deep learning-based methods could distinguish
these artifacts accurately despite these variations, as long as an
accurate ground truth maps are available to supervise the learning
process.10 In our work, 3 certified graders (L.G., Q.Y., B.W.)
manually delineated NPA and shadow artifacts independently.
The final ground truth maps were generated from these 3 manual
delineation results using a majority voting method. We excluded
the manually delineated areas smaller than 20 pixels (0.0045
mm2) from ground truth maps to remove errors caused by noise.

The input data set consisted of the SVC angiogram, the OCT
reflectance image of the inner retina, the inner retinal thickness
map, and the corresponding manually delineated ground truth
containing NPA and shadow area. In the healthy participants, the
foveal avascular zone (FAZ) also was considered NPA, because it
has similar patterns from the perspective of pattern recognition
theory. Thus, each participant had some region in the images that
the network can use for training purposes. The size of all en face
images was 400 � 400 pixels. A convolutional neural network,
which is a state-of-the-art deep learning-based segmentation
method, needs a large dataset to train. To increase the number of
training samples, we applied several data augmentation operations,
including vertical flips, horizontal flips, transpositions, and
rotations.
Development of the Deep Learning System

We trained a deep learning algorithm to segment NPA at 3
different locations, including nasal, macular, and temporal scans.
We adopted the residual module from ResNet, which can improve
the training phase with faster convergence and higher accuracy
using identity short-cut connections.15 We also used a U-Net-like16

network architecture as the backbone of our convolutional neural
network. U-Nets are used widely in medical image processing
tasks because they have shown good adaptability to small
datasets, in part because of skip connections between the encoder
and decoder arms. The network architecture used in this study
also contained several adaptions to aid NPA detection in
widefield images (Fig 1). To reduce computational complexity,
we combined the inner retinal thickness (Fig 1A) and OCT
reflectance images of the inner retina (Fig 1B) and fed them to a
subnet (Fig 1D1) to segment shadow artifact affected areas. The
SVC en face images (Fig 1C) were fed to a subnet (Fig 1D2) to
extract retinal capillary features. Then, the output of subnets for
shadow and vessel detection were fed to 3 parallel subnets from
which we expected to learn features from each of the 3 regions
used in this work (nasal, macular, and temporal; Fig 1D3eD5).
The results from these 3 parallel subnets then were concatenated
and used to predict the true NPA area and the area affected by
shadow artifacts (Fig 1E).



Figure 1. Network architecture. A, B, D, The thickness map (blue is thin and red is thick) (A) and structural OCT image of the inner retina (B) were fed to
1 branch of the network (D1) to extract features from shadow-affected areas. C, D, The en face angiogram of the superficial vascular complex was input into
another branch of the network (D2) to extract the nonperfusion area (NPA). D, E, Then, the network combined these 2 types of features and fed them to 3
parallel subnets (D3eD5) to output the NPA (blue in panel E) and shadow artifacts (yellow in panel E).
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Evaluation and Statistical Analysis

We evaluated the performance of our algorithm using 5-fold cross-
validation on our dataset. In this study, the entire dataset was split
into 5 individual groups. Care was taken to ensure that different
severities comprise the same proportions in all groups. In each
training and evaluation step, 4 groups were chosen as the training
dataset, whereas the fifth group was reserved to evaluate perfor-
mance. We repeated this process 5 times, with each of the groups
used once as the test dataset, to obtain the average performance of
our method. The same eye can only be used for training or testing.
This approach allowed us to evaluate the performance of the pro-
posed method on the entire dataset. The 3 retinal regions were
evaluated separately and then montaged (Fig 2). The montage
process was performed by an invariant features-based algorithm.17

To evaluate our method comprehensively, we analyzed the
impact of various factors on the performance of the algorithm,
including DR severity and scan quality measured by signal strength
index. We quantified the agreement between the output of the
network and manual delineation using the F1 score (Equation 1):

F1 score ¼ 2 � TP

2 � TP þ FP þ FN
(1)

where TP is the true-positive finding (the number of pixels that
were predicted correctly to be NPA), TN is the true-negative
finding (the number of pixels that were predicted correctly to be
non-NPA), FP is the false-positive finding (the number of pixels
that were predicted wrongly as NPA but in fact were non-NPA),
and FN is the false-negative finding (the number of pixels that
were predicted wrongly as non-NPA but in fact were NPA). To
eliminate the impact of normal variation in the size of the FAZ,18

we used the extrafoveal avascular area (EAA), defined as the
avascular area outside of the 1-mm-diameter circle centered on
the fovea, to quantify diagnostic performance. We also used the
extent of NPA measured by the algorithm in each location to stage
DR according to several classification levels, including healthy
versus patients with diabetes mellitus (which includes any stage of
DR, but also diabetic eyes without retinopathy), eyes with DR
versus eyes without retinopathy (which includes diabetic eyes in
which retinopathy has not developed), referable (defined as mod-
erate to severe NPDR, PDR, or DR with diabetic macular edema)
versus nonreferable DR, and severe (severe NPDR, PDR, or DR
with diabetic macular edema) versus nonsevere DR. The sensitivity
and the area under the receiver operating characteristic curve
(AUC) were used to evaluate the diagnostic accuracy between
healthy and DR groups, and sensitivity with specificity fixed at
95% also were quantified to assess the diagnostic accuracy of using
NPA to stage DR. We compared the AUC of NPA on montaged
widefield OCTA and conventional macular OCTA using the
Delong method19 and compared their sensitivities using
McNemar’s test.20 Spearman correlation coefficient r values
were used to quantify the correlation between NPA and DR
severity, and Pearson correlation coefficient r values were used
to quantify the correlation between NPA and VA. We also
compared the correlations between NPA and DR severity or VA
using widefield versus conventional macular scans with a
bootstrap difference test.21
Results

Performance Evaluation

Good agreement, indicated by F1 scores, was found be-
tween the network’s output and the manually delineated
ground truth (Table 1). The average F1 scores in the macular
scans were slightly higher than those of the nasal or
temporal side. When analyzed by DR severity, the
agreement was similar and not statistically different
between DR severities. For the montaged widefield scans,
the agreement showed slight deterioration. The average
intergrader agreements (measured by intersection over
union) in the macular scans were higher than those of the
nasal or temporal side.
3



Figure 2. Automated nonperfusion area (NPA) segmentation results on montaged widefield OCT angiography imaging, shown by (A) a representative
healthy control, (B) an eye with diabetes, but without retinopathy, (C) an eye with mild to moderate nonproliferative diabetic retinopathy, and (D) an eye
with severe diabetic retinopathy. In each case, the first panel is the superficial vascular complex angiogram, the second panel is the ground truth manually
delineated NPA (green) and shadow area (yellow), and the third panel is the automated segmentation result showing NPA (blue) and shadow artifacts area
(yellow) that closely matches the ground truth.
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Robustness to Scan Quality

We used healthy eyes to quantify the correlation between
scan quality (measured by signal strength index) and NPA
segmentation accuracy (measured by the following:
segmentation specificity e network output perfusion area /
ground truth perfusion area) in widefield OCTA imaging
(Fig 3). The segmentation accuracy was independent from
scan quality in the disc (r ¼ 0.04; P ¼ 0.775), macula
4

(r ¼ 0.08; P ¼ 0.595), and temporal (r ¼ 0.08; P ¼
0.584) scans.

Performance in Diabetic Retinopathy Diagnosis

With specificity fixed at 95%, EAA in the central macula
showed the best sensitivity for detecting patients with dia-
betes from healthy control individuals, and the montaged
widefield OCTA imaging showed the highest sensitivity for



Table 1. Agreement Quantification on Widefield OCT Angiography with Different Diabetic Retinopathy Severities

Variable Nasal Temporal Macula
Montaged Widefield OCT

Angiography

Agreement (F1 score) between automatically segmented NPA and ground truth map
Diabetes without retinopathy 0.80 � 0.05 0.75 � 0.04 0.88 � 0.07 0.84 � 0.08
Mild to moderate NPDR 0.78 � 0.06 0.78 � 0.04 0.80 � 0.06 0.79 � 0.06
Severe NPDR and PDR 0.78 � 0.05 0.79 � 0.05 0.77 � 0.06 0.78 � 0.05
Average 0.78 � 0.05 0.78 � 0.05 0.82 � 0.07 0.80 � 0.07

Intergrader agreement (IoU) for 3 experts
Expert 1 vs. expert 2 0.66 � 0.12 0.72 � 0.07 0.76 � 0.09 0.72 � 0.10
Expert 1 vs. expert 3 0.66 � 0.18 0.63 � 0.11 0.70 � 0.13 0.67 � 0.14
Expert 2 vs. expert 3 0.69 � 0.09 0.65 � 0.10 0.78 � 0.18 0.71 � 0.14
Average 0.67 � 0.14 0.66 � 0.10 0.75 � 0.14 0.70 � 0.13

DR ¼ diabetic retinopathy; NPA ¼ nonperfusion area; NPDR¼ nonproliferative diabetic retinopathy; PDR ¼ proliferative diabetic retinopathy; IoU ¼
intersection over union.
Data are presented as mean � standard deviation.
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detecting patients with different severities of DR (Table 2).
Similarly, EAA in macular scans showed the highest AUC
for detecting healthy control participants from patients
with diabetes, and the montaged widefield OCTA scans
achieved the best AUC for distinguishing different DR
severities. Compared with the traditional macular OCTA
imaging, montaged widefield OCTA imaging significantly
improved the diagnostic sensitivity (P < 0.001) for
different severities of DR.

Correlation of Extrafoveal Avascular Area with
Diabetic Retinopathy Severity and Visual Acuity

The montaged widefield OCTA showed the highest corre-
lation between EAA and DR severity. The best-corrected
VA showed a negative univariate correlation with EAA,
and the macular scan showed the strongest negative
univariate correlation between EAA and best-corrected VA
(Table 3).

Discussion

In this study, we developed and validated a deep learning
neural network capable of quantifying the NPA by
Figure 3. Graphs showing the correlation between signal strength index (SSI)
OCT angiography imaging from healthy control participants (red dots; n ¼ 52) s
variation.
distinguishing it from low-signal artifacts in the superficial
vascular complex in widefield OCTA images constructed
from a montage of nasal, macular, and temporal scans. The
algorithm showed good agreement with manual delineation
(average F1 score, >0.78) for NPA segmentation on
widefield OCTA images. We performed cross-validation,
indicating that these results were generalizable. We also
demonstrated that NPA on widefield OCTA imaging cor-
relates with DR severity and VA, and its diagnostic accu-
racy in distinguishing DR, referable DR, and severe DR was
superior to NPA quantified from macular OCTA imaging.

Although it is well recognized that quantification of
nonperfusion using a wider field of view likely would
improve its sensitivity in assessment of DR, most studies to
date have been based on 3 � 3-mm scans. Recent efforts in
quantification using wider-field OCTA have required either
manual exclusion of low-signal artifacts3 or manual
delineation of nonperfusion areas.22 To avoid tedious
manual intervention, several conventional (i.e.,
nonlearning-based) algorithms to detect capillary dropout
regions in en face images automatically have been
developed.23e26 These techniques can detect NPA in en face
images automatically, but this approach suffers on low-
quality scans and scans with high noise levels. This
with specificity of automated nonperfusion area segmentation on widefield
howing that the algorithm’s output was not compromised by signal strength
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Table 2. Nonperfusion Area Diagnostic Accuracy

Diabetic Retinopathy Group Nasal Temporal Macular
Montaged Widefield
OCT Angiography P Value

Sensitivity to detect retinopathy, % (95% CI)
Healthy vs. DM 38 (31e45) 38 (32e45) 54 (48e61) 39 (34e44) 0.0001*
DR vs. non-DR 33 (25e41) 37 (29e45) 34 (27e42) 66 (60e71) <0.0001*
Referable DR vs. nonreferable DR 29 (21e38) 42 (33e51) 35 (27e44) 63 (57e69) <0.0001*
Severe DR vs. nonsevere DR and non-DR 27 (19e37) 35 (27e45) 24 (17e33) 62 (56e68) <0.0001*

AUC (95% CI)
Healthy vs. DM 0.73 (0.68e 0.79) 0.81 (0.76e0.86) 0.88 (0.84e0.92) 0.82 (0.78e0.85) 0.0425y

DR vs. non-DR 0.74 (0.68e0.79) 0.84 (0.79e0.88) 0.86 (0.81e0.90) 0.92 (0.89e0.94) 0.0182y

Referable DR vs. nonreferable DR 0.78 (0.73e0.83) 0.83 (0.78e0.87) 0.86 (0.81e0.90) 0.91 (0.88e0.93) 0.0429y

Severe DR vs. nonsevere DR and non-DR 0.76 (0.70e0.81) 0.81 (0.76e0.86) 0.84 (0.79e0.88) 0.89 (0.86e0.92) 0.0513y

AUC ¼ area under the receiver operating characteristic curve; CI ¼ confidence interval; DM ¼ diabetic mellitus; DR ¼ diabetic retinopathy; non-
DR ¼ healthy and diabetic mellitus; nonreferable DR ¼ healthy, diabetic mellitus, and mild DR; nonsevere DR ¼ mild and moderate diabetic retinop-
athy without edema; referable DR ¼ moderate diabetic retinopathy, severe nonproliferative diabetic retinopathy, and proliferative diabetic retinopathy;
severe DR ¼ severe nonproliferative diabetic retinopathy, proliferative diabetic retinopathy, and eyes with edema.
Best performance among all scan areas appears in boldface.
*McNemar test was used to compare the sensitivities of nonperfusion area between widefield OCT angiography and conventional macular OCT
angiography.
yDeLong test was used to compare the AUCs of nonperfusion area between widefield OCT angiography and conventional macular OCT angiography.
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innovative algorithm proposed in this study demonstrated a
fully automated quantification of nonperfusion area in a
widefield OCTA image using a deep learning-based method.
Because the deep learning-based method has shown great
success in OCTA images,27 our approach did not exclude
scans because of quality or noise levels.

The proposed algorithm can detect NPA accurately in 3
different retinal regions, largely immune to shadow artifacts
(Fig 2) or low scan quality (Fig 3). Recent research has
demonstrated that machine learning methods can detect
shadow artifacts.28 In our previous work, we demonstrated
a deep learning algorithm that can distinguish NPA from
shadow artifacts10 by adding the reflectance OCT image
and inner retinal thickness map as inputs. Herein, we
adopted a similar strategy to distinguish NPA from
shadow artifacts on montaged widefield images by using
the above-mentioned 3 channels as input. The reflectance
Table 3. Correlation Coefficients (r Values) of Nonperfusion Area wit
in Different

Variable Nasal Temporal

Correlation with DR
severity,
Spearman’s r (95%
CI)

0.50 (0.40e0.59),
P <0.0001

0.55 (0.46e0.63),
P <0.0001

Correlation with best-
corrected VA,
Pearson’s r (95%
CI)

e0.17 (e0.30 to e0.05),
P ¼ 0.0082

e0.31 (e0.51 to e0.30),
P <0.0001

CI ¼ confidence interval; DR ¼ diabetic retinopathy; VA¼ visual acuity.
Best performance among all scan areas appears in boldface.
*Bootstrapped difference test between macular-centered and montaged widefie
mean � standard deviation.
yTwo-side P value of 9999 bootstrapped difference test.
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OCT image could help to identify the low-reflectance areas,
including shadow areas and FAZ. The retinal thickness map
is useful for distinguishing shadow from NPA near the FAZ.
By using all 3 channels (OCTA, structural OCT, and
thickness), the network can differentiate NPA from shadows
correctly. However, the larger field of view and montaging
introduces new potential artifacts that required new training
and validation. We demonstrated that the network could
exclude low-signal artifacts in the widefield OCTA images
successfully, and the NPA output showed independence
from scan signal strength, indicating robustness to scan
quality. This translates to improved reliability in clinical
settings. In this study, the size of the montaged OCTA
image is too large (approximately 1000 � 400 pixels) to
train the network. The excessive size of the image will
exceed the hardware (i.e., graphics processing unit) memory
limit. Thus, we use separate images (temporal side scan,
h Diabetic Retinopathy Severity and Best-Corrected Visual Acuity
Regions

Macular
Montaged Widefield
OCT Angiography

Correlation
Differences*

0.69 (0.58e0.77),
P <0.0001

0.74 (0.63e0.82),
P <0.0001

0.052 � 0.067,
P ¼ 0.436y

e0.42 (e0.55 to e0.26),
P <0.0001

e0.40 (e0.57 to e0.20),
P <0.0001

0.018 � 0.12,
P ¼ 0.888y

ld OCT angiography image based on 9999 bootstrapping. Data appear as
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central macular scan, and nasal side scan) to train the
network. This approach can be regarded as dividing a large
image (the montaged OCTA image) into 3 small images,
which is a common method for training networks on large
images.

Vessel density (VD) has been used widely to quantify
retinal perfusion loss in DR.29e32 However, both shadow
artifacts and scan quality can affect the quantification of VD
in OCTA adversely, and even in images with high signal
strength, persistent dependence of VD on signal strength is
seen.33 In addition, less is known about so-called normal
VD in the periphery, whereas NPA, recognized by a
contiguous area of capillary dropout, always is likely to be
pathologic, regardless of variation in VD. Therefore, we
expect the output from our network will be more robust
compared with existing VD measurements without shadow
removal.

Accurately segmented by our network, NPA showed a
significant correlation to DR severity. Compared with that
of macular OCTA, NPA on widefield montage OCTA
imaging has higher sensitivity for distinguishing different
severities of DR (Table 2). However, NPA on macular
OCTA imaging has a higher diagnostic accuracy than
widefield montage OCTA imaging in differentiating
patients with diabetes but without retinopathy from
healthy control participants. This suggests that the earliest
microvascular changes in DR may occur primarily in the
macula, rather than the periphery. However, the detection
of peripheral microvascular changes in more advanced
DR can correlate better with the clinical level of
retinopathy, as shown by the higher correlation with
widefield OCTA. As expected, NPA on macular scans
shows the best correlation with VA among 3 regions.
This of course does not exclude the need to identify NPA
accurately in other areas, because NPA outside the
macula still indicates relevant and significant change in
DR. Only by detecting NPA in larger fields of view can
we avoid missing pathologic developments outside of the
small fields of view used in most commercial OCTA
instruments.

Compared with published deep learning algorithms that
diagnose DR based on fundus photographs, our algorithm
showed a lower AUC for diagnosing referable cases.34,35

However, it should be noted that nonperfusion area and
clinical retinopathy levels are not expected to be
correlated perfectly because they are fundamentally
different features of the disease. Therefore, a difference in
the diagnostic performance is expected. In particular, the
Early Treatment Diabetic Retinopathy Study severity scale
is based on features from fundus photography.12 They
were studied prospectively against the risk of proliferative
disease developing in a large cohort and are believed to
represent a manifestation of retinal ischemia.36 It is
possible that OCTA-quantified NPA or other OCTA-
specific features may perform as well or better than clin-
ical features in predicting risk of progression because they
are more direct measurements of retinal ischemia than
photographic features. However, their validation in a large,
prospective clinical study is necessary, and photographic
severity levels remain the gold standard for now.
Nevertheless, the fundus photograph-based methods cannot
detect microvasculopathy in diabetic eyes without clinically
observable retinopathy by definition. OCT angiography,
with its ability to evaluate the vasculature at the capillary
level, is more sensitive than fundus photographs in detecting
the earliest changes in DR.34,35

Compared with other studies that examined OCTA
quantitative metrics against clinical DR, this algorithm
performed very well. In general, AUC is a much more
rigorous metric for diagnostic purposes compared with a
statistical test that looks at population means or a test for
significant correlation between a metric and severity. That
is, achieving high sensitivity and specificity at a
discrete severity of DR is more difficult to achieve than
demonstrating a correlation or a statistically significant
difference in means. It should also be noted that many of
the previous studies of OCTA metrics that examined
diagnostic accuracy compared patients with DR against
normal control participants. However, a more clinically
relevant concern is being able to distinguish eyes above and
below a threshold, rather than the ability to distinguish
them from normal control participants.24,37e39 We hope
that this more realistic diagnostic scheme can be adopted by
other research groups in testing the robustness of
algorithms.

Study Limitations

Limitations of the study include possible errors associated
with montaging and relatively small sample sizes. In this
study, we montaged 3 separate OCTA scans to obtain the
widefield OCTA image. In the montage step, the montage
algorithm may not detect enough pair key points in the
overlapping area between 2 low-quality images, which may
cause images to be aligned imprecisely, reducing the
accuracy of NPA segmentation.17 A larger dataset could
improve training of the algorithm and could improve the
performance and generalizability of our algorithm.
Another limitation is the relatively lower accuracy in the
nasal and temporal areas. Our method achieved high
performance in the central macular area, whereas in the
nasal and temporal area, the accuracy showed
deterioration that may be a consequence of the shadow
artifact area increasing. Another reason may be that the
intercapillary distance in the temporal area increases
along with its variance, which caused a reduction in
grader agreement. We believe that the reduced confidence
in manual grading is the main reason for the performance
deterioration in those 2 regions. Another limitation may
lie in the definition of EAA. Excluding a 1-mm circle
area centered on the fovea is a simple and valid approach to
eliminate the impact of normal variation of FAZ,38,39 but
not the optimal one. The ideal way is to exclude the
theoretical FAZ40; however, this detection is not
achievable because of the low sampling density of current
6 � 6-mm OCT and OCTA scans used in this study. We
believe that with the increase of OCT scanning speed, the
image resolution will increase, and this limitation also will
be eliminated. A final limitation for this study is that we
focused on just the SVC because it contains the fewest
7
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artifacts. For the deep plexus, many more challenges need
to be solved, like projection artifacts,41 lower signal-to-
noise ratio, and so on. All of this makes the deep plexus
significantly more challenging, and we will address this
plexus in future work. Despite these limitations, to the best
of our knowledge, this is the first study to quantify NPA
automatically while excluding low-signal artifacts on
widefield OCTA with a deep learning-based method. This
study suggests that objective NPA assessment using
8

widefield OCTA may improve the ability of OCTA to
assess DR severity objectively.

In conclusion, this deep learning-based algorithm can
quantify NPA automatically and can exclude low signal
artifacts in widefield OCTA images. Our algorithm shows
high accuracy for NPA segmentation. Nonperfusion area in
widefield OCTA imaging shows higher diagnostic accuracy
for detecting clinically relevant DR severity levels compared
with central macular scans.
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