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Abstract

Prosthetic foot stiffness plays a key role in the functional mobility of lower limb prosthesis

users. However, limited objective data exists to guide selection of the optimal prosthetic foot

stiffness category for a given individual. Clinicians often must rely solely on manufacturer

recommendations, which are typically based on the intended user’s weight and general

activity level. Availability of comparable forefoot and heel stiffness data would allow for a bet-

ter understanding of differences between different commercial prosthetic feet, and also

between feet of different stiffness categories and foot sizes. Therefore, this study compared

forefoot and heel linear stiffness properties across manufacturer-designated stiffness cate-

gories and foot sizes. Mechanical testing was completed for five types of commercial pros-

thetic feet across a range of stiffness categories and three foot-sizes. Data were collected

for 56 prosthetic feet, in total. Testing at two discrete angles was conducted to isolate load-

ing of the heel and forefoot components, respectively. Each prosthetic foot was loaded for

six cycles while force and displacement data were collected. Forefoot and heel measured

stiffness were both significantly associated with stiffness category (p = .001). There was no

evidence that the relationships between stiffness category and measured stiffness differed

by foot size (stiffness category by size interaction p = .80). However, there were inconsisten-

cies between the expected and measured stiffness changes across stiffness categories

(i.e., magnitude of stiffness changes varied substantially between consecutive stiffness cat-

egories of the same feet). While statistical results support that, on average, measured stiff-

ness is positively correlated with stiffness category, force-displacement data suggest

substantial variation in measured stiffness across consecutive categories. Published objec-

tive mechanical property data for commercial prosthetic feet would likely therefore be helpful

to clinicians during prescription.
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Introduction

Prosthetic feet are an essential component of lower limb prostheses, and are intended to

restore mobility to people with lower limb amputations (LLA).[1, 2] There are a vast number

of commercially-available prosthetic feet with a wide range of designs and mechanical proper-

ties which are potentially suited to particular mobility levels or specific mobility activities.[3–

5] These design variations correspond with different stiffness behaviors of the prosthetic fore-

foot (i.e., keel) and heel.[6, 7]

The stiffness properties of a prosthetic foot can have substantial effects on gait in people

with LLA. For example, decreased heel stiffness (i.e., a softer heel) has been associated with

prosthetic-side reduced knee flexion and reduced internal knee extensor moment during early

stance,[8] increased energy return,[8–10] and faster time to foot-flat, which in turn has been

associated with improved perceptions of stability.[11] Decreased prosthetic forefoot stiffness

(i.e., a softer forefoot) has demonstrated a mix of effects (e.g., increased prosthetic-side energy

storage and return,[8, 12, 13] increased ankle peak push-off power and work,[9, 14] an associa-

tion with prosthetic side increased knee extensor and hip musculature compensation,

increased intact side ankle musculature demand,[12] and increased intact limb loading[8, 10,

15]). The majority of studies that have assessed the effects of foot stiffness on gait use experi-

mental prosthetic feet, which allow for accurate control of prosthetic foot stiffness. However,

since there is limited published stiffness data across the vast majority of commercial prosthetic

feet, it is challenging to translate these findings into direct clinical context.[14]

The above-mentioned effects on gait underscore the importance of matching prosthetic

foot heel and forefoot stiffness properties with the abilities and goals of individual prosthetic

users. Mechanical testing procedures have previously been used to quantify linear stiffness

properties of prosthetic forefeet[6, 16–23] and heels,[6, 16, 17, 22, 24] but only for a limited

subset of commercial feet. Further, the majority of these studies have not reported stiffness

across manufacturer-defined stiffness categories within commercial foot types. To our knowl-

edge, only two studies have included mechanical testing across consecutive stiffness categories

within the same prosthetic foot model;[16, 19] one only characterized stiffness of running-spe-

cific prosthetic feet,[19] and the other only studied one foot size (i.e., 27cm).[16]

Availability of comparable forefoot and heel stiffness data would allow for a better under-

standing of differences not only between different commercial prosthetic feet, but also between

feet of different stiffness categories and foot sizes. Therefore, the purpose of this study was to

compare the linear stiffness properties of prosthetic forefeet and heels across stiffness catego-

ries and foot sizes for a range of commonly-prescribed, commercial prosthetic feet. We

hypothesized that, within each foot type, calculated linear stiffness properties would increase

with increasing stiffness category. Secondarily, we hypothesized that the relationship between

calculated linear stiffness properties and stiffness category would be consistent across sizes of

prosthetic feet.

Materials and methods

Mechanical testing methods were used to measure the forefoot and heel linear stiffness proper-

ties of five types of commercially-available prosthetic feet, including WalkTek (Freedom Inno-

vations; Irvine, CA), Seattle Lightfoot2 (Trulife USA; Poulsbo, WA), Vari-Flex (Össur;

Reykjavik, Iceland), Rush HiPro (Proteor USA; Tempe, AZ), and AllPro 8-inch (Fillauer, Inc.;

Chattanooga, TN). These commonly-prescribed prosthetic feet exhibit a range of material

properties, geometries, and features, and also cover a range of user activity-levels. Sizes 27, 28,

and 29 cm feet were tested for all five models, for a total of 15 groups, where each group is

defined by all feet of the same type and size. Within each group (i.e., foot type and size), a
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range of stiffness categories specified by each manufacturer for medium impact-level users

between 59.0–113.4 kg (130–250 lb.) were tested. A total of 56 prosthetic feet were therefore

tested (see Table 1 for details).

Procedures

Each prosthetic foot was loaded using a six degree-of-freedom (DOF) R2000 Rotopod (Mikro-

lar, Inc.; Hampton, NH) robot (Fig 1). The feet were attached to the steel frame surrounding

the robot (i.e., using the same double-ended female pyramid prosthetic adapter) and remained

stationary throughout testing. Each foot was shod with its respective foot shell and a standard-

ized walking shoe (MW577; New Balance; Boston, MA) to mimic clinical use. Prosthetic foot

alignment was set to neutral in all planes (sagittal, coronal, and transverse). Neutral alignment

was established in the transverse plane using a level positioned between two points on the

shoe, while neutral in the sagittal and coronal planes was established using screws on the pros-

thetic foot adapter to align the shoe such that the sole of the foot was parallel to the force plate.

To reduce shear forces during loading, the plantar surface of the shoe was covered in a low-

friction film (i.e., ShearBan, Tamarack Habilitation Technologies, Inc.; Blaine, MN).

A 6-axis load cell (AMTI; Watertown, MA) was attached in-line with the prosthetic foot to

collect force data. A motion capture system (Vicon Motion Systems Ltd.; Centennial, CO) was

positioned around the sides and top of the robot’s frame, with the foot at the center of the cap-

ture volume, and was used to collect displacement data. A voltage trigger was used to sync the

Table 1. Manufacturer-defined stiffness categories for five types of commercial prosthetic feet.

Prosthetic Foot

Model

Manufacturer Sizes (cm) Category Medium Impact User Mean Body

Weight�

kg (lb.)

Maximum Allowable User Body

Weight��

kg (lb.)

WalkTek Freedom Innovations; Irvine,

CA

27–29 1 52.2 (115) 59.0 (130)

2 70.8 (156) 81.6 (180)

3 95.7 (211) 108.9 (240)

4 722.9 (271) 136.1 (300)

Seattle Lightfoot2 Trulife USA; Poulsbo, WA 27–29 6 57.2 (126) 74.8 (165)

7 79.8 (176) 86.2 (190)

8 102.5 (226) 115.7 (255)

Vari-Flex Össur; Reykjavik, Iceland 27–29 3 64.0 (141) 77.1 (170)

4 73.0 (161) 87.99 (194)

5 83.0 (183) 100.2 (221)

6 94.3 (208) 116.1 (256)

7 108.4 (239) 130.2 (287)

Rush HiPro Proteor USA; Tempe, AZ 27–29 2 59.9 (132) 66.2 (146)

3 74.4 (164) 81.6 (180)

4 90.7 (200) 98.9 (218)

5 108.9 (240) 118.4 (261)

AllPro 8-inch Fillauer, Inc.; Chattanooga, TN 27–28 C6 68.0 (150) 81.2 (179)

D7 91.6 (202) 101.6 (224)

E8 113.4 (250) 124.7 (275)

29 D7 77.1 (170) 90.3 (199)

E8 102.1 (225) 112.9 (249)

�Averaged from the manufacturer-provided user body weight range for each stiffness category at a medium impact level.

��Maximum allowable user body weight for the category was used as the target load threshold for testing.

https://doi.org/10.1371/journal.pone.0268136.t001
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motion capture and load cell data. Reflective markers were placed on the loading platform, the

prosthetic foot and shoe, and on the load cell, in order to define the local coordinate system.

Testing was performed at two discrete angles by orienting the R2000 loading platform rela-

tive to the foot (i.e., -15˚ to simulate independent heel loading during early stance, and +20˚ to

simulate independent forefoot unloading during terminal stance) (Fig 2). Trajectory-based

displacement control was used to apply quasi-static loads to the feet using custom software

architecture. To initiate loading at each angle, the platform was moved along a single axis

toward the mounted prosthetic foot at a fixed rate of 20 mm/s. For each trial, a minimum

threshold of 50 N of normal force was maintained, per published guidelines.[17, 25, 26] The

forefeet and heels were loaded to the maximum user body weight limit as determined by the

manufacturer for the respective foot stiffness category (Table 1). The target load was based on

overall weight limit for a category rather than weight limit for a specific activity level and there-

fore in some cases was higher than the user weight range indicated for a medium impact user.

For each trial, the foot was loaded and unloaded for six consecutive cycles. Additional testing

was completed to evaluate for any variation in stiffness between “duplicate” prosthetic feet

(i.e., feet ordered from the manufacturer at different times but identical in model, size, and

stiffness category) (S1 Appendix).

Data processing

During testing, motion capture data were collected at 200 Hz and smoothed using a fourth-

order Butterworth filter with a cut-off frequency of 50 Hz. Load cell data were collected at

1000 Hz and resampled at 200 Hz. Total force (N) and displacement (mm) data from the last

three cycles were averaged; the first three cycles collected in each test were considered precon-

ditioning.[17] Since a minimum force was maintained throughout testing, the data were line-

arly extrapolated from 50 N to 0 N using the initial ten force-displacement data points.

Linear stiffness calculation

Calculated linear stiffness was determined using linear regression models fit to two data points

(S2 Appendix) (i.e., the minimum point (50 N) and the mean target user body weight specified

Fig 1. Mechanical testing apparatus with example commercial prosthetic foot setup. (a) Aerial view of prosthetic

foot setup for testing with in-line load cell and reflective markers (b) view of R2000 Rotopod parallel robot with a

vertically-mounted plate as a loading platform.

https://doi.org/10.1371/journal.pone.0268136.g001
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by each manufacturer for the respective foot stiffness category) on the force-displacement

curve (Table 1). Stiffness was calculated using data from the unloading portions of the forefoot

force-displacement curves and from the loading portions of the heel curves. The selected por-

tions of the curves were chosen to reflect stiffness behavior representative of foot loading dur-

ing the respective phase of gait (i.e., loading of the heel during early stance and unloading of

the forefoot during late stance).

Relative difference between low-load stiffness to high-load stiffness

While a single value for linear stiffness is an indicator of overall stiffness, there are different

degrees of nonlinearity across prosthetic feet (e.g., different stiffnesses at lower and higher

loads). Therefore, we created an additional method to quantify the relative difference between

low-load stiffness compared to high-load stiffness. Two measurements were used to establish a

percentage of difference in stiffness behavior during low loads compared to during high loads:

high-load stiffness and low-load stiffness (S2 Appendix). A greater percentage difference indi-

cates a larger magnitude of change between the stiffness experienced at low loads compared to

that at high loads (i.e., greater nonlinearity).

Statistical methods

Linear mixed effects regression was used to assess associations between calculated forefoot or

heel stiffness (dependent variable) and stiffness category (independent fixed effect) with foot

size as a fixed effect covariate, modeled as categorical (S3 Appendix). Foot type and foot type

by stiffness category interaction were random effects. Stiffness category across feet was scaled

so that a value of 1 represented minimum stiffness category (i.e., rated for 59.0 kg (130 lb.))

and 5 represented maximum stiffness category (i.e., rated for 113.4 kg (250 lb.)). Scaling was

distributed equally within this range depending on the number of manufacturer stiffness cate-

gories for each foot type and size. Likelihood ratio tests were carried out to test the hypothesis

of no association between calculated stiffness and stiffness category (i.e., the stiffness category

coefficient is equal to zero) to test for variability in this association across foot types (by testing

the significance of the foot type by stiffness category interaction term). To address our second-

ary hypothesis, the influence of foot size on the association between calculated stiffness and

stiffness category was examined by testing the significance of stiffness category by size interac-

tion terms. Results are summarized with the stiffness category model coefficient (representing

Fig 2. Positioning of loading platform relative to prosthetic foot in mechanical testing apparatus. Diagram of prosthetic foot mechanical testing

apparatus demonstrating the positioning of the loading platform relative to the prosthetic foot for +20˚ and -15˚ testing conditions.

https://doi.org/10.1371/journal.pone.0268136.g002
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the change in calculated stiffness per 1 unit increase in stiffness category) ± standard error

(SE), 95% confidence intervals (CI) and marginal R-squares (R2). Analyses were carried out

using R 3.6.2, and packages tidyverse, lme4, emmeans and MuMIn.[27]

Results

Linear stiffness

Calculated linear stiffness across all foot types, sizes, and stiffness categories ranged from 17.3–

44.4 N/mm for forefeet and from 28.7–67.8 N/mm for heels (Table 2). Overall, forefoot and

heel stiffnesses were both significantly associated with stiffness category (R2 = 0.54 and 0.38,

respectively, p = .001) (Table 3, Figs 3 and 4). Slopes for forefoot and heel stiffness varied sig-

nificantly by commercial foot type (foot type by stiffness category interaction p< .01)

(Table 3, Figs 3 and 4). Overall, slopes did not differ by foot size (stiffness category by size

interaction p = .80).

Table 2. Calculated linear stiffness properties (N/mm) by manufacturer-defined stiffness categories.

Commercial Foot Type Stiffness Category Forefoot Stiffness (N/mm) Heel Stiffness (N/mm)

27cm 28cm 29cm 27cm 28cm 29cm

WalkTek 1 21.5 21.1 20.6 40.7 39.4 39.4

2 26.4 25.6 25.6 44.1 42.6 46.3

3 38.4 35.7 36.7 60.4 58.3 65.4

4 46.1 42.4 44.6 63.6 70.6 69.3

Seattle Lightfoot2 6 26.4 26.3 20.7 55.0 48.5 51.8

7 28.4 32.3 28.3 50.9 58.9 64.9

8 37.4 37.8 34.4 57.8 64.5 65.7

Vari-Flex 3 23.1 27.3 24.0 32.4 25.5 28.3

4 26.7 31.9 25.8 35.6 34.7 34.7

5 29.1 36.4 31.8 37.5 36.5 36.2

6 33.6 39.7 35.4 47.4 42.4 43.6

7 38.5 46.5 40.6 45.4 48.7 50.0

Rush HiPro 2 19.8 26.5 23.5 40.8 28.4 29.8

3 21.4 28.3 24.8 47.7 30.3 35.1

4 27.9 43.5 26.2 48.9 40.0 43.8

5 34.8 33.6 30.9 53.4 47.7 56.1

AllPro, 8in C6 18.1 16.4 - 41.1 44.5 -

D7 22.2 22.7 18.7 46.7 44.2 45.1

E8 27.4 28.1 24.8 55.7 57.1 53.1

https://doi.org/10.1371/journal.pone.0268136.t002

Table 3. Summary statistics from linear mixed effects regression models of calculated stiffness on stiffness categories and foot sizes.

Mean change in calculated stiffness between categories Variability by foot type

Slope ± SE (95% CI) p� Slope Range SD (95%CI) p†

Forefeet 3.7 ± 0.7 (2.2, 5.1) .001 2.1–5.6 1.4 (0.6, 2.9) < .001

Heels 4.6 ± 0.9 (2.7, 6.5) .001 3.0–7.1 1.8 (0.7, 3.7) < .01

�significance of stiffness category coefficient

†significance of stiffness category by foot type interaction

https://doi.org/10.1371/journal.pone.0268136.t003
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On average across foot sizes and all foot types, for a one unit increase in scaled foot stiffness

category (i.e., 1–5 from minimum category to maximum category), there was a 3.7 ± 0.7 N/

mm (CI: 2.2, 5.1) estimated increase in calculated forefoot stiffness. Similarly, in the heel data,

for a one unit increase in scaled foot stiffness category, there was a 4.6 ± 0.9 N/mm (CI: 2.7,

6.5) estimated increase in calculated stiffness (Table 3).

While on average, stiffnesses increased with stiffness category, there were inconsistencies

between the expected and measured incremental stiffness changes (i.e., relative incremental

change in stiffness across foot stiffness categories within each foot type). Inconsistencies

between expected and measured stiffness changes, either between categories or between sizes,

were found for the vast majority of groups of tested forefeet and heels (Table 2, Figs 3 and 4);

there were numerous instances where the magnitude of stiffness change across foot stiffness

categories within one foot type varied considerably (e.g., one foot type demonstrated an aver-

age forefoot stiffness increase of 4.8 ± 0.3 N/mm from category 1 to 2 across foot sizes, but

demonstrated twice the average increase between categories 2 and 3 (i.e., 11.1 ± 0.9 N/mm) in

all foot sizes), and there were even instances where a decrease in calculated stiffness was found

as foot stiffness category increased (Table 2).

Relative difference between low-load stiffness and high-load stiffness

The degree of nonlinearity (difference between low-load stiffness and high-load stiffness) var-

ied substantially across feet tested; relative change in stiffness ranged from 28–86% for the

forefeet and from 52–94% for the heels, across all feet (Table 4). It was also noted that some

types of feet had substantially different percentage differences across sizes, while other types of

feet had very consistent percentage differences across foot sizes and categories (i.e., consistent

nonlinearity observed in force-displacement data).

Fig 3. Calculated linear stiffness of prosthetic forefeet by scaled stiffness category (min 1, max 5). Five types of

commercial prosthetic feet with three different foot sizes (i.e., 27-29cm) tested for each stiffness category (for a total of

15 groups, where group is defined by all feet of the same type and size). Dashed lines indicate the regression slope

averaged across all foot types and sizes from linear mixed effects regression of calculated stiffness on stiffness category

and size, with random effects for foot type and foot type by stiffness category interaction. Calculated linear stiffness was

significantly associated with scaled stiffness category (p = 0.001), although depending on foot type, variability in

stiffness across foot sizes and across consecutive stiffness categories is observed (p<0.01).

https://doi.org/10.1371/journal.pone.0268136.g003
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Force-displacement curves

Forefoot (S4 Appendix) and heel (S5 Appendix) force-displacement curves demonstrated non-

linear force-displacement behaviors under load. Despite the overall correlation between calcu-

lated stiffness and stiffness category, there were instances in which the displacement

experienced throughout the loading cycle by consecutive categories did not match the

expected pattern (e.g., higher categories did not always experience less displacement as would

be expected with a stiffer foot). These variations in displacement that occurred with loading or

unloading were identified by the order of force-displacement curves for all stiffness categories

within each size and foot type combination. The relative position of force-displacement curves

was inconsistent with the expected order of foot stiffness categories in the majority of groups

of forefeet and heels (i.e., consecutive categories were not ordered as expected) (Fig 5B).

Discussion

This study compared stiffness properties of a variety of commercial prosthetic feet (i.e., fore-

foot and heel regions) across manufacturer-defined foot stiffness categories and foot sizes.

Across all types of prosthetic feet, increased calculated forefoot and heel stiffness was, on aver-

age, significantly correlated with increased stiffness category, and the relationship between cal-

culated stiffness properties and stiffness category did not vary by foot size. However,

inconsistencies existed between the expected and calculated stiffness changes, both across cate-

gories and between sizes. Examples of these inconsistencies occurred in the vast majority of

forefoot and heel groups tested. More than half of the forefeet and over 90% of the heels stud-

ied exhibited inconsistencies across consecutive stiffness categories in the displacement

Fig 4. Calculated linear stiffness of prosthetic heels by scaled stiffness category (min 1, max 5). Five types of

commercial prosthetic feet with three different foot sizes (i.e., 27-29cm) tested for each stiffness category (for a total of

15 groups, where group is defined by all feet of the same type and size). Dashed lines indicate the regression slope

averaged across all foot types and sizes from linear mixed effects regression of calculated stiffness on stiffness category

and size, with random effects for foot type and foot type by stiffness category interaction. Calculated linear stiffness was

significantly associated with scaled stiffness category (p = 0.001), although depending on the type of foot, variability in

stiffness across foot sizes and across consecutive stiffness categories is observed (p<0.01). On average, heel stiffness

values were greater than forefoot stiffness values, across all foot types, which may be attributed to the shorter lever arm

of the heel compared to that of the forefoot.

https://doi.org/10.1371/journal.pone.0268136.g004
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observed throughout the loading cycle. One potential explanation for this observation is that

manufacturer-defined user body weight ranges varied somewhat across stiffness categories

within types of feet (e.g., some stiffness categories were intended for a broader range of user

Table 4. Relative percentage differences of low-load compared to high-load stiffness behavior.

Commercial Foot Type Stiffness Category Forefoot Relative Difference in Low-Load to

High-Load Stiffness

Heel Relative Difference

in Low-Load to High-Load Stiffness

27cm 28cm 29cm 27cm 28cm 29cm

WalkTek 1 83% 85% 86% 54% 52% 52%

2 84% 85% 88% 73% 64% 67%

3 78% 83% 82% 71% 67% 61%

4 83% 83% 85% 72% 78% 72%

Seattle Lightfoot2 6 43% 70% 76% 73% 77% 66%

7 78% 79% 82% 75% 81% 74%

8 79% 81% 83% 70% 82% 76%

Vari-Flex 3 62% 55% 78% 68% 75% 76%

4 65% 61% 64% 74% 70% 73%

5 66% 48% 64% 80% 77% 73%

6 67% 56% 61% 72% 74% 71%

7 75% 61% 69% 81% 74% 73%

Rush HiPro 2 60% 61% 53% 91% 92% 94%

3 28% 66% 60% 93% 92% 93%

4 67% 70% 67% 93% 92% 95%

5 65% 70% 70% 93% 89% 93%

AllPro, 8in C6 71% 42% - 65% 63% -

D7 68% 36% 38% 66% 79% 67%

E8 69% 40% 38% 69% 83% 70%

https://doi.org/10.1371/journal.pone.0268136.t004

Fig 5. Illustrations of example force-displacement curves generated from mechanical testing of prosthetic foot

forefeet or heels. Force-displacement plots demonstrate examples of (a) no inconsistencies observed in the order of

consecutive category force-displacement curves, and (b) several inconsistencies observed between consecutive

categories (e.g., cat 3 is stiffer than cat 4), multiple categories have similar data (i.e., cat 2 and cat 4), and there are

differences in relative low-load to high-load stiffness behavior across categories (e.g., cat 1 compared to cat 2).

https://doi.org/10.1371/journal.pone.0268136.g005
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body weights than others). While differing incremental increases in user body weight between

consecutive categories could result in inconsistent stiffness increases (e.g., larger changes in

stiffness may be expected between categories with broader weight ranges), this would not

explain the observed instances of force displacement curve overlapping across consecutive

stiffness categories, nor would it explain the instances of apparent decrease in stiffness with an

increase in stiffness category. Overlapping of consecutive categories could be explained if cer-

tain heel or forefoot components are used across multiple stiffness categories. However, there

are no data published by foot manufacturers to contextualize these results. Furthermore, these

findings of inconsistencies in calculated stiffness across stiffness categories suggest that manu-

facturer-reported stiffness categories alone may not provide sufficient information for clini-

cians to choose an optimal prosthetic foot for a given individual prosthetic user.

The few previous studies that included mechanical testing of commercial prosthetic feet of

varying stiffness categories reported results congruent with inconsistencies found in the cur-

rent study. In one study evaluating the stiffness properties of four different types of running-

specific commercial prosthetic feet, the calculated stiffness values were found to increase with

increasing stiffness category for all models of feet, but incremental changes in calculated stiff-

ness values were not equal across categories.[19] Another recent study of a variety of size 27cm

prosthetic feet reported instances in which higher-category commercial prosthetic feet had

lower stiffnesses than lower-category feet of the same type.[16]

While the ISO standards (e.g., 22675) specify mechanical testing parameters for safety test-

ing, they do not establish criteria or recommendations for determining prosthetic forefoot and

heel stiffnesses.[26] Therefore, a range of approaches have been used to quantify stiffness prop-

erties in previous studies of prosthetic feet using mechanical testing.[6, 16–19, 21, 22, 24, 26,

28] A common method is using a linear regression across the full load range (i.e., data from

the entire force-displacement curve) to estimate the slope.[17, 19, 21, 22] Calculated linear

stiffness in this manner is appealing in that it is an easily understood numerical value that

would be easy for clinicians to use when comparing prosthetic feet. Several studies also have

used a “functional” or instantaneous stiffness estimate, in which linear regression was fit to a

smaller region of the force-displacement curve, at a particular load level (e.g., approximating

near body weight).[6, 16, 18] However, distilling the information from each force-displace-

ment curve to a single value of stiffness may be better suited for a foot with linear behavior,

and is likely less representative of many contemporary prosthetic feet. Since many prosthetic

feet have curvilinear behavior, one study described using a 2nd order polynomial, in addition

to calculating the linear stiffness of feet across the full curve, as it provided a better representa-

tion of the nonlinear force-displacement curve.[19] However, equations like 2nd order polyno-

mials are more difficult to interpret and thus may have less intuitive meaning to describe

stiffness behavior than linear slopes.

Calculated stiffness only sufficiently captures linear behavior, and therefore does not pro-

vide a detailed picture of foot behavior across categories and sizes. All forefeet and heels in the

present study exhibited nonlinear mechanical behavior during loading similar to the findings

from previous studies.[6, 16–19, 22, 24] While the numerical linear stiffness values are impor-

tant for quantifying stiffness behavior en masse, more detailed observations can be gleaned

from the force-displacement curves. Given that there are different degrees of nonlinearity

across feet, we calculated both the linear stiffness as well as the relative difference between low

load stiffness and high load stiffness. There were cases in which stiffness behavior changed sub-

stantially during loading (i.e., curves showed low stiffness behavior at low loads, followed by a

sharp increase in stiffness at an inflection point, and higher stiffness behavior for the remain-

der of loading). In some instances, the change in stiffness behavior was inconsistent across cat-

egories or foot sizes. However, in other cases the large relative percentage change in stiffness
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was observed across all foot sizes and is likely due to the presence of an elastomeric bumper as

part of the forefoot or heel components. The nonlinearity observed on the force-displacement

curves is consistent with observations for similar designs of commercial feet tested in previous

studies,[16] and is likely due to the elastic properties of materials (e.g., composites and elasto-

mers), geometries of prosthetic feet, and shifting center of pressure during loading. However,

consistency in nonlinearity of force-displacement curves across size and category was expected

within a given foot type.

In addition to stiffness quantification, methods of mechanically testing prosthetic feet vary

across studies. Although there have been numerous previous studies that have mechanically

tested prosthetic feet, we identified three such studies that were similar to the current study in

the types of prosthetic feet (size, stiffness category, and model (i.e., Rush HiPro,[18] AllPro,

[18] Vari-Flex,[16] and Seattle Lightfoot2[16, 17])) and pylon progression angles tested. In the

current study we used an R2000 Rotopod for mechanical testing. Womac et al. used the same

mechanical testing equipment,[16] whereas Major et al. used a materials testing machine and

sine plate (as described in ISO standard 10328),[17] and Koehler et al. used a materials testing

machine with the foot fastened to an aluminum bar.[18] While in the current study we tested

feet at -15˚ and +20˚ sagittal pylon progression angles, Womac et al. tested at 15 different sagit-

tal pylon progression angles ranging from -15˚ to +30˚ (including the two pylon progression

angles used in the current study),[16] Major et al. tested at -15˚ and +20˚ (the two angles tested

in the current study) as well as a level loading surface,[17] and Koehler et al. tested only at a

+20˚ pylon progression angle.[18] Target loading thresholds and the number of loading cycles

also varied by study. The current study used the manufacturer-specified maximum allowable

user body weight for each foot stiffness category when determining loading thresholds. Six

loading cycles were performed per foot-pylon-progression-angle combination, with a 50 N

minimum load. Womac et al. used the vertical ground reaction force from previously tested

human subjects (people with transtibial amputation) walking in a gait laboratory as pylon-pro-

gression-angle-specific target loads and one cycle per foot-pylon-progression-angle combina-

tion.[16] Major et al. used a target load of 1230 N with 50 N of preloading and two cycles per

foot-pylon-progression-angle combination.[17] Koehler et al. individualized target loads by

using the body weight of three individuals with transtibial amputation walking with weighted

vests.[18] The differences in corresponding calculated linear stiffness values between the cur-

rent study and these previous studies were generally small (see S6 Appendix which details dif-

ferences in forefoot and heel calculated stiffness across studies for comparable prosthetic feet

and pylon progression angles), suggesting that the current testing methods are comparable

with previous methods.

There are several limitations to this study. The prosthetic feet studied are only a subset of

the hundreds of commercially-available foot models, and therefore cannot represent all other

feet. However, the prosthetic foot models were chosen to provide a variety of foot designs that

would be commonly-prescribed for users from a range of activity levels. Another potential lim-

itation is that the loading rate used (20 mm/s) is likely slower than physiological loading rates

during walking. This rate was used because it was the fastest possible with the testing equip-

ment and resulted in a faster loading rate than previous mechanical testing studies, in terms of

force (N/s).[6, 16–19] Additionally, quasi-static loading performed at two, sagittal-plane pylon

progression angles is not representative of loading throughout the full gait cycle, although it is

consistent with previous studies.[6, 17, 18, 22, 28] Despite these limitations, mechanical testing

allows for the collection of user-independent data and avoids confounding variables due to

variation across individual’s gait. Finally, linear stiffness is not the only property of prosthetic

feet that may affect gait. While linear stiffness is an important feature, especially when compar-

ing across stiffness categories of prosthetic feet, future studies should develop methods of
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quantifying other prosthetic foot mechanical properties that take into account nonlinear

behaviors.

Conclusions

The numerous inconsistencies found in calculated stiffnesses across prosthetic foot stiffness

categories suggest the importance of more standardized procedures for testing, analyzing, and

reporting prosthetic foot mechanical testing data. Since manufacturers do not typically report

prosthetic forefoot and heel stiffness values, the findings from this study can help inform pros-

thetic foot prescription by allowing clinicians to better match prosthetic users’ individual abili-

ties and mobility goals with prosthetic foot stiffness data (at least for the five types of feet

assessed in the current study). Future work is warranted to measure stiffnesses (and other

mechanical properties) of a larger variety of commercial prosthetic feet.

Supporting information

S1 Appendix. Testing of duplicate foot models. Testing was completed to evaluate variation

in stiffness between “duplicate” prosthetic feet (i.e., feet ordered from the manufacturer at dif-

ferent times but identical in model, size, and stiffness category). Pairs of duplicate size 27 cm

feet at two stiffness categories (i.e., corresponding to user weights of 68.0 and 90.7 kg (150 and

200 lb.)) of each foot type were tested. A total of 10 sets of duplicate feet were therefore com-

pared. Testing was performed at pylon progression angles of -10˚ and +20˚ to simulate heel

and forefoot loading, respectively. The experimental setup and all other procedures otherwise

matched those described in the manuscript. Calculated linear stiffness was very similar (mean

difference of 2.4 ± 1.3%) between all pairs of duplicate feet, for all foot types and stiffness cate-

gories (Fig A). The data between duplicate feet were similar both in calculated linear stiffness

values and in the features observed in the force-displacement curves, suggesting repeatability

in manufacturing across multiple samples of the same foot model. Similar results were

observed in a previous study which tested multiple samples of a commercial foot [21].
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S2 Appendix. Calculation of linear stiffness and determination of relative difference

between low-load stiffness and high-load stiffness. Example force-displacement data includ-

ing highlighted areas representing the low and high-load areas of the curve used to determine

relative difference in stiffness. Force-displacement curves also demonstrate method of linear

stiffness calculation (i.e., linear stiffness used to quantify stiffness for each foot).
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S3 Appendix. Statistical models used in linear mixed effects analyses.
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S4 Appendix. Force-displacement curves for forefeet, arranged by prosthetic foot type and

size. All tested stiffness categories within each prosthetic foot type and size are shown. Force

and displacement data from the last three loading cycles were averaged (i.e., mean line shown

for each foot) and standard deviation across cycles is demonstrated by shaded regions around

each force-displacement curve. Unloading portions of the forefoot curves are shown. Since a

minimum force was maintained throughout testing, the data were linearly extrapolated to 0 N

to provide an estimate for displacement at low loads. This was completed using a linear model

fit to the initial ten force-displacement data points to estimate the earliest linear stiffness

behavior, thus data shown below 50 N of load has been extrapolated.
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S5 Appendix. Force-displacement curves for heels, arranged by prosthetic foot type and

size. All tested stiffness categories within each prosthetic foot type and size are shown. Force

and displacement data from the last three loading cycles were averaged (i.e., mean line shown

for each foot) and standard deviation across cycles is demonstrated by shaded regions around

each force-displacement curve. Loading portions of the heel curves are shown. Since a mini-

mum force was maintained throughout testing, the data were linearly extrapolated to 0 N to

provide an estimate for displacement at low loads. This was completed using a linear model fit

to the initial ten force-displacement data points to estimate the earliest linear stiffness behav-

ior, thus data shown below 50 N of load has been extrapolated.
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S6 Appendix. Forefoot and heel calculated stiffness comparison across studies for compa-

rable prosthetic feet and pylon progression angles.
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