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Abstract: The application of multi-dimensional population balance equations (PBEs) for the simulation
of granulation processes is recommended due to the multi-component system. Irrespective of the
application area, numerical scheme selection for solving multi-dimensional PBEs is driven by the
accuracy in (size) number density prediction alone. However, mixing the components, i.e., the particles
(excipients and API) and the binding liquid, plays a crucial role in predicting the granule compositional
distribution during the pharmaceutical granulation. A numerical scheme should, therefore, be able to
predict this accurately. Here, we compare the cell average technique (CAT) and finite volume scheme
(FVS) in terms of their accuracy and applicability in predicting the mixing state. To quantify the degree
of mixing in the system, the sum-square χ2 parameter is studied to observe the deviation in the amount
binder from its average. It has been illustrated that the accurate prediction of integral moments computed
by the FVS leads to an inaccurate prediction of the χ2 parameter for a bicomponent population balance
equation. Moreover, the cell average technique (CAT) predicts the moments with moderate accuracy;
however, it computes the mixing of components χ2 parameter with higher precision than the finite
volume scheme. The numerical testing is performed for some benchmarking kernels corresponding to
which the analytical solutions are available in the literature. It will be also shown that both numerical
methods equally well predict the average size of the particles formed in the system; however, the finite
volume scheme takes less time to compute these results.

Keywords: aggregation; finite volume scheme; cell average technique; mixing of components;
integral moments

1. Introduction

Population balance equations (PBEs) describe the behavior of particle properties’ changes due to
phenomena such as nucleation, growth, aggregation and breakage [1]. Many applications of PBEs can
be found in the area of chemical engineering [2], depolymerization [3,4], waste water treatment [5],
bubble columns [6], physics [7] and pharmaceutical sciences [8–12], where these mechanisms have a
significant impact on the particle properties in the system. In the aggregation process, two or more smaller
particles merge at a specific rate to build larger size particles. Aggregation-driven wet granulation
processes such as twin-screw granulation [11,13], high shear granulation [14] and fluidized-bed
granulation [15] are extensively used in pharmaceutical manufacturing when characterized using PBEs,

Pharmaceutics 2020, 12, 1152; doi:10.3390/pharmaceutics12121152 www.mdpi.com/journal/pharmaceutics

http://www.mdpi.com/journal/pharmaceutics
http://www.mdpi.com
https://orcid.org/0000-0002-6392-6068
https://orcid.org/0000-0001-6715-2314
https://orcid.org/0000-0002-9247-5446
http://www.mdpi.com/1999-4923/12/12/1152?type=check_update&version=1
http://dx.doi.org/10.3390/pharmaceutics12121152
http://www.mdpi.com/journal/pharmaceutics


Pharmaceutics 2020, 12, 1152 2 of 17

mostly assuming that only one property of the particles is changing. However, the aggregation
mechanism is caused by the mixing-driven presence of liquid binder in the system. Therefore, for such
processes, the ability to mechanistically characterize aggregation requires consideration of the degree
of mixing between particles and the binder phase. Iveson [16] has shown that the univariate PBEs are
inadequate to capture the actual particle behavior in granulation and therefore suggested the application
of multivariate (higher dimensional) PBEs. Such PBEs can be used for the simultaneous prediction of
several components, the compositional distribution and hence the accurate prediction of the mixing state
in the system. Quantification of the degree of mixing in binary component aggregation has been discussed
by Matsoukas et al. [17]. The study concluded that the scaling of the variance indicates that the mixing of
components is not characterized by a time scale but by a size scale. This emphasizes the need for accurate
prediction of particle size distribution evolution, which depends on the selection of a suitable numerical
scheme to solve the PBEs and aggregation.

In this study, we focus on the relevance of different numerical schemes for multivariate PBE
solution in terms of their capability to capture the degree of mixing during aggregation. In the
aggregation mechanism, the total number of particles reduces with time, but the total mass of
the system remains constant. A pure bivariate aggregation population balance equation is an
integro-partial differential equation which can be written as follows [18].

∂n(u, t)
∂t

=
1
2

∫ u

0
a(u− u′, u′, t)n(u− u′, t)n(u′, t)du′︸ ︷︷ ︸

birth term

−
∫ ∞

0
a(u, u′, t)n(u, t)n(u′, t)du′︸ ︷︷ ︸

death term

, (1)

subject to the initial condition

n(u, 0) = n0(u), u ∈ [0, ∞].

Here, n(u, t) is the number distribution functions having size u ≥ 0 at time t (s) and u (µm) is
a vector given in terms of the summation of properties like the mass or volume of the components.
The bold notations are used to denote vector quantities, i.e., u = [u1, u2, · · · , up], where up expresses
the property of the particle in p th direction. Moreover, the birth term in Equation (1) represents the
formation of new particles of properties u due to the aggregation of smaller particles of properties
u− u′ and u′. Similarly, the death term describes the loss of particles with properties u due to the
collision of particles with properties u′. The aggregation kernel a(u, u′, t) describes the rate of merging
of two particles of properties u and u′. It can be noted that the aggregation kernel is non-negative and
symmetric in nature with respect to size variable, i.e., a(u, u′, t) = a(u′, u, t). Moreover, for simplicity,
we assume that the aggregation kernels chosen for this study are time-independent, i.e., only size
dependency is taken into consideration.

Apart from finding the number distribution function n, different properties of the system,
namely integral moments corresponding to the number distribution function, are also important
for understanding the complete dynamics of the system [19]. For bivariate PBE, the {i1, i2, · · · , ip}th

order moment corresponding to the number distribution function is defined as

µi1,i2,··· ,ip(t) =
∫ ∞

0

p

∏
r=1

uir
r n(u, t)du. (2)

Here, µ0,0,··· ,0(t) denotes the total number of particles in the system, which is also known
as zeroth-order moment, whereas µ0,0,··· ,1,··· ,0(t) gives the total mass of the pth property.
Similarly, other moments can also be obtained.

Finding analytical (exact) solutions of the population balance equation (PBE) (1) is difficult due
to the presence of a nonlinear integral in the equation. However, still, for some simple structured
kernels, a few analytical solutions are listed in [20–23]. Therefore, in this exercise, we choose numerical
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approximations to solve bivariate pure aggregation PBE (1). To date, many numerical methods have
been proposed by various authors, including fixed pivot techniques [24–26], method of projection [27],
Euler method [28], finite volume schemes [29–39], quadrature method of moments [40–43], finite element
method [44,45], sectional methods [18,46–50] and Monte Carlo method [19,51–53].

Among all numerical schemes, the cell average technique (CAT) is well known for the accurate
prediction of the number distribution function and their moments. However, the mathematical
formulation for CAT is very complex; hence, it is computationally expensive [54,55]. The finite volume
schemes (FVS) are well recognized in the literature as being able to accurately and efficiently obtain
these results. The studies conducted in the last decade restricted their comparison only to the number
distribution functions and their integral moments [18,35,46,47,49,56]. To examine the accuracy of the
prediction of the component mixing for a higher-dimensional PBE, the cell average technique [46] and
the finite volume scheme [57] are implemented to approximate a multi-dimensional pure aggregation
PBE and compared. The verification of the numerical results is also conducted by comparing the
average size of particles predicted in the system using the exact solution.

The paper is organized as follows: to start, a brief introduction of the existing CAT as well as
the FVS for solving bivariate pure aggregation PBE on non-uniform meshes is provided in Section 2.
In Section 3, the qualitative and quantitative numerical results, particularly various order moments
and number density functions computed by both numerical schemes, are analyzed. Finally, Section 4
summarizes the conclusions and discussion of this study.

2. Numerical Methods and System Analysis

In this section, the mathematical formulations of the existing cell average technique [46] and
the finite volume scheme [57] for solving a bivariate aggregation PBE (1) on non-uniform grids are
outlined (Figure 1). For developing the expressions of both numerical methods, it is assumed that
particles within a grid cell are concentrated on its representative (or mean of the cell). Before giving
the description of the numerical methods, it is necessary to fix the computational domain. For the
numerical approximations, we define the size variables u′ in PBE (1) ranges from 0 to ∞; thus, a large
sufficient vector such as umax = [u1max , u2max , . . . , upmax ]

T is replaced with ∞ in the second integral of
PBE (1). Thus, the original PBE (1) takes the following form:

∂n(u, t)
∂t

=
1
2

∫ u

0
a(u− u′, u′, t)n(u− u′, t)n(u′, t)du′ −

∫ umax

0
a(u, u′, t)n(u, t)n(u′, t)du′, (3)

with the modified initial condition

n(0, u) = n0(u), u ∈ [0, umax].

cell cellcell

Figure 1. Rectangular domian discretization in 2D space.
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The above expression well suited to numerical simulations; however, it does not capture the
property of mass conservation. During numerical computations, a sufficiently large umax is chosen
to minimize loss of mass from the system. Further, we assume that the whole domain is divided
into I = (I1, I2, I3, · · · , Ip), where Ir is the number of grids in r direction for r = {1, 2, 3, · · · , p}.
Now, for any r, the mesh points and the step size can be defined by

u1r−1/2 = 0, uir =
uir−1/2 + uir+1/2

2
, ∆uir = uir+1/2 − uir−1/2.

2.1. Cell Average Technique (CAT)

First, the mathematical explanation of the CAT developed by Kumar et al. [46] on the non-uniform
grids is presented. Let us suppose that Ni defines the number of particles in the ith cell, which can be
expressed as

Ni =
∫ ui+1/2

ui−1/2
n(u, t)du, (4)

where du = ∏
p
r=1 dur and

∫ ui+1/2
ui−1/2

= ∏
p
r=1

∫ uir+1/2
uir−1/2

for i = i1, i2, · · · , ip. Now, let us express the number
distribution function in terms of dirac delta functions, i.e.,

n(u, t) =
I

∑
j=1

Njδ(u− uj). (5)

Substituting the above expression in the original PBE (1), we obtain the following set of ordinary
differential equations:

dNi
dt

= Bi − Di for i = i1, i2, . . . , ip. (6)

Here, the discrete forms of birth and death terms are expressed as

Bi =
j≤k

∑
ui−1/2≤(uj+uk)<ui+1/2

(
1− 1

2
δj,k

)
a(uj, uk)NjNk, (7)

and

Di =
I

∑
j=1

a(ui, uj)Ni Nj. (8)

Here, j = [j1, j2, . . . , jp] and k = [k1, k2, . . . , kp] are p-dimensional vectors. The corresponding
mass or flux of the particles, which takes birth in the ith cell, can be computed as follows:

Vi =
j≤k

∑
ui−1/2≤(uj+uk)<ui+1/2

(
1− 1

2
δj,k

)
a(uj, uk)NjNk(uj + uk). (9)

Further, once the aggregation events of the particles in the ith cell are completed, it is necessary to
compute the average properties of all birth events in the cell using the following expression:

ūi =
Vi
Bi

. (10)

It is assumed that the particle properties are concentrated on the representative of the cell;
however, the possibility of the aggregating particles falling on the representative is low. Therefore, if the
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birth Bi takes place in the ith cell and is not represented by the nodes, then the averaging properties,
such as b1, b2, · · · , bp, are distributed to the neighboring nodes in such a fashion that the integral
properties, particularly the zeroth and first order moments for our case, remain conserved. The assigned
values b1, b2, · · · , bp can be calculated from the following relations:

p

∑
r=1

bir = 1,
p

∑
r=1

bir u
Air = ūi, (11)

where uAi1 , uAi2 , · · · , uAip are the coordinate vectors of the vertices of the ith cell. Hence, the final set
of discrete equations can be written as

dNi
dt

=
j≤k

∑
ui−1/2≤(uj+uk)<ui+1/2

(
1− 1

2
δj,k

)
a(uj, uk)NjNk −

I

∑
j=1

a(ui, uj)Ni Nj. (12)

It can be noted that the cell average technique is computationally very expensive as it is necessary
to determine the average properties of the aggregating particles in each cell and then redistribution of
particle properties is carried out to the neighboring representative of the cell. The distribution is carried
out in such a way that the zeroth and first order moments of the system are conserved. A detailed
description of the cell average technique can be found in Kumar et al. [46] and its schematic flowchart
is provided in Figure 2a.

i=1

Compute from eq. (10), b1, b2 and b3

from eq. (11) and Bi from eq. (7)

Find vertices number uA, uB and uC of the 

triangle where falls

Birth (uA) = Birth (uA) + b1 * Bi

Birth (uB) = Birth (uB) + b2 * Bi

Birth (uC) = Birth (uC) + b3 * Bi

Death (i) =  uj, uk) Nj Nk

dN/dt =  Birth - Death

i<Ii=i+1

Initial condition

n(u,v,0)

(a) Cell average technique

i=1

Compute the birth (Bi) and death (Di) 

terms from eq. (14)

Add the weights from eqs. (16) and (17) 

to eq. (14) which are responsible for 

conservation of integral properties

dN/dt =  Birth - Death

i<Ii=i+1

Initial condition

n(u,v,0)

(b) Finite volume scheme

Figure 2. Work flowcharts of the algorithms of the numerical methods.

2.2. Finite Volume Scheme (FVS)

Now, we provide the mathematical formulation of the finite volume scheme [57] for solving a
generalized aggregation PBE. The finite volume scheme is based on the idea of preserving the total
number of particles and conserving the total mass in the system by just adding two correction factors
in the formulation. For developing the mathematical expression of the FVS in a similar domain, it is
necessary to define the following set of indices:

≡i =
{
(j, k) ∈ N×N : ui−1/2 < (uj + uk) ≤ ui+1/2

}
(13)
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where ui−1/2 and ui+1/2 denote the boundaries of the ith cell, respectively, and ui represents the mean
value of the ith cell. The representation of the ≡i defines all those pairs of cell indices j and k with
particle properties uj and uk, such that the addition of their particle properties uj + uk will fall in any
cell having representative ui after the aggregation of particles.

Similar to the CAT, for the FVS, it is presumed that the point masses are concentrated on the
representatives. Therefore, by proceeding in a similar way as in the CAT, the expression for the FVS is
obtained, which is given by

dNi
dt

=
1
2

j≤k

∑
ui−1/2<(uj+uk)≤ui+1/2

a(uj, uk)NjNk −
I

∑
j=1

a(ui, uj)Ni Nj. (14)

We know that the finite volume schemes are well known for the conservation of the various
properties. The above formulation (14) takes into account the preservation of the zeroth order moment
but not the conservation of the total mass (first order moment) of the system. Nevertheless, this can be
resolved by introducing only two weights in the above equation, leading to the following expression:

dNi
dt

=
1
2

j≤k

∑
ui−1/2<(uj+uk)≤ui+1/2

a(uj, uk)NjNk ϕb
j,k −

I

∑
j=1

a(ui, uj)Ni Njφ
d
i,j, (15)

where the correction factors ϕj,k and φi,j are defined as

ϕb
j,k =


θ(uj)+θ(uk)

2θ(ulj,k
)−(θ(uj)+θ(uk))

, (uj + uk) ≤ umax;

0, otherwise.
, (16)

and

φd
i,j =


θ(uli,j

)

2θ(uli,j
)−(θ(ui)+θ(uj))

, (ui + uj) ≤ umax;

0, otherwise.
, (17)

where θ(ui) denotes the sum of the components of the vector ui, i.e., θ(ui) = θ(ui1) + θ(ui2) + · · ·+
θ(uip) and li,j is the index of the cell where (ui + uj) falls. The theoretical proof of the preservation of
the total number of particles as well as total mass of the particles in the system along with the CFL
conditon can be found in Kaur et al. [57] and its flowchart is depicted in Figure 2b.

2.3. Kernel Selection

The efficiency and accuracy of the numerical methods is tested against the analytically tractable
kernels corresponding to 2D PBE. In particular, two kernels, namely constant (size-independent) and
sum (size-dependent) kernels, are chosen for the comparison.

2.3.1. Size-Independent Kernel

For a size-independent kernel a(u, v, u′, v′) = 1, the analytical solution corresponding to the
size-independent kernel was formulated by Gelbard and Seinfeld [22] and is listed in Table 1.
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Table 1. Analytical solutions of number density functions for size-independent kernel.

Parameter Value

N0 1
p1, p2 1

m10, m20 0.04

n(u, v, t) 4N0
(t+2)2

(p1+1)(p1+1)(p2+1)(p2+1)

m10m20
exp

[
−(p1+1)u

m10
+
−(p2+1)v

m20

]
×∑∞

k=0

(
t

t+2

)k [(p1+1)(p1+1) ]k [(p2+1)(p2+1) ]k(u/m10)(k+1)(p1+1)−1(v/m20)(k+1)(p2+1)−1

Γ[(p1+1)(k+1)]Γ[(p2+1)(k+1)]

2.3.2. Size-Dependent Kernel

Mathematically, the sum kernel can be expressed as a(u, v, u′, v′) = u + v + u′ + v′ and is
heavily dependent on the size of the particles. The analytical solution in this case is formulated
by Fernández-Díaz and Gómez-García [21] and is listed in Table 2.

Table 2. Analytical solutions of number density functions for size-dependent kernel.

Parameter Value

N0 1
p1, p2 1

m10, m20 0.04
τ 1− exp(φt)
s u + v
s0 m10 + m20

n(u, v, t) N0(1− τ) exp
(
−sτ
s0

)
(p1+1)(p2+1)

m10m20
exp

[
−(p1+1)u

m10
+
−(p2+1)v

m20

]
×∑∞

k=0
1

(k+1)!

(
−sτ
s0

)k [(p1+1)u/m10](k+1)(p1+1)−1[(p2+1)v/m20](k+1)(p2+1)−1

Γ[(p1+1)(k+1)]Γ[(p2+1)(k+1)]
φ total mass of the particles in the system

2.4. Model Initialization and Post-Processing

For the initial condition n(u, v, 0) = 16uv exp(−2u− 2v), the exact results of number density as
well as various order moments for constant and sum kernels are provided in the literature by Gelbard
and Seinfeld [22] and Fernández-Díaz and Gómez-García [21], respectively. Before comparing the
numerical results, it is important to define the degree of aggregation Iagg:

Iagg(t) = 1− µ00(t)
µ00(t = 0)

, t ≥ 0 , (18)

which describes the decrease in the number of initial primary particles due to the aggregation process.
At time t = 0, Iagg = 0, and as it approaches large values, Iagg → 1, with all primary particles forming
one large particle.

Furthermore, the weighted relative error is also calculated to test the accuracy of the number
distribution quantitatively [49]:

∆i,j(t) =
∑I1

p=1 ∑I2
q=1 |Nana

p,q (t)− Nnum
p,q (t)| ui

pvj
q

∑I1
p=1 ∑I2

q=1 Nana
p,q (t)ui

pvj
q

. (19)

The superscripts ana and num represent the exact and numerical solutions, respectively.
Here, ∆0,0 represents the relative error in the distribution of the number of particles over the whole
size domain. The two solutions corresponding to the two numerical schemes may identify the same
prediction for the total number of particles, even though the distribution of particle populations
may disagree considerably. This is well captured by ∆0,0. Similarly, the ∆1,0 expresses the relative
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error in the distribution of the total mass of the system. All the simulations and computations for
both schemes were carried out using “MATLAB” on a i5 CPU with 2.67 GHz and 16 GB RAM.

2.5. Average Size Particles

The average size of particles formed in the system along u and v components is determined using
the following expression:

ū =
µ10(t)
µ00(t)

, v̄ =
µ01(t)
µ00(t)

. (20)

Moreover, the total average size of particles formed in the system is given by

ū =
µ10(t) + µ01(t)

µ00(t)
. (21)

2.6. Quantification of Mixing

For identifying the mixing of components in a bivariate PBE, Matsoukas et al. [17] provided a
theory to show that the mixing of components is calculated using the χ parameter corresponding to
the variance of excess binder. The underlying principle relies on the assumption that if the components
are perfectly mixed among all aggregates, the amount of binder in an aggregate of size v would be φv.
If the actual amount of binder in the aggregate is ui, the difference m− φv defines the excess binder χ.

For kernels independent of both composition and initial conditions, the χ2 parameter should be
constant at all times for constant and sum kernels. The expression for a χ2 parameter is given below:

χ2 = η2µ20(t)− 2η(1− η)µ11(t) + (1− η)2µ20(t), (22)

where η = 0.5. A detailed description of the theory of mixing of components can be found in
Matsoukas et al. [17] and Matsoukas and Marshall Jr [19].

3. Results and Discussion

The efficiency and accuracy of the numerical schemes for 2D PBE solutions are tested using
exact solutions applying analytically tractable kernels. For qualitative and quantitative testing of
numerical schemes, CAT and FVS are compared in terms of various order moments and number
density functions approximated by both numerical schemes. The results are presented separately for
two selected kernels, namely constant (size-independent) and sum (size-dependent) kernels.

3.1. Size-Independent Kernel

3.1.1. Comparison of Moments and Number Density Prediction

For a constant (or size-independent) kernel, the computational domain is taken from
umin, vmin = 6× 10−5 to umax, vmax = 21. This domain is partitioned into 20× 20 non-uniform cells
and time ranging from 0 to 60. Numerical simulations achieved a degree of aggregation Iagg(t) = 0.97
during this time on a non-uniform grid. Figure 3 shows various order moments predicted by both
numerical methods compared to the exact moments. This reveals that the zeroth and first-order
(Figure 3a) moments are equally well predicted by both methods and match well with the exact
moments. In other words, both numerical approximations ensure the preservation of the total
number of particles and the conservation of the total mass of the particles in the system. Additionally,
the second-order moments (µ20 & µ11) computed by both numerical methods are in good agreement
with the exact moments (Figure 3b). However, the third-order moment, namely µ30, is more accurately
computed by the FVS than by the CAT (Figure 3e). Similar behavior is also shown by the other
third-order moment (µ21) as FVS shows a more precise result than the CAT, overlapping with the
exact result.
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In addition to this, using the flat representation concept [58], the number of particles in each cell
of the computational domain obtained numerically is compared with the exact results qualitatively.
The idea of the flat representation is to sort the cells’ indices from 1 to I1× I2 in ascending order, find the
particle population in each cell by the relation Nk = nk1,k2 ∆uk1 ∆uk2 and plot against its pivot index k.
The plots given in Figure 3e,f show that the CAT more accurately predicts the particle population in
each cell, whereas the FVS shows more deviation from the exact solution.
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Figure 3. Different order moments and number density functions for constant kernel.

3.1.2. Comparison of Average Particle Size and Mixing State Prediction

The average size of particles formed and mixing of components (variance of excess binder) is
calculated using Equations (21) and (22). In order to test the accuracy of prediction by the two methods,
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the numerical results for the system are compared with the exact results in Figure 4. It can be observed
that the results for the average size of particles are equally well computed by both numerical methods
(see Figure 4a). This is due to the fact that the accuracy of the average size particles depends on the
accuracy of the zeroth and first-order moments and both methods predicted these results with equal
precision. Moreover, the variance of excess binder plotted in Figure 4b shows that the CAT is in better
agreement with the analytical solution than the finite volume scheme. However, the accuracy of these
results can be improved to any level by considering a well-refined grid (as shown in Figure 4c,d).
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Figure 4. Average size particles formed in the system and χ2 parameter for mixing the components
using constant kernel.

As a further comparison, the quantitative weighted errors (19) existing in the number distribution
functions are also found using the numerical methods (see Table 3). The table below reveals that
the weighted relative errors in the distribution of the various moments found using the CAT are
larger than the FVS. One can also observe that the weighted errors in various order moments can be
enhanced by opting for a more refined grid. In terms of CPU time, the FVS took 30.35 s to obtain all
numerical results, whereas the CAT took 35.22 s for a size-independent kernel. Therefore, from the
above discussion, it can be concluded that the accurate prediction of the various order normalized
moment depends enormously on the behavior of the weighted sectional moments errors but not
always on the behavior of the number distribution function.
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Table 3. Quantitative weighted sectional errors for constant kernel.

Moments CAT FVS CAT FVS
20 × 20 20 × 20 25 × 25 25 × 25

∆0,0 0.27110 0.14838 0.22142 0.10737
∆1,0 0.29518 0.21496 0.25672 0.14373
∆2,0 0.36367 0.32288 0.32813 0.25187
∆1,1 0.35038 0.30358 0.32345 0.24179
∆3,0 0.51598 0.46139 0.48715 0.42507
∆2,1 0.53205 0.51217 0.49247 0.45377

3.2. Size-Dependent Kernel

3.2.1. Comparison of Moments and Number Density Prediction

The same numerical methods that were applied using the constant kernel are repeated using the
size-dependent kernel (sum kernel) and the results are compared. The computational domain taken
from umin, vmin = 6× 10−5 to umax, vmax = 30 is divided into 20× 20 non-uniform cells with time
varying from 0 to 20. The simulations attained a degree of aggregation of 0.90 at the end time.

Figure 5 represents the comparison of results obtained using both numerical approximations
with the exact results. It can be seen that the zeroth order moments obtained using the FVS
and the CAT match well with each other, though both show under-prediction of the exact result
(Figure 5a). However, these numerical results can be improved by choosing a more refined grid.
The first-order moment predicted by both numerical methods shows good agreement with the exact
result, i.e., the total mass of the particles in the system is conserved. Furthermore, Figure 5b reveals
that the second-order moments (µ20 & µ11) computed by the FVS show less deviation from the exact
moments as compared to the CAT. Similarly, it can be seen from Figure 5c,d that the third-order
moments, namely µ21 and µ30, predicted by the FVS, overlap with the exact results, whereas the CAT
shows more deviation from the exact moments. The deviations in the moments may be due to the
numerical diffusion taking place in the CAT while distributing the averages of the particles to the
neighboring nodes, but no such distribution of particles is required in the case of FVS.

Similar to the constant kernel, the particle population in each cell obtained numerically is
compared with the exact result using a flat representation for the size-dependent kernel (see Figure 5e,f).
These figures reveal that the CAT shows more accurate results than the FVS. In addition to this,
the quantitative weighted relative errors in the different order moments computed using both
numerical methods are shown in Table 4. The results reveal that the weighted errors existing in
the various order moments are larger for the CAT, whereas FVS shows fewer errors. It can also be
observed that the errors in the higher-order moments increase substantially more than the lower-order
moments for the CAT, whereas the FVS shows stable results. The weighted relative errors in the various
moments decrease when a more refined grid is taken into consideration. Consequently, from the above
discussion, it can be again concluded that the accurate prediction of the various normalized moments
certainly depends on the behavior of the sectional weighted relative errors in the moments.

Table 4. Quantitative weighted sectional errors for sum kernel.

Moments CAT FVS CAT FVS
20 × 20 20 × 20 25 × 25 25 × 25

∆0,0 0.18180 0.15587 0.11325 0.08356
∆1,0 0.33015 0.14861 0.30735 0.10185
∆2,0 0.81804 0.29930 0.65429 0.27372
∆1,1 0.82524 0.27404 0.65840 0.26817
∆3,0 2.12448 0.59022 1.43660 0.37667
∆2,1 2.05260 0.67102 1.40687 0.38896
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Figure 5. Different order moments and number density functions for sum kernel.

3.2.2. Comparison of Average Particle Size and Mixing State Prediction

The average size particles and variance of the excess binder are compared in Figure 6 for the
sum kernel. One can easily observe that the results are similar to the previous case. The average size
particles are equally well obtained by both numerical methods, as illustrated in Figure 6a.

However, the excess binder variance is more accurately obtained by the cell average technique,
even though the second-order moments are more accurately computed by the finite volume scheme
(see Figure 5b). In contrast, the FVS estimates the second-order moments more accurately than the CAT.
However, it shows a large deviation from the exact results, as shown in Figure 6b. Using a refined grid,
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the accuracy of the results can be improved to a large extent, as shown in Figure 6c,d. In a computational
sense, the CAT took 20.09 CPU time to approximate the numerical results. However, the FVS required
less time to predict these results (approximately 17.91 s).
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Figure 6. Average size particles formed in the system and χ2 parameter for mixing the components
using sum kernel.

4. Conclusions

This study demonstrates that the accurate prediction of second-order moments does not
always predict the variance of the excess binder, which is very important for computing the
extent of component mixing in aggregation-driven processes such as pharmaceutical granulation.
Two numerical methods, namely the cell average technique and finite volume scheme, have been
implemented for solving a multi-dimensional aggregation population balance equation to show
these results. Many applications, including granulation and crystallization, merely focus on the
accuracy of the various order moments and number distribution function. For this purpose, the finite
volume scheme can be used for various practical applications such as granulation, crystallization
and bubble columns due to its simpler mathematical formulation and higher accuracy than the
cell average technique. However, to compute the extent of the mixing of binder in the system,
the accurate prediction of excess binder variance (χ2 parameter) is very important. Even though the
cell average technique is less accurate than the finite volume scheme in second- and third-order moment
prediction, it is recommended for computing the χ2 parameter as it requires less computational CPU
time. The accuracy of the χ2 parameter can be improved to the desired level; however, this is at a
computation expense as more grid points would need to be considered in the computational domain.
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Nomenclature

Symbol Description
n Particle property (size) distribution
u Particle property vector (size)
t time
Ni Number of particles in the cell i
µi ith order moment
I Total number of cells
Iagg Degree of aggregation
lj,k Index of the cell where (uj + uk) falls
ϕ Weight function
a Aggregation kernel
∆ Measure of sectional error
θ Sum function
ū Average size of particles along u axis
v̄ Average size of particles along v axis
χ2 Mixing of components
Abbreviations
PBE Population balance equation
FVS Finite volume scheme
CAT Cell average technique
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