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Transient receptor potential (TRP) channels have attracted considerable attention because
of their vital roles in primary sensory neurons, mediating responses to a wide variety of
external environmental stimuli. However, much less is known about how TRP channels
in the brain respond to intrinsic signals and are involved in neurophysiological processes
that control complex behaviors. Painless (Pain) is the Drosophila TRP channel that was
initially identified as a molecular sensor responsible for detecting noxious thermal and
mechanical stimuli. Here, we review recent behavioral genetic studies demonstrating that
Pain expressed in the brain plays a critical role in both innate and learned aspects of
sexual behaviors. Several members of the TRP channel superfamily play evolutionarily
conserved roles in sensory neurons as well as in other peripheral tissues. It is thus
expected that brain TRP channels in vertebrates and invertebrates would have some
common physiological functions. Studies of Pain in the Drosophila brain using a unique
combination of genetics and physiological techniques should provide valuable insights
into the fundamental principles concerning TRP channels expressed in the vertebrate and
invertebrate brains.
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INTRODUCTION

The transient receptor potential (TRP) channel superfamily is
a diverse group of non-selective cation-permeable ion channels
(Montell, 2005b; Pedersen et al., 2005). The first member of this
superfamily was identified in the fruit fly Drosophila melanogaster
as the causative gene for a phototransduction mutant in which
photoreceptor potentials abnormally displayed a transient, rather
than sustained responses during prolonged light stimuli (Minke
etal., 1975; Montell and Rubin, 1989; Minke, 2010). TRP channels
are well conserved among distantly related species including yeast
and invertebrate as well as vertebrate animals. On the basis of
the primary amino acid sequence, members of the TRP channel
superfamily are classified into seven subfamilies (Montell, 2005b,
2011): TRPC (canonical), TRPV (vanilloid), TRPM (melastatin),
TRPA (ankyrin), TRPN (NOMPC-like), TRPP (polycystin), and
TRPML (mucolipin). Although TRP channels play important
roles in non-excitable cells, it has become apparent that many
TRP channels are predominantly expressed in the nervous sys-
tem. Up until now, TRP channels have been most extensively
studied in sensory neurons, where they serve as cellular sensors,
responding to a variety of external stimuli such as light, sound,
heat, pheromones, and environmental irritants (Voets et al., 2005;
Damann et al., 2008). In addition to the prevalent expression in
the sensory systems, TRP channels are widely distributed in the

central nervous system (CNS) and implicated in the modulation
of certain behaviors (Moran et al., 2004). For example, TRPC4
and TRPC5 in the mouse brain contribute to the regulation of
innate fear responses (Riccio et al., 2009, 2014), while TRPC6 and
TRPV1 are involved in hippocampus-dependent spatial and/or
fear memory (Marsch et al., 2007; Li et al., 2008; Zhou et al,,
2008). Nonetheless, our understanding concerning the roles and
action mechanisms of brain TRP channels is still notably limited.
To fill this significant gap in TRP channel research, comprehensive
studies using the model organism Drosophila melanogaster hold
great promise.

Thirteen TRP channel superfamily genes have been identified
in Drosophila, and sensory functions modulated by the fly TRP
channels have been found to be remarkably similar to those
modulated by their mammalian counterparts (Montell, 2005a;
Fowler and Montell, 2013). Painless (Pain) is one of the Drosophila
TRP channels, originally identified as a molecular sensor for
noxious thermal and mechanical stimuli in larvae (Tracey et al.,
2003). Pain also has various sensory functions in adult flies,
including thermal nociception, the detection of aversive wasabi
stimuli, and gravity sensing (Al-Anzi et al., 2006; Xu et al., 20065
Sun et al., 2009; Ohashi and Sakai, 2014). These characteris-
tics of Pain have been reviewed in a recent article (Fowler and
Montell, 2013). Notably, studies indicate that pain is expressed
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Table 1 | Functions of Pain expressed in Drosophila adult brain.

Behavior Loss of function Brain References
phenotype neurons
Female sexual Sexual receptivity GABAergic Sakai et al. (2009)
behavior enhancement neurons
Cholinergic
neurons
IPCs Sakai et al. (2014)
Male sexual Homosexual Olfactory Wang et al. (2011)
orientation courtship PNs
Courtship memory LTM defect MB neurons  Sakai et al. (2013)
IPCs

IPCs, insulin-producing cells; PNs, projection neurons; LTM, long-term memory;
MBs, mushroom bodies.

in the adult CNS as well and contributes to brain functions
controling different aspects of courtship behavior (Table 1). In
this current mini-review, we focus on the functions of Pain
in the adult brain and discuss the possible mechanisms by
which Pain modulates innate and learned courtship behaviors in
Drosophila.

PAIN-EXPRESSING NEURONS IN ADULT BRAIN

Enhancer trapping is often employed in combination with the
GAL4/UAS binary gene expression system (Brand and Perrimon,
1993) to visualize Drosophila neurons expressing particular
genes of interest. A GAL4 enhancer trap line, pain®A,
generated from the pain’ mutant by replacing an EP element in
the 5’-flanking region of pain with a GAL4-containing P{GawB}
transposable element (Tracey et al., 2003). Reporter gene
expression driven by pain®'# mimics that of the endogenous
pain mRNA expression in the larval peripheral nervous system
(Tracey et al., 2003), suggesting that it is also the case for the adult
brain. pain®-positive neurons are observed in various regions
of the adult brain (Al-Anzi et al., 2006; Xu et al., 2006), including
mushroom bodies (MBs), which are a brain region important
for learning and memory (Figure 1; Heisenberg, 2003; Busto
et al., 2010). Similar to larvae, adult flies display characteristic
behavioral responses to noxious heat in a Pain-dependent and
MB-independent manner (Xu et al., 2006). pain®# also directs
reporter gene expression in the olfactory projection neurons
(PNs) in antennal lobes (ALs; Wang et al., 2011), the ellipsoid
body of the central complex (Sakai et al., 2013, 2014), and the
pars intercerebralis (PI) including insulin-producing cells (IPCs;
Sakai et al., 2013, 2014).

Several independent analyses further provided evidence of
pain expression in the adult brain. Microarray and RT-PCR
analyses detected endogenous pain transcripts in the adult brain
extract (Chintapalli et al., 2007; Wang et al., 2011) and in
situ hybridization analysis revealed a widespread distribution
of pain transcripts in the neuronal cell body regions of the
adult brain (Sakai et al., 2013). Inconsistently, however, anti-Pain
immunoreactivity is detected only in the olfactory PNs, not in
other brain regions (Wang et al., 2011). The reason for this dis-
crepancy remains unclear. Although pain is certainly expressed in

was
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FIGURE 1 | Schematic diagram of pain®*-expressing neurons (green)
in adult brain. Some of the glomeruli of the antennal lobes (ALs; gray) are
required for normal sexual orientation in males (Wang et al., 2011).
Mushroom bodies (MBs) and the pars intercerebralis (Pl) containing
insulin-producing cells (IPCs; magenta) are involved in long-lasting
behavioral plasticity (Sakai et al., 2013). IPCs also regulate sexual receptivity
in virgin females (Sakai et al., 2014). OL, optic lobe.

the adult brain, further studies are needed to precisely determine
brain cells expressing Pain and reveal its intracellular distribution
and trafficking.

PAIN REGULATES SEXUAL BEHVIOR IN VIRGIN FEMALES

Mating behavior in Drosophila has been intensively studied since
it was first described by Sturtevant (1915). Female-specific sex
pheromones elicit courtship behavior from males. Males court-
ing females display a series of stereotypic behavioral elements
(Hall, 1994; Emmons and Lipton, 2003). In response to male
courtship, females become receptive and accept male courtship.
Non-receptive females frequently show various rejection behav-
iors, such as decamping, wing flicking, kicking or fending off with
the legs, curling of the abdomen, and extruding vaginal plates
(Spieth, 1952; Ewing, 1983; Hall, 1994). Thus, although males
apparently take the initiative in courtship behavior, a female’s
decision to accept or reject a male is one of the most important
factors for mating success (Ferveur, 2010). Genetic tools available
for Drosophila studies have been used to elucidate the molecules
and neural circuits involved in the regulation of male and female
sexual behaviors.

Compared with wild-type virgin females, pain mutant females
copulate with wild-type males in a shorter time after they are
introduced into a small mating chamber (Sakai et al., 2009, 2014).
Wild-type males court wild-type and pain females to the same
extent and there are no particular locomotor defects in pain
mutant females. Therefore, the rapid copulation of pain females
is likely caused by their enhanced sexual receptivity, rather than
by the improved sex appeal or general inactivity of pain females.
Experiments using RNA interference (RNAi) with the GAL4/UAS
system show that the knockdown of pain expression in GABA-
or acetylcholine-producing neurons, but not in dopamine- or
serotonin-producing neurons, enhances female sexual receptivity
as in pain mutant females. This result indicates that Pain TRP
channels expressed in cholinergic or GABAergic neurons are
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involved in the regulation of female sexual receptivity (Sakai et al.,
2009). In addition, the knockdown of pain expression in IPCs, a
neuronal subset in the PI, also enhances female sexual receptivity,
while the targeted expression of pain to IPCs does not restore
normal sexual receptivity in pain mutant females (Sakai et al.,
2014). These results indicate that pain expression is required in
the GABA- and acetylcholine-producing neurons as well as in
IPCs for a normal level of female sexual receptivity. However,
pain expression in each neuronal subset alone is not sufficient.
Interestingly, the disruption of GABAergic transmission or neu-
rosecretion from IPCs has an enhancing effect similar to that of
pain mutations on female sexual receptivity (Sakai et al., 2009,
2014). Because Pain acts as a Ca’*-permeable channel (Sokabe
et al., 2008), the suppression of Pain activity likely decreases the
intracellular Ca?* level in GABAergic neurons and IPCs. Conse-
quently, the release of GABA and insulin-like peptides from these
neurons may be reduced, resulting in the enhanced sexual recep-
tivity observed in pain-deficient females. Alternatively, there is the
possibility that Pain TRP may function as an anchoring protein
and regulate signaling pathways in GABAergic neurons and IPCs.
In Drosophila photoreceptor cells, TRP plays a role as an anchor-
ing protein, in addition to its function as a Ca?*-permeable ion
channel. This unconventional function of TRP is required for cor-
rect intracellular localization of the scaffold protein, inactivation-
no-afterpotential D (INAD; Tsunoda et al., 2001). If Pain also
acts as a molecular anchor in GABAergic neurons and IPCs, pain
mutations or knockdown may induce misregulation of relevant
signaling pathways and enhanced sexual receptivity.

PAIN IS REQUIRED FOR NORMAL SEXUAL ORIENTATION IN
MALES

Wild-type Drosophila males strongly prefer females as their sexual
partner and male-male homosexual courtship rarely happens
under ordinary conditions (Yamamoto et al., 1996). However,
frequent homosexual courtship can be induced by acutely dis-
rupting synaptic transmission from particular neuronal subsets
(Kitamoto, 2002), indicating that relevant neuronal circuits are
normally involved in suppressing courtship toward other males.
Pain TRP channels likely contribute to the activity of such
inhibitory circuits because aberrant homosexual courtship is
observed more frequently in pain mutant males than in wild-
type males (Wang et al., 2011). As pain mutants show weakened
olfactory sensitivity at least to the odorant 4-methyl-cyclohexanol
(MCH), the male-male courtship phenotype of pain mutants is
suggested to be caused by defects in their olfaction (Wang et al.,
2011). Consistently, pain®# drives reporter gene expression in
the olfactory system including PNs of the ALs (Wang et al., 2011).
The specific downregulation of pain in PNs leads to the male-male
courtship phenotype similar to that of pain mutants, while rescue
experiments demonstrated that the expression of the wild-type
pain in the PNs inhibits male-male courtship induced by pain
mutations. These results suggest that the expression of Pain in the
PN is necessary and sufficient for the suppression of male—male
courtship behavior (Wang et al., 2011). In Drosophila, a volatile
sex pheromone, 11-cis-vaccenyl acetate (cVA), produced by male
flies suppresses male-male courtship (Ejima et al., 2007; Ziegler
et al., 2013). Thus, it is likely that Pain TRP channels in the PNs

are involved in cVA-dependent olfactory processing to prevent
homosexual courtship. In addition to the PNs, gustatory recep-
tor neurons (GRNs) likely contribute to homosexual courtship
displayed by pain mutants because the GRN-specific knockdown
of pain expression leads to homosexual courtship. However, the
GRN-specific knockdown is less effective than the PN-specific
knockdown, and the targeted expression of the wild-type pain
in GRNs does not rescue the male-male courtship phenotype of
pain mutants. These results suggest that Pain channels expressed
in the brain (i.e., PNs), rather than in the sensory neurons (i.e.,
GRNs), play a primary role in the suppression of male-male
courtship.

PAIN REGULATES LONG-LASTING COURTSHIP MEMORY

Drosophila male courtship involves a plastic aspect and can be
modified by previous sexual experience (Siegel and Hall, 1979;
Griffith and Ejima, 2009). More specifically, when a virgin male
is paired with a recently mated female, he initially courts her
vigorously, but his courtship activity is significantly reduced
after repeatedly receiving courtship rejections from the non-
virgin partner. After this aversive experience with a female,
which releases courtship-inhibiting chemicals, the male fly shows
reduced courtship activity even toward a virgin female. The
behavioral paradigm inducing this experience-dependent behav-
ioral modulation is called courtship conditioning (Griffith and
Ejima, 2009). The suppression of courtship after courtship con-
ditioning is apparently based on memory formation because it
is not observed in classical memory mutants (Siegel and Hall,
1979; Gailey et al., 1984). After wild-type males are conditioned
(i.e., paired with a recently mated female) for 1 h, the courtship
activity of these males toward virgin females remains depressed
for at least 8 h, but returns to normal in 24 h (short-lasting
memory, SLM; Sakai et al., 2013). In contrast, when the con-
ditioning period is more than 7 h, courtship suppression lasts
for at least 5d (long-term memory, LTM; Sakai et al.,, 2004,
2013; Ishimoto et al., 2009). Thus, the stability of the experience-
dependent behavioral modification depends on the length of
courtship conditioning.

Males heterozygous and homozygous for pain mutations are
defective in LTM, but their SLM is apparently unaffected (Sakai
et al., 2013). The LTM phenotype in pain mutants can be rescued
by temporarily expressing wild-type pain prior to conditioning.
These results indicate that the Pain TRP channel is specifically
required for long-term courtship memory, and plays a critical
role in the physiological process important for the formation of
LTM rather than for LTM storage or retrieval. Furthermore, the
targeted knockdown of pain expression in either MBs or IPCs
resulted in defective courtship LTM, indicating that Pain TRP
channels in these neuronal subsets in the adult brain are required
for experience-dependent neuronal plasticity that leads to LTM
formation.

POSSIBLE ROLE OF PAIN IN ADULT BRAIN

In Drosophila photoreceptor cells, several molecules have
been identified as possible endogenous activators of the
light-dependent TRP channels, TRP and TRPL. They include
polyunsaturated fatty acids (PUFAs; Chyb et al., 1999), a
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combination of phosphatidylinositol 4,5-bisphosphate (PIP,)
and protons (Huang et al., 2010; Hardie and Franze, 2012), and
diacylglycerol (DAG; Delgado et al., 2014). In contrast to TRP
and TRPL, nothing is known about whether and how the activity
of Pain channels is modulated in the brain by endogenous ligands.
These questions are of critical importance to fully understand
the mechanisms by which sexual behaviors are regulated through
the activation or suppression of Pain TRP channels in the brain.
Cell-culture-based studies have revealed that mammalian TRPV1
and TRPA1 channels are also directly activated by PUFAs (Matta
et al., 2007; Motter and Ahern, 2012). In the mammalian brain,
PUFAs are shown to induce TRPV1-dependent synaptic plastic-
ity (Gibson et al., 2008). In Drosophila, the intracellular fatty-
acid binding protein, which binds lipids such as PUFAs and
acts as transporters, is widely expressed in the adult brain and
affects sleep and LTM (Gerstner et al., 2011). It would thus be
interesting to examine whether certain lipid molecules including
PUFAs could serve as endogenous ligands for Pain channels and
whether they are involved in the modulation of Pain activity in
the Drosophila brain.

Another unanswered question concerning brain Pain channels
is how their activation leads to the modification of behaviors.
The aforementioned studies have revealed that functional Pain
expression in the IPCs is required for the regulation of the
normal sexual receptivity of female flies and the experience-
dependent suppression of male courtship (Sakai et al., 2013,
2014). These results may suggest that Pain TRP channels con-
trol both innate and learned aspects of courtship behavior by
modulating the secretion of insulin-like peptides from IPCs.
Previous genetic analyses demonstrated that insulin signaling
plays important roles in the regulation of various behaviors
(Corl et al., 2005; Belgacem and Martin, 2006; Stafford et al.,
2012). Thus, it is possible that Pain TRP channels also con-
trol these insulin-signaling-dependent behaviors by modulating
the secretion of insulin-like peptides from IPCs. In mammals,
glucose stimulates insulin secretion from the pancreatic B-cells
(Henquin, 2000). Uchida et al. (2011) have presented direct evi-
dence that TRPM2 regulates glucose-stimulated insulin secretion
with Ca?* influx (Uchida et al., 2011). Similar to mammalian
B-cells, Drosophila IPCs also respond to glucose through increased
intracellular Ca*t concentrations (Kréneisz et al., 2010). Con-
sidering our finding that Pain is required in IPCs for normal
sexual behaviors, there is the interesting possibility that Pain
in IPCs has comparable functions to mammalian TRPM2 in
B-cells and plays a role in the regulation of peptide hormone
secretion. This possibility needs to be further investigated in the
future study of Pain using molecular, cellular, and physiological
approaches.

FUTURE PROSPECTS

Taking advantage of the various genetics and physiological
approaches uniquely available in Drosophila, future studies of Pain
in the Drosophila brain are expected to provide valuable insights
into the evolutionarily conserved, fundamental principles under-
lying behavioral regulation by brain TRP channels. For example,
in order to examine the possibility that Pain channels in IPCs
modulate the secretion of insulin-like peptides, the pH-sensitive

GFP variant pHluorin (Miesenbdck et al., 1998) can be expressed
in IPCs as an insulin-like peptide-pHluorin fusion protein using
the GAL4/UAS system. Using this approach, it will be possible to
examine the effect of pain mutations on the trafficking of peptide-
containing dense core vesicles.

We also expect that Drosophila will be used to elucidate
how TRP channels modulate synaptic plasticity in the brain.
Activity-dependent synaptic plasticity in the mammalian brain
has been extensively studied to reveal the possible molecular
mechanisms underlying learning and memory processes (Bliss
and Collingridge, 1993; Kemp and Manahan-Vaughan, 2007;
Ho et al., 2011). The repetitive stimulation or paired associative
stimulation of target brain neurons can enhance or weaken
synaptic efficacy leading to long-term potentiation and long-term
depression (LTP and LTD, respectively; Bliss and Lomo, 1973;
Levy and Steward, 1983; Dudek and Bear, 1992). Interestingly,
TRP channels play an important role in the regulation of LTP and
LTD in the mammalian brain. For example, the knockout of the
TrpvI gene attenuates LTP or LTD in mouse hippocampal neurons
(Marsch et al., 2007; Gibson et al., 2008), while TRPV1 triggers
LTD in the nucleus accumbens in mice (Grueter et al., 2010)
and TRPC is required for the induction of cerebellar LTD (Chae
et al., 2012). On the basis of our finding that pain mutants have
memory defects, it is likely that Pain TRP channels also play a role
in activity-dependent synaptic plasticity in the Drosophila brain.
Ex vivo brain culture can be used to examine this hypothesis.
Ueno et al. (2013) have reported LTP-like plasticity, known as
long-term enhancement (LTE), in synapses between AL and
MB. They found that Ca** responses in MB induced by AL-
stimulation are enhanced for at least 2 h after the simultaneous
associative stimulation of the AL and ascending fibers of the
ventral nerve cord (AFV) in an isolated cultured Drosophila brain
(Ueno et al., 2013). Because olfactory memory formation and
LTE at the AL-MB synapses share common physiological and
molecular properties, AL-MB LTE is proposed to be a cellular
model of Drosophila learning and memory. Although it remains to
be determined whether AL-MB synapses show LTD-like synaptic
plasticity in Drosophila, the Ca** imaging of an isolated cultured
brain will be useful for determining whether Pain TRP channels in
AL and MB have an essential role in activity-dependent synaptic
plasticity similarly to TP and LTD in the mammalian brain.
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