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The encoder-decoder-based deep convolutional neural networks (CNNs) have made

great improvements in medical image segmentation tasks. However, due to the inherent

locality of convolution, CNNs generally are demonstrated to have limitations in obtaining

features across layers and long-range features from the medical image. In this study,

we develop a local-long range hybrid features network (LLRHNet), which inherits the

merits of the iterative aggregation mechanism and the transformer technology, as a

medical image segmentation model. LLRHNet adopts encoder-decoder architecture

as the backbone which iteratively aggregates the projection and up-sampling to fuse

local low-high resolution features across isolated layers. The transformer adopts the

multi-head self-attention mechanism to extract long-range features from the tokenized

image patches and fuses these features with the local-range features extracted by

down-sampling operation in the backbone network. These hybrid features are used to

assist the cascaded up-sampling operations to local the position of the target tissues.

LLRHNet is evaluated on two multiple lesions medical image data sets, including a

public liver-related segmentation data set (3DIRCADb) and an in-house stroke and white

matter hyperintensity (SWMH) segmentation data set. Experimental results denote that

LLRHNet achieves state-of-the-art performance on both data sets.

Keywords: iterative aggregation, transformer, image patches, long-range features, multiple lesions

1. INTRODUCTION

Deep convolutional neural networks (CNNs) have become the backbone of the development
of artificial intelligence (Sarvamangala and Kulkarni, 2021). It is also becoming an essential
prerequisite for segmenting medical images. Based on the CNN model, developing an automatic,
accurate, and robust medical image segmentation model has become one of the hot issues in
medical image analysis, it is the premise and foundation of diagnosis and image-guided surgery
system. An accurate segmentation model can not only reduce the workload but also help clinicians
improve work efficiency, make an accurate diagnosis and propose treatment strategies.

In recent decade, deep learning methods have shown an adequate breakthrough in medical
image segmentation tasks, which bring hope for the development of artificial intelligence in
computer-aided diagnosis research (Bi et al., 2019). Some researchers have applied deep learning
methods to multi lesion segmentation tasks (Li et al., 2013a; Christ et al., 2017; Hussain et al., 2018;
Liu et al., 2020c). For example, Sun et al. (2017) proposed a fully convolutional network (FCN) for
segmenting liver tumors. They designed a multi-channel fully convolutional network (MC-FCN)
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to segment liver tissues and tumors from multi-phase contrast-
enhanced CT images. Hussain et al. (2018) proposed an
automated glioma tumors segmentation DCNN. They used the
patch-based manner to train the deep network by extracting
two co-centric patches of different sizes from the input images.
These studies have promoted the study of multiple lesion
segmentation. However, the deep learning method still faces
some great challenges in medical image segmentation tasks. (1)
The boundaries of the lesion are quite similar, it’s a challenge
for CNNs to segment the boundaries. As shown in Figure 1,
the original tissue in the color-labeled area is very similar to
its surrounding tissue pixels, and it is difficult to distinguish.
(2) It is difficult to establish a correlation between regions that
are far apart. As shown in Figures 1A,B, it is difficult to mine
out the relationship of the hidden pixel between the red blocks
of long-distance convolution kernels. In recent years, with the
improvement of computer hardware performance, deep learning
methods have achieved impressive performance in the field of
image segmentation, demonstrating the effectiveness of CNNs
in learning discriminative features to segment organs or lesions
from medical scans.

Convolutional neural networks are currently the basic
building blocks of most methods proposed for image
segmentation. In a CNN model, the local-range of convolution
and the lost features in the down-sampling process, make
the deep learning segmentation method different to obtain
global feature information and make well-informed decisions.
Although convolution operation can find the hidden association
of pixels in different positions through the translation operation
of convolution kernel, with the change of convolution kernel
positions, the association among the pixels from the same lesion
becomes more and more insignificant.

In order to alleviate the above problems, we propose a
local-long range hybrid that features a deep CNN (LLRHNet)
for multiple lesions segmentation, which consists of iterative
aggregation and transformer technology. Themain contributions
are as follows:

(1) We propose a local-long range hybrid features network for
multiple lesions segmentation with the iterative aggregation
mechanism and the transformer technology.

(2) The iterative aggregation architecture learns the fusion of
low and high-level local-range features from across layers.

(3) The transformer technology adopts the multi-head self-
attention mechanism to extract long-range features from
image patches.

(4) The local-long hybrid feature map helps LLRHNet reaches
the advanced level on two multiple lesions medical image
data sets.

The rest of this article is organized as follows. Section 2 shows
the related studies. Sections 3 and 4 introduce the methodology
and the material in our study. Some empirical comparative
experiments are conducted in Section 5. Section 6 makes
an extensive discussion about the LLRHNet network. Finally,
Section 7 summarizes this study.

2. RELATED STUDIES

2.1. Semantic Segmentation
Semantic segmentation is an important component of computer
vision. It is a natural step from rough reasoning to fine reasoning.
Semantic segmentation refers to pixel-level image recognition,
that is, marking the object category of each pixel in the
image. Before deep learning methods are applied to the field
of medical image analysis, researchers usually use TextonForest
(Shotton et al., 2008) and random forest classifier (Maiora
et al., 2014) as semantic segmentation tools. However, these
semantic segmentation methods are difficult to achieve the rich
representation of features from low level to a high level and
resolutions from coarse to fine. CNN is developed recently. It can
be used to analyze and mine data in a mechanism that is similar
to the human brain. CNN is not only helpful for nature image
analysis but also plays a great role in promoting the development
of medical image semantic segmentation (Dora et al., 2017; Liu
et al., 2020b).

2.2. Encoder-Decoder Models
To further mine the depth feature from the medical image, many
researchers are devoted to the exploration of input data and
network backbone. At first, patch-based deep learning methods
are popular in semantic segmentation tasks (Xu et al., 2015;
Volpi and Tuia, 2016), they used the image patch around
the pixels to classify each pixel independently. Then, in 2014,
Long et al. (2015) proposed an end-to-end FCN. FCN broke

through the previous limitation that the patch-based method
only used the fixed size of the input image so that CNN can

carry out dense pixel prediction with the full connection layer.
On this basis, Ronneberger et al. (2015) constructed a complete

encoder-decoder model (U-net) in 2015. After that, almost all the
advanced methods in the field of semantic segmentation adopt

the encoder-decoder architecture as the backbone (Liu et al.,

2020a; Nakarmi et al., 2020).
In a general encoder-decoder CNN model, the encoder

network gradually reduces the high resolution of an image and
extracts non-linear features. The decoder network projects the

recognition feature (low resolution) semantics learned by the
encoder into the pixel space (high resolution) to get a dense

classification and gradually recover the location information. The
encoder-decoder-based CNNs have shown the state-of-the-art

performance in medical image segmentation tasks. For example,
the U-shaped models were used in stroke and penumbra lesions

segmentation (Liu et al., 2020c), white matter hyperintensity
(WMH) lesions segmentation (Hongwei et al., 2018), liver and
tumor segmentation (Li et al., 2018), skin cancer diagnosis
(Andre et al., 2019), cardiac segmentation (Fu et al., 2018),
histopathology image (van Rijthoven et al., 2021), and pancreas
segmentation (Zhang et al., 2021b). However, there are two
shortcomings in these CNNs: (1) This CNN focus on designing
deeper or wider architectures but ignores the aggregate feature
information across layers. (2) These CNNs cannot mine the long-
range dependencies present in an image. More precisely, in a
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FIGURE 1 | Examples of the multiple lesions medical images. (A) is liver and liver tumor lesions, (B) is stroke and white matter hyperintensity lesions.

traditional encoder-decoder network, each convolutional kernel
only focuses on the local-range pixels in an image rather than
that across layers or the long-range. Therefore, it is worth paying
attention to feature information in an aggregate manner and
mining long-range dependent feature information, which will
provide an accurate segmentation basis for the medical image
segmentation method.

2.3. Transformer
The transformer is one of the extended mechanisms of attention
CNN, which is proposed by Google in “Attention is all you
need” (Vaswani et al., 2017). This model is widely used in
natural language processing (NLP) applications (Devlin et al.,
2018), such as machine translation, question answering system,
text summarization, and speech recognition. Following their
advantage in NLP applications, transformers have been adopted
to image analysis tasks very recently (Touvron et al., 2021). Zheng
et al. (2021) proposed a SEgmentation TRansformer (SETR)
for nature image segmentation. They adopted a transformer
as an encoder to transform the image into image patches and
combined it with a decoder to make a powerful segmentation
method. It is observed that these transformer-based methods can
achieve the desired results on large-scale databases. In the field
of medical image segmentation, the transformer-based method
is in the ascendant. The closest studies are the ones that use
attention mechanisms to boost the performance (Chen et al.,
2021; Valanarasu et al., 2021). In particular, several studies in
MICCAI2021 have achieved breakthroughs in medical image
segmentation tasks by combining transformers with U-shaped
networks (Wang et al., 2021; Zhang et al., 2021a). However,
only using the transformer to encode the tokenized image

patches, then directly sampling the hidden feature representation
to obtain high-resolution dense output, and finally predicting
segmentation, often can not produce satisfactory results.

3. METHODOLOGY

3.1. Overview of LLRHNet
The architecture of LLRHNet is shown in Figure 2. LLRHNet
has two branches: a local branch and a global branch. Figure 2A
shows the encoder-decoder local branch which is inspired by
the U-shaped architecture by Ronneberger et al. (2015). The U-
shaped networks have shown adequate performance in medical
image segmentation tasks (Liu et al., 2020b; Heller et al., 2021).
In LLRHNet, the backbone of the local branch is based on
ResNet (He et al., 2016). The local branch is used to extract
the local-range features from a whole image. To achieve better
cross-layer feature fusion, we use the multi-level feature iterative
aggregation to replace the simple skip connection operation
in the original ResNet. We iteratively aggregate different level
features to learn a deep fusion of low and high-resolution features
from isolated layers. Figure 2B shows the global branch which
consists of an initial convolution layer, a reshape layer, and a
transformer block. The transformer block is the main important
element in the global branch. The main spirit of the transformer
block is to extract the global/long-range feature from image
patches. Figure 2C shows the details of the transformer layer.
We use the transformer layers to learn the long-range pixel
dependencies in an image. These layers emerge innate global
multi-head attention mechanism that results in sufficient long-
range details. We fuse the local-range features and the long-range
features at the bottleneck layer of the local branch. It produces
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high-quality features for decoder layers, which in turn break the
limited localization abilities due to insufficient local information
from the local branch.

3.2. Network Architecture
We have outlined the architecture of LLRHNet in Section 3.1,
we use LLRHNet to achieve two goals: (1) Using the global
branch to obtain the long-range features from the images patches
and combining the long-range features with the local-range
information to assist the segmentation task. (2) Using the local
branch to obtain local-range features from the whole image and
complete the segmentation task. In this section, we will introduce
the architecture of LLRHNet in detail.

3.2.1. Iterative Aggregation Local Branch
The local branch adopts the encoder-decoder topology as the
backbone, which is illustrated in Figure 2A. It is used to extract
the local-range features from an image by the intrinsic locality
in a convolution manner. The encoder-decoder topology serves
as an outstanding performance network architecture in medical
image analysis tasks (Chen et al., 2021). In our method, the
encoder consists of 4 encoder blocks and 4 continuous down-
sampling processes. The encoder block consisted of several
convolution layers and ReLU, which is used to extract features.
The down-sampling can convert the input image into a fixed-
length vector. The decoder consists of 4 continuous up-sampling
processes, which can convert the previously generated fixed
vector into the prediction result. The skip connection operation
is usually embedded into the encoder-decoder framework. It
is used to introduce the low-level down-sampling features and
concatenate with them in up-sampling layers, which is more
conducive to generating a segmentation mask. This breaks
the limitation that traditional skip connections are limited
to cross-layers.

In the architecture of LLRHNet, we adopt the multi-
level feature iterative aggregation skip connection replaces the
traditional skip connection. We iteratively aggregate different
level features to learn a deep fusion of low and high-resolution
features. As shown in Figure 2A, we use the up-sampling
operation to map the low-resolution features of the lower layer
to that of the upper layer with the same resolution, and then we
use the add() method to fuse the features of different layers. We
obtain the low and high-level fusion features by using the iterative
aggregation strategy. Our aggregationmethod realizes the feature
fusion from shallow to deep among the isolated layers.

3.2.2. Encoder of Global Branch
(1) Tokenized image patches

As shown in Figure 2B, the global branch is a shallow
network. The transformer block takes the key component in this
network. We hope the transformer block can extract long-range
features from tokenized image patches. A standard transformer
needs 1D sequences as input. Medical images consist of 2D slices.
In our experiment, we need to convert the 2D slice into the 1D
tokenized image patches.

Let a 2D imageX with a spatial resolution ofH×W and several
channels of C (X ∈ R

Cin×H×W). Finally, LLRHNet predicts

the pixel-wise segmentation result Y ∈ R
Cout×H×W . To handle

2D medical images, we draw on the experience of Dosovitskiy
et al. (2020). We partition an input image into non-overlapping
patches by convolution kernel in the first convolution block. Each
image patch has a separate token. These tokens form an ordered
sequence. The input image X is partitioned into several small 2D
patches. Let the patch size of P×P, a flattened 2D image patch xiP
can be defined as follows:

xiP ∈ R
P2 .Cin | i = 1..N, (1)

where N = HW
P2

is the number of patches in an image.
In our experiment, the patch size is Cin × 8 × 8. We use

the convolution layer to embed the tokenized patches to the
dimension of channel Cin.

(2) Transformer
The transformer block is the main component of the global

branch. Transformer models have been demonstrated exemplary
performance on a broad range of machine translation and
NLP tasks (Vaswani et al., 2017). The transformer model uses
the self-attention mechanism instead of the RNN sequential
structure, which makes the model parallel training and has
global information. The attention mechanisms have been used
to improve the performance of the medical image segmentation
model in the closest studies (Jin et al., 2018; Liu et al., 2020c).
In our experiment, the transformer is used to extract long-
range features from image patches. The details of the transformer
are illustrated in Figure 2C. The transformer consists of a
shifted widow based on multi-head self-attention (MSA) and
multi-layer perceptron (MLP)modules. Two layer-normalization
(LN) operations are applied before the MSA and MLP models,
respectively. Two residual connection operations are also applied
after the MSA and MLP models. xiP is the i − th tokenized
image patch, we use token number and location to generate the
sequence of image patches, and then use the sequence as the input
of the transformer layer. The first input sequence (xseq) is defined
as follows:

xseq = [x1p; x
2
p; ...; x

N
p ], (2)

where N is the number of image patches.
Let x̃l be the output features of the MSA module, xl be

the output features of the MLP module, they can be defined
as follows:

x̃l = MSA(LN(xl−1))+ xl−1, (3)

xl = MLP(LN (̃xl))+ x̃, (4)

where LN() denotes the layer normalization operation.
To keep the output feature vectors in the global branch and

that of the bottleneck layer in the local branch has the same
dimension, we add a reshape layer followed by the transformer
block. The reshape layer only changes the dimension of input
data, but the content remains unchanged.

(3) Multi-head attention
The attention mechanism is first introduced in a sequence-

to-sequence task in 2014 by Bahdanau et al. (2014). The
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FIGURE 2 | The architecture of local-long range hybrid features network (LLRHNet). (A) Local branch: the backbone of LLRHNet. (B) Global branch: the transformer

block of LLRHNet. (C) The details of the transformer layer.

self-attention mechanism is one of the variants of attention
mechanisms, which not only can reduce the dependence on
external information, but also can capture the internal correlation
of data or features. Based on these characteristics, the self-
attention mechanism is developed as a context aggregation
module to obtain context semantic information. It has achieved
encouraging results in image segmentation and object detection
tasks (Hu et al., 2019; Zhao et al., 2020).

In the image analysis task, the single-head self-attention aims
at extracting the interaction relationship between all pixels by
encoding each pixel in terms of the global contextual features.
In order to capture the global context feature, single-head self-
attention is defined by 3 learnable weight matrices: Queries
(WQ ∈ R

n×dq ), Keys (WK ∈ R
n×dk ), and Values (WV ∈ R

n×dv ).
The first input patch sequence xseq has been defined in Equation
2, xseq is the first projected onto three weight matrices to get
Q = xseqW

Q, K = xseqW
K , and V = xseqW

V . The output y
of a single-head self-attention can be defined as follows:

y = softmax(
QKT

√
dq

)V , (5)

However, the limitation of single-head self-attention is that
it only focuses on one specific location. We use the multi-
head attention as the component of the proposed transformer
in LLRHNet. Multi-head attention is one of the attention
mechanisms (Vaswani et al., 2017) and can pay several
independent parallel attention to different important locations at
the same time. Specifically, in a multi-head attention mechanism,

different random initialization mapping matrices can map the
input vectors to different subspaces, which helps the model
analyze the input sequence from different perspectives. Multi-
head attention comprises multiple self-attention blocks (let h be
the self-attention block number). Each block has its own set of
learnable weight matrices (WQ

i ,W
K
i , andWV

i ), where i ∈ [1, h−
1]. Let X be an input image, we define the output of a h heads
multi-head attention as follows:

Yout = concat[y1, y2, ..., yh−1], (6)

where Yout ∈ R
n×h.dv , concat() denotes the concatenate

operation, it is projected onto a weight matrixW ∈ R
h.dv×d.

(4) Local-gobal branch hybrid as encoder
To improve the overall pixel relationship in an image, we fuse

the feature maps which come from two encoders of two branches
in the LLRHNet. Both feature maps should have the same size.
The feature map of the local branch bottleneck in 2D form.While
the output sequence vector of the transformer block is 1D form,
we first reshape the size of the 1D vector (HW

P2
) to a 2D feature

map with the size of H
P ×

W
P , and then we use a convolution (1×1)

to change the channel size of the reshaped feature map. Finally,
we use the up-sampling operation to change the size of the feature
map to H

8 × W
8 , which has the same size as the bottleneck feature

map of the local branch. We use the add() operation to fuse long-
range and local-range feature maps. For segmentation purposes,
the fused feature map is represented to full resolution (H×W) by
cascaded up-sampling operations, which are used to predict the
final segmentation result.
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4. EVALUATION DATA SET

We conduct experiments on two multiple lesions segmentation
data sets: the 3DIRCADb liver/liver tumor data set and the
SWMH stroke/WMH data set.

4.1. 3DIRCADb Data Set
The 3DIRCADb is the abbreviation of the 3D-IRCADb-01
data set, which is a public liver and liver tumor segmentation
data set (https://www.ircad.fr/research/computer/). 3DIRCADb
data set offers a set of liver and liver tumor lesions on CT images
(512 × 512). It consists of 20 samples (10 women and 10 men).
All samples are anonymous. The CT images were performed on
3D scans. 75 % of samples were diagnosed with hepatic tumors.
CT images consist of high various and complex organs in the
abdominal cavity. The closeness and similarity of these organs
increase the difficulty of the segmentation. Following (Qin et al.,
2018; Wasserthal et al., 2018), all 3D CT volumes are converted
in a slice-by-slice fashion and the predicted 2D slices are stacked
together to reconstruct the 3D prediction for evaluation.

4.2. SWMH Data Set
The SWMH data set is a sub-set of a local hospital clinical data
set. All samples in the SWMH data set were diagnosed with
ischemic stroke disease at a local hospital between 2016 and 2018.
All 26 samples are anonymous. All samples are between 20 and 50
years old. Each sample with both stroke and WMH lesions. We
exclude the samples from adolescents and older adults because
adolescents’ brains are still developing and their brain structures
are unstable. Common brain diseases in the elderly affect the
segmentation result of the target lesion (Beumer et al., 2016). The
MRI scans were performed on a Philips Achieve 3.0TMRI system
with the following acquisition parameters: slice thickness was set
to 6 mm, the field of view was set to 230× 230 mm, field strength
was set to 3.0T, matrix size was set to 230× 230× 18, slices were
set to 18, slice spacing was set to 1.0–1.5 mm, repetition time was
set to 23 ms, echo time was set to 87 ms, and pixel size in the x−y
plane was set to 0.9× 0.9 or 1.51× 1.90 mm.

The MRIs in SWMH were stored in DICOM format with
DWI, FLAIR, T1, and T2 modalities. These MRI images were
preprocessed, including format conversion (DICOM to NIfFI),
skull-stripped (Cox, 1996), re-coregistered MRI sequences to
the DWI, corrected for intensity inhomogeneity due to B1
variations (Tustison et al., 2010). We transform all 3D MRIs into
2D image slices in the axial direction. Finally, we get 468 2D
images. The gold standards of these images are based on DWI
images, which are semi-manual annotated by two experienced
radiologists. The semi-manual annotated process follows the
STandards for ReportIng Vascular changes on nEuroimaging
(STRIVE) (Wardlaw et al., 2013).

4.3. Evaluation Metrics
The performance of LLRHNet is assessed by Dice coefficient
(DC) (Milletari et al., 2016), Hausdorff distance (HD)
(Huttenlocher et al., 1993), Volumetric overlap error (VOE),
Relative Volume Difference (RVD), and Average Symmetric
Surface Distance (ASSD). Let P and G be the prediction result

image and ground truth, respectively. DC is used to evaluate
the proportion overlap of the target area between two images
(DC ∈ [0, 1]), which is defined as follows:

DC(P,G) =
2
∣∣P⋂

G
∣∣

|P| + |G|
, (7)

where P and G are the prediction image and ground
truth, respectively. A larger DC value denotes a better
segmentation result.

The HD is sensitive to outliers, it is defined as follows:

HD(P,G) = max

{
max
p∈P

min
g∈G

d(p, g), max
g∈G

min
p∈P

d(g, p)

}
, (8)

where d(p, g) is the Euclidean distance between the pixels p and g.
The VOE is defined as follows:

VOE(P,G) = 1−
|P ∩ G|

|P ∪ G|
. (9)

The RVD is an asymmetric measure defined as follows:

RVD(P,G) =
|G| − |P|

|P|
. (10)

The ASSD is defined as follows:

ASSD(P,G) =
1

2
(

∑
p∈P ming∈Gd(p, g)

|P|
+

∑
g∈Gminp∈Pd(g, p)

|G|
).

(11)
For HD, VOE, RVD, and ASSD measures, the smaller the value
is, the better is the segmentation result.

5. EXPERIMENTS AND RESULTS

In this section, we first compare the LLRHNet with other state-
of-the-art methods on two data sets. Then, we extend several
experiments for ablating the important elements of LLRHNet.

5.1. Implementation Details
We use the DC loss function (Ldc) to optimize LLRHNet and
train all comparison methods. The Ldc loss function is defined
as follows:

Ldc(P,G) = 1−
2
∣∣P⋂

G
∣∣

|P| + |G|
= 1−

2
∑N

(ij) pijgij + ε

∑N
(ij) p

2
ij +

∑N
(ij) g

2
ij + ε

,

(12)

where pij and gij are the pixels in P and G, respectively. N is
the total pixel number in an image. When there has no target
pixel or only a few target pixels in P and G, which will make
Ldc change greatly and lead to unstable training. In order to
avoid this situation, we adopt ε to maintain numerical stability.
In our experiments, we use Adam (Kingma and Ba, 2014) as the
optimizer of Ldc.

In these two data sets, the sample sizes in the 3DIRCADb data
set are 512 × 512, the sample sizes in the SWMH data set are
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224 × 224. We use the Skimage package (Van der Walt et al.,
2014) to resize all images in the SWMH data set to 512 × 512.
LLRHNet is implemented in Pytorch. To alleviate the problem of
over-fitting problem in the training process, we adopt the early
stopping strategy. The initial parameters of LLRHNet are set as
follows: the epoch= 80, the mini-batch size = 3, the learning
rate = 0.001, the drop-out rate = 0.3, and the random weight
initialization. All experiments are implemented on the NVIDIA
GeForce Titan X Pascal CUDA GPU processor.

5.2. Results on 3DIRCADb Data Set
According to themetrics provided by the 3DIRCADb data set, we
use DC, ASSD, VOE, RVD, and HD to evaluate the performance
of all comparison models. We verify the LLRHNet model on
the 3DIRCADb data set. We choose two types of comparison
methods: (1) The method which has excellent performance on
the data set; (2) The state-the-of-arts segmentation method.
Tables 1, 2 show the liver and liver tumor segment results
on the 3DIRCADb data set, respectively. We reproduce H-
DenseUNet (Li et al., 2018), MRFNet (Christ et al., 2017; Liu
et al., 2020d), MedT (Valanarasu et al., 2021), and TransUNet
(Chen et al., 2021) methods according to the codes provided
by the authors, then train and predict these codes under the
same conditions, and finally get the segmentation results. For the
rest of the comparison methods, we use the results provided in
the literature.

LLRHNet achieves the mean DC is 98.64%, VOE is 3.13%,
RVD is 0.01 mm, ASSD is 0.28 mm, HD is 2.03 mm on
liver tissues segmentation, and the mean DC is 95.06%, VOE
is 6.04%, RVD is 0.43 mm, ASSD is 0.58 mm, and HD is
1.93 mm on liver tumor lesions segmentation, respectively.
Compared with the other 9 methods in the liver segmentation
task, LLRHNet obtains the best scores of 3 out of 5 metrics.
Compared with the other 11 methods in the liver tumor
segmentation task, LLRHNet obtains the best scores in 2 out
of 5 metrics. DC is the main metric in the segmentation
task, we use a DC-based paired t-test as an additional analysis
index to measure the performance of the model. In the liver
segmentation task, we choose the top 5 DC scores of MedT,
MRFNet, TransUNet, SpecTr, and H-DenseUNet as the paired
method of LLRHNet, respectively. The p − values are 3E-
09, 5E-10, 2E-09,2.3E-06, and 4E-08, respectively. In the liver
tumor segmentation task, we choose the top 4 DC scores of
MRFNet, MedT, TransUNet, and SpecTr as the paired method of
LLRHNet, respectively. The p−values are 3.9E-07, 5.7E-08, 1.5E-
10, and 7.5E-10, respectively. In conclusion, other comparison
methods use the traditional convolution operation to obtain
the local-range context information, while MedT, TransUNet,
SpecTr, and LLRHNet introduce the iterative aggregation and
transformer block, which help these methods to obtain more
optimized local-range features and long-range features. All of
these help to improve the competitiveness of these transformer-
based methods. Compared with MedT, TransUNet, and SpecTr,
our proposed LLRHNet achieves strong competitiveness, ranking
first and second in DC value on the two test sets, respectively.

5.3. Results on SWMH Data Set
According to the experimental implementation details in Section
5.1, we compare LLRHNet with several other segmentation
methods on the SWMH data set, including U-Net (Ronneberger
et al., 2015), uResNet (Guerrero et al., 2017), FC-ResNet
(Drozdzal et al., 2017), RA-UNet (Jin et al., 2018), MRFNet (Liu
et al., 2020d), MedT (Valanarasu et al., 2021), and TransUNet
(Chen et al., 2021). We adopt DWI and FLAIR MRIs as inputs.
In these experiments, we are more concerned with the overlap
degree between prediction results and ground truths and the
outliers. Consequently, we conduct experiments to evaluate the
performance of these comparison methods on DC and HD
metrics. The comparison methods with the optimal parameters
are described or released by the authors. The results are displayed
in Table 3.

All of these methods adopt the encoder-decoder structure
as the backbone. Overall, the cascaded down-sampling\up-
sampling operations and the skip connections can improve
the utilization of features and alleviate the vanishing gradient
problem. However, these methods ignore the further fusion of
features and the extraction of long-range semantic information,
except for the MedT, TransUNet, SpecTr, and LLRHNet.
LLRHNet achieves the mean DC and HD of 79.10 and
78.02% and 2.70 and 2.27 mm in ischemic stroke and
WMHs segmentation tasks, respectively. LLRHNet outperforms
the other 5 non-transformer-based methods(U-Net, uResNet,
FC-ResNet, RA-UNet, and MRFNet) by combining iterative
aggregation and transformer block into the encoder-decoder
backbone. This is mainly due to two reasons: (1) We use iterative
aggregation to extract and optimize the local-range features
from different layers. (2) We use the transformer block is to
extract the long-range features from the image patches. The fused
local-range and long-range features make LLRHNet obtain more
comprehensive context information and improve the accurate
prediction results. Compared with other transformer-based
methods(MedT, TransUNet, and SpecTr), LLRHNet achieves the
state-of-the-art in two similar lesions segmentation tasks.

5.4. Visualization Analysis
To further intuitively analyze the performance of LLRHNet, we
visualize several samples from two data sets. For the 3DIRCADb
data set, we choose two samples as the visualization objects: one
only contains liver tissue and another contains both liver tissue
and tumor tissue. The visualization results are shown in Figure 3.
For the SWMH data set, we select 3 samples as the visualization
objects: one only contains stroke or WMH lesions and another
contains both lesions at the same time. The visualization results
are shown in Figure 4.

It can be found in Figures 3, 4 that the segmentation of
single type tissue or lesion, the current advanced segmentation
methods can accurately predict the range of target tissue,
as shown in Figures 3A,B, 4A,B. The prediction results of
LLRHNet and other methods are very close to the ground
truths. Compared with other tissues, the correlations between
pixels in the same type of tissue or lesion are relatively close.
Convolution operation can find these correlations from the
concerned local-range context information, and then make
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TABLE 1 | The results of liver segmentation on the 3DIRCADb data set. The best results are shown in bold.

Model DC VOE RVD ASSD HD

Li et al. (2015) - 9.15 (±1.44) -0.07 (±3.64) 1.55 (±0.39) 3.15 (±0.98)

Lu et al. (2017) - 9.36 (±3.34) 0.97 (±3.26) 1.89 (±1.08) 4.15 (±3.16)

Moghbel et al. (2016) 91.10 5.95 7.49 - -

Christ et al. (2017) 94.30 10.70 -1.40 1.50 24.00

MRFNet (Liu et al., 2020d) 97.75 (±0.80) 3.31 (±0.95) 0.31 (±1.38) 0.32 (±0.16) 2.19 (±5.16)

H-DenseUNet (Li et al., 2018) 98.20 (±1.00) 3.57 (±1.66) 0.01 (±0.02) 1.28 (±2.02) 3.58 (±6.58)

MedT (Valanarasu et al., 2021) 97.76 (±0.71) 2.61 (±0.86) 0.14 (±0.06) 1.03 (±1.69) 2.83 (±5.90)

TransUNet (Chen et al., 2021) 98.43 (±1.08) 2.29 (±0.97) 0.01 (±0.14) 1.48 (±1.98) 3.58 (±6.58)

LLRHNet 98.64 (±0.92) 3.13 (±1.87) 0.01 (±0.06) 0.28 (±1.20) 2.03 (±4.89)

TABLE 2 | The results of tumor segmentation on the 3DIRCADb data set. The best results are shown in bold.

Model DC VOE RVD ASSD HD

Li et al. (2013b) - 14.40 (±5.30) -8.10 (±2.10) 2.40 (±0.80) 2.90 (±0.70)

Sun et al. (2017) - 15.60 (±4.30) 5.80 (±3.50) 2.00 (±0.90) 2.90 (±1.50)

Christ et al. (2017) 56.00 (±25.00) - - - -

Moghbel et al. (2016) 75.00 (±15.00) 22.78 (±12.15) 8.59 (±18.78) - -

Foruzan and Chen (2016) 82.00 (±7.00) 30.61 (±10.44) 15.97 (±12.04) 4.18 (±9.60) 5.09 (±10.71)

Wu et al. (2017) 83.00 (±6.00) 29.04 (±8.16) -2.20 (±15.88) 0.72 (±0.33) 1.10 (±0.49)

H-DenseUNet (Li et al., 2018) 93.70 (±2.00) 11.68 (±4.33) -0.01 (±0.05) 0.58 (±0.46) 1.87 (±2.33)

MRFNet (Liu et al., 2020d) 94.81 (±4.20) 6.87 (±5.98) 0.07(±0.16) 0.82 (±0.64) 6.74 (±0.64)

MedT (Valanarasu et al., 2021) 94.99 (±2.43) 6.57 (±4.38) 0.56 (±0.30) 0.73 (±0.58) 4.20 (±1.03)

TransUNet (Chen et al., 2021) 95.06 (±1.89) 6.09 (±3.97) 0.54 (±0.22) 0.69 (±0.74) 2.01(±0.89)

LLRHNet 95.06 (±1.31) 6.04 (±4.67) 0.43 (±0.12) 0.58 (±0.66) 1.93 (±0.71)

TABLE 3 | The results for the 8 considered methods on the stroke and white matter hyperintensity (SWMH) data set. The best results are shown in bold.

Methods Ischemic stroke segmentation WMHs segmentation

DC HD DC HD

U-Net (Ronneberger et al., 2015) 52.35 (±7.50) 6.02 (±5.32) 50.06 (±8.18) 7.06 (±6.01)

uResNet (Guerrero et al., 2017) 70.80 (±9.90) 3.25 (±1.92) 67.16 (±7.20) 2.97 (±1.97)

RA-UNet (Jin et al., 2018) 72.95 (±7.20) 3.16 (±1.99) 71.76 (±6.50) 2.67 (±1.28)

FC-ResNet (Drozdzal et al., 2017) 73.50 (±7.60) 3.08 (±1.94) 71.20 (±7.80) 2.63 (±1.38)

MRFNet (Liu et al., 2020d) 77.04 (±2.35) 2.94 (±1.31) 73.65 (±3.38) 2.47 (±1.04)

MedT (Valanarasu et al., 2021) 79.00 (±2.99) 3.01 (±1.20) 77.98 (±2.01) 2.48 (±1.10)

TransUNet (Chen et al., 2021) 79.06 (±2.76) 2.79 (±0.99) 78.02 (±3.21) 2.38 (±1.99)

LLRHNet 79.10 (±2.63) 2.70 (±1.51) 78.02 (±3.10) 2.27 (±2.01)

the correct pixel classification to predict the segmentation
results. While for the samples with two types of target
tissues at the same time, the prediction results of other non-
transformer-based methods(U-Net, uResNet, FC-ResNet, RA-
UNet, and MRFNet) and transformer-based methods(MedT,
TransUNet, and SpecTr) are significantly different. As shown
in Figures 3C, 4C, the prediction results of transformer-based
methods are much closer to the ground truths. This is mainly
caused by two reasons: (1) The pixels of two different types
of target tissues interfere with each other, which limits the
distinguishing ability of the model by the local-range property of

convolution; (2) The iterative aggregation and transformer block
are integrated into transformer-based methods. Transformer-
based methods not only obtain the optimized local-range
context information from across layers in the local branch but
also integrates the long-range context information from the
global branch so that transformer-based methods achieve the
top performance in these methods. As shown in Tables 1–3,
since the performance of these transformer-based methods is
very close, their visualization graphs are highly similar, and
it is difficult to tell the pros and cons directly from the
visualization graphs.
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FIGURE 3 | The visualization of 6 considered methods on the 3DIRCADb data set. The blue color represents the liver area and the yellow color represent the liver

tumor tissue. (A) These images only contain liver tissue. (B) These images only contain tumor tissue. (C) These images contain both liver and tumor tissues.

FIGURE 4 | (A–C) The visualization of 8 considered methods on the stroke and white matter hyperintensity (SWMH) data set. The green color represents the stroke

area and the purple color represents the WMH tissue.

6. DISCUSSION

6.1. Ablation Experiments
6.1.1. Influence of Patch Size
In our experiments, we finally use 8 × 8 as the size of the image

patch in the transformer block. To verify the influence of patch

size on themodel performance, we choose 5 different image patch
sizes (2×2, 4×4, 8×8, 16×16, and 32×32) to verify LLRHNet.

The results are summarized in Table 4. At the same time, we

compare the model training time and memory consumption of
using different image patch sizes as global branch inputs, which

are shown in Figures 5, 6.
In general, with the increase of image patch size in the

training process, the accuracy of LLRHNet on the two data
sets is gradually reduced, the training time and memory

consumption are both gradually reduced. Except that patchsize =
2 × 2, LLRHNet is trained on the 3DIRCADb data set, the
required memory exceeds the upper limit of the server memory,
resulting in LLRHNet cannot run and make prediction result
on the 3DIRCADb data set. In addition, it is observed that a
smaller image patch size usually helps the model achieve higher
segmentation performance. However, it should note that the
sequence length of the transformer is inversely proportional to
the size of a patch, the smaller the patch size is, the higher the
computational cost of the model. This is due to the smaller the
patch size is, the longer the input sequence of the transformer
needs to be encoded from the more complex dependencies
between each patch and the higher the computational cost is. In
our experiments, although the segmentation result of patchsize =
8 × 8 is slightly lower (worse) than that of patchsize = 4 × 4,
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TABLE 4 | Influence of patch size on LLRHNet. The best results are shown in bold.

Patch sizes 3DIRCADb data set SWMH data set

Liver-DC Liver-HD Tumor-DC Tumor-HD Stroke-DC Stroke-HD WMH-DC WMH-HD

2× 2 - - - - 79.06 2.71 78.89 2.21

4× 4 98.70 3.26 94.91 6.00 78.93 2.77 78.55 2.37

8× 8 98.64 3.13 95.06 6.04 79.10 2.70 78.02 2.27

16× 16 97.39 3.81 93.86 7.01 78.47 3.03 76.85 2.42

32× 32 93.06 5.02 90.27 9.08 74.62 3.18 72.53 3.02

FIGURE 5 | The time consuming of LLRHNet on different path size inputs.

however, the model training time and memory consumption of
patchsize = 8×8 are much lower (better) than that of patchsize =
4 × 4. Hence, we choose 8 × 8 as the final image patch size of
LLRHNet by balancing the computational cost and accuracy.

6.1.2. Influence of Components
To further investigate the contribution of iterative aggregation
and transformer components of LLRHNet, we conduct several
ablation experiments based on 3DIRCADb and SWMH data sets.
Table 5 summarizes the prediction results on two data sets. The
results of the LLRHNet1 (ResNet) are the baseline for the ablation
experiments. We investigate whether LLRHNet1 is combined
with iterative aggregation or transformer block can improve the
model performance. LLRHNet2 and LLRHNet3 are compared
with LLRHNet1, which uses iterative aggregation operation or
global branch in LLRHNet1, respectively. The performance of

LLRHNet2 and LLRHNet3 is obviously better than that of
LLRHNet1. Specifically, for LLRHNet2 and LLRHNet3, the DC
values are improved by 2.85 and 2.78% for the liver segmentation,
3.14 and 2.26% for the liver tumor segmentation, 5.07 and
6.28% for the stroke segmentation, 6.88 and 8.15% for the
WMH segmentation, respectively. For the 3DIRCADb data set,
the DC values of LLRHNet2 are higher (better) than that
of LLRHNet3, while for the SWMH data set, the result is
the opposite. The LLRHNet4 architecture embeds the iterative
aggregation into the skip connection of the LLRHNet1 and adds
a transformer block as the global branch of the LLRHNet1. For
LLRHNet4, the DC values achieve 98.64 and 95.06% for liver
and liver tumor segmentation, 79.10 and 78.02% for stroke and
WMH segmentation, respectively. Compared with LLRHNet2,
LLRHNet4 extends the transformer block as an assistant branch
to extract the long-range features from image patches. In the
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FIGURE 6 | The memory consumption of LLRHNet on different path size inputs.

bottleneck layer of the local branch, the local-range and the
long-range features are fused, which improves the accuracy of
segmentation results. Compared with LLRHNet3, LLRHNet4
keeps the global branch and embeds the iterative aggregation into
the skip connection of the local branch, iterative aggregation can
fuse low-high resolution among different layers which provides
abundant information for LLRHNet4. Compared with other
models, the ultimate architecture of LLRHNet4 obtains the top
DC values on both data sets. This is due to the LLRHNet4
inheriting the high-quality local-range features and long-range
features from the iterative aggregation and transformer block.
In our experiments, we adopt LLRHNet4 as the final model.
As shown in Table 5, the use of the iterative aggregation and
transformer block help to improve the network to achieve
higher performance.

6.2. Visualization of the Local-Long Hybrid
Feature Map
The local-range features are obtained from the bottleneck layer
in the local branch, the long-range features are obtained from the
global branch, the long-range features strategy is the key assisted
component to improve the richness of pixel context information
for LLRHNet. As shown in Figure 2A, we use the add() method
to fuse the local and long-range features. It ensures that LLRHNet
can effectively obtain a hybrid feature map from local-range
features and long-range features. This fusion operation produces

a local-long hybrid feature map for the decoder layers. As
shown in Figure 7, we output the intermediate layers that come
from the scenario where the bottleneck layer is implemented
with the long-range features in Figure 7C and without it in
Figure 7B. Figures 7A,D show an input image and the ground
truth, respectively.

In Figure 7B, we observe that when the long-range features
are absent, the representation only comes from the local-
range feature that has too many disturbing pixels, there is a
lot of noise, and disagree with the ground truth (Figure 7D).
In contrast to the above practice, we fuse the local-long
features as a hybrid feature map. In Figure 7C, the long-
range feature helps the decoder produce a rough prediction,
however, it is much more similar to the ground truth. It
denotes that the long-range features improve the ability of the
decoder to recognize noisy pixels and optimize the segmentation
results. This is mainly due to the fact that the transformer
can mine the relationship between long-range pixels. The
fusion of transformer block produces higher-quality intermediate
feature information that has a better chance to converge into
a high-quality prediction. As shown in Figures 7B–D, we
note that only one kind of lesion tissue is identified, which
indicates that the fused features have limitations on multi-
target recognition. Improving the ability of hidden layers to
recognize multi-target lesions is the issue we plan to study in
the future.
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TABLE 5 | Predictive performance of different network architectures, with the mean values listed.

Methods 3DIRCADb SWMH

Liver and tumor Stroke and WMH

DC VOE RVD ASSD HD DC HD

LLRHNet1 93.51 & 89.17 6.01 & 12.37 0.81 & 7.64 1.57 & 4.16 1.21 & 4.72 69.76 & 65.31 3.89 & 4.61

LLRHNet2 96.36 & 92.31 4.97 & 9.26 0.80 & 3.08 1.05 & 2.76 1.34 & 4.37 74.83 & 72.19 3.87 & 3.08

LLRHNet3 96.29 & 91.43 5.30 & 8.86 0.91 & 4.36 0.97 & 2.43 2.37 & 3.54 75.04 & 73.47 3.41 & 2.98

LLRHNet4 98.64 & 95.06 3.13 & 6.04 0.01 & 0.43 0.28 & 0.58 2.03 & 0.71 79.10 & 78.02 2.70 & 2.27

LLRHNet1 denotes ResNet, LLRHNet2 denotes ResNet only with iterative aggregation, LLRHNet3 denotes ResNet only with transformer, and LLRHNet4 is the final model we choose.

The best results are shown in bold. DC:%, HD:mm, VOE:%, RVD:%, HD:mm.

FIGURE 7 | Visualization of the output layer bottleneck in the local branch of LLRHNet. (A) The input image. (B) The visualization of the local-feature. (C) The

visualization of the global-local feature. (D) The ground truth.

6.3. Limitations
Although our approach achieves the best results in the automatic
segmentation of multiple lesions, there are still some limitations
in this study. First, the sample sizes of the two data sets we used
were small, which limited the model to learning deep-level and
discriminative features. Due to various conditions, it is difficult
to collect data from multiple centers that meet the requirements.
We intend to collect multi-center data in the future. Second,
the transformer block is introduced into the LLRHNet. While
this strategy improves model performance, it also leads to an
increase in training parameters and training time. We choose U-
Net, uResNet, MedT, and TransUNet as the typical representative
for comparison. We compare the training time and parameters
of these methods on the SWMH data set. U-Net and uResNet are

shallow neural networks. MedT, TransUNet, and LLRHNet are
transformer-based neural networks.

The results are shown in Table 6. It can be found that MedT
and TransUNet, LLRHNet require more training time than
U-Net and uResNet methods, which is mainly caused by the
increase in the number of parameters after the introduction
of the transformer block. Additionally, MedT, TransUNet, and
LLRHNet all use the transformer technology, but compared with
MedT and TransUNet, LLRHNet has advantages in both training
time and the number of parameters. This is mainly because we
use theU-shaped network as themain frame, and the transformer
blocks are only used in the skip connection layers, which puts
less burden on the model. From Table 6, it can be seen that the
training time and parameters of LLRHNet have advantages over
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TABLE 6 | The results of training time and parameters of U-Net, uResNet,

TransUNet, and LLRHNet on SWMH data set.

Model Training time (hours) Parameters

U-Net 8.5 13M

uResNet 12 19M

MedT 28 33M

TransUNet 30 37M

LLRHNet 27.5 30M

MedT and TransUNet. But the complexity of the LLRHNet still
requires a lot of parameters and training time. Therefore, in the
future study, we will focus on the problem of model optimization.

7. CONCLUSION

We provide a deep learning network with iterative aggregation
and transformer technology, called LLRHNet. LLRHNet can
concurrently and accurately segment multiple lesions from
medical images. The key architectural feature of LLRHNet is
that it merits both iterative aggregation and transformer on
the encoder-decoder backbone. The encoder-decoder backbone
achieves local-range features extraction and targets location. The
iterative aggregation can fuse the low and high-level local-range
features from across layers. The transformer technology adopts
the multi-head self-attention mechanism to extract long-range
features from the tokenized image patches. LLRHNet is evaluated

on two medical image data sets. Empirical comparison with

well-established methods demonstrates that LLRHNet achieves
competitive segmentation performance. Furthermore, we exhibit
the ablation experiments and the representations of the
bottleneck layer that explain the role of key components in our
network. In the future study, we will pay attention to improving
the ability of hidden layers to recognize multi-target lesions.
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