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Abstract

Side population (SP) is identified as cells capable of excluding the fluorescent Hoechst dye and 

anticancer drugs, and represents hematopoietic stem cells and chemoresistant cells from several 

solid tumors. In this study, we confirmed the presence of SP cells in tumors from melanoma 

patients. Melanoma SP cells overexpressed ATP-binding-cassette (ABC) transporters, ABCB1 

and ABCB5. We generated a direct in vivo xenograft model, and demonstrated that SP cells were 

resistant to paclitaxel, a substrate of ABCB1, both in vitro and in vivo. However, melanoma SP 

cells were also resistant to temozolomide, which is not a substrate for ABC transporters, through 

IL-8 upregulation. In addition, gene profiling studies identified three signaling pathways (NF- κB, 

α6-β4-integrin and IL-1) as differentially upregulated in melanoma SP cells, and there was a 

significant increase of PCDHB11 and decrease of FUK and TBX2 in these cells. Therefore, we 

provide evidence that SP is an enriched source of chemoresistant cells in human melanomas, and 

suggest that the selected genes and signaling pathways of SP cells may be a potential target for 

effective melanoma therapies. To our knowledge, this is previously unreported study to isolate SP 

cells from melanoma patients and to investigate the gene expression profiling of these cells.
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INTRODUCTION

Malignant melanoma is the fifth most common cancer in the USA (Siegel et al., 2011) and 

the deadliest form of skin cancer. Despite various types of treatments, advanced stages of 

melanoma cells have proven to be intrinsically resistant to many therapies. Multiple 

mechanisms contribute to the development of drug resistance in melanoma, including 

induction of enzyme systems, reduced apoptosis, increased DNA repair, and intra- and 

extra-cellular drug transport (Helmbach et al., 2001; La Porta, 2007).

One of the well-known mechanisms of chemoresistance in cancers is the enhanced efflux of 

a broad spectrum of hydrophobic cytotoxic drugs. Recently, the ability to exclude the 

fluorescent Hoechst 33342 dye has been employed to isolate a side population (SP) from 

hematopoietic cells (Goodell et al., 1996). This phenotype of low fluorescent staining 

pattern results from a family of transporter proteins known as ATP-binding cassette (ABC) 

transporters, which are responsible for the exclusion of Hoechst 33342 (Gottesman et al., 

2002; Helmbach et al., 2001). These SP cells have stem cell-like properties and are capable 

of self-renewal and differentiation (Dean et al., 2005). These characteristics of SP cells have 

also been found in various types of tumors (Dean, 2009; Dou et al., 2009; Grichnik et al., 

2006; Hirschmann-Jax et al., 2004; Zhong et al., 2010), and SP cells with a high drug efflux 

capacity are identified as the potential cause of the chemoresistant phenotypes of cancer 

stem cells in human tumors (Dean et al., 2005; Hirschmann-Jax et al., 2004).

SP cells have previously been isolated from human melanoma cell lines (Grichnik et al., 

2006), but yet to be isolated directly from patient melanoma tumors. One major challenge of 

analyzing patient samples is that substantial quantities of fresh tumor tissues are not 

available for isolation and investigation of SP cells that comprise only a small percentage of 

the tumor cells. Another difficulty is that experiments to further characterize biology and 

function of these cells are limited by the technical difficulties in preserving and expanding 

tumor cells that faithfully represent patient tumor biology. To that end, a direct in vivo 

xenograft model provides cohorts of tumor-bearing mice suitable for further biological 

analyses and drug treatment (Rubio-Viqueira et al., 2006). Maintaining tumor xenografts 

exclusively in vivo retains fundamental genotypic features of the primary tumor of direct 

relevance to preclinical drug testing (Daniel et al., 2009; Rubio-Viqueira et al., 2006). 

Therefore, to isolate and characterize the molecular features of a small fraction of SP cells in 

patient melanoma samples, we generated a direct in vivo xenograft model from human 

melanoma tumors. Furthermore, our gene profiling analysis discovered a series of genes and 

pathways potentially involved in chemoresistance in melanoma SP cells.

RESULTS

Patient melanoma tumors contain a side population that excludes Hoechst dye

The presence of SP cells in patient melanoma tissues was first investigated by staining 

single cell suspensions with Hoechst 33342 dye. Flow cytometry plots depict Hoechst 

excitation at blue and red wavelengths. The cells with the least amount of Hoechst staining, 

which disappear in the presence of verapamil, an inhibitor of Hoechst 33342 transport, are 

gated as SP (Figure 1a). All of the patient melanoma tumors, including 3 skin primary 
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melanomas and 5 metastatic melanomas, contained a small but clear SP fraction, ranging 

from 0.13% to 0.7% of all gated cells (Figure 1b). We then generated a direct in vivo 

xenograft model from human melanoma specimens to characterize SP cells from patient-

derived tumors (Figure 1c). Original patient tumors were designated as F0 tumors whereas 

those grown from F0 tumors were designated as F1 tumors. F1 tumors were further 

implanted in F2 mice for in vivo drug treatment (Figure 1c). After characterizing SP cells 

using this model, cells from HS294T were utilized for further biological and mechanistic 

studies because the cell line contains a larger SP fraction (Supplementary Figure S1).

Melanoma SP cells are resistant to paclitaxel and temozolomide IN VITRO and IN VIVO

SP cells expressing ABC transporters have been shown to be resistant to multiple drugs 

(Dean, 2009; Duan et al., 2004). Paclitaxel, a substrate of ABCB1 transporter (Duan et al., 

2004), has been widely evaluated and shown to have positive outcomes in phase II/III 

clinical trials of malignant melanoma (Bedikian et al., 2004; Hauschild et al., 2009). 

Therefore, we treated human melanomas with paclitaxel to examine the drug sensitivity of 

SP cells. Temozolomide, an alkylating agent for melanoma treatment (Bleehen et al., 1995), 

is not a substrate of ABC transporters and thus was used as a control. As shown in Figure 

2a, melanoma cells from MB1009-F1 tumor were sensitive to 20 nM paclitaxel treatment in 

vitro. This treatment resulted in a 32.5-fold increase in SP cells compared with vehicle 

control (Figure 2b). On the other hand, temozolomide treatment induced less cell death, and 

induced moderate increase in SP cells. Increase in SP cells after drug treatment despite 

absence of overall cell increase indicates that SP cells are more resistant to the drugs than 

non-SP cells.

To further analyze drug resistance in vivo, mice with MB1009-F2 tumors were treated with 

paclitaxel or temozolomide. Following paclitaxel treatment, a significant decrease in tumor 

size (79.4 ± 5.9% of original size) was observed after 7 days, but the tumors grew thereafter 

(125.1 ± 13.2% of original size on day 14) (Figure 2c). Temozolomide showed inhibitory 

effects similar to paclitaxel in vivo. Tumor analysis on day 14 revealed an increase in SP 

cells after paclitaxel treatment and a modest increase after temozolomide treatment when 

compared with vehicle (Figure 2d), indicating that SP cells are resistant to paclitaxel and 

temozolomide in vivo. This relative resistance of SP cells to drugs was further investigated 

by treating SP and non-SP cells with drugs separately. When SP cells and non-SP cells from 

HS294T were treated with paclitaxel or temozolomide, SP cells showed less sensitivity to 

both drugs than non-SP cells, confirming the drug resistance of SP cells compared to non-SP 

cells (Figure 2e).

ABCB1 and ABCB5 are selectively upregulated in human melanoma SP cells

ABC transporters, particularly ABCB1 and ABCG2, have been associated with resistance to 

multiple drugs (Dean, 2009; Dean et al., 2001; Duan et al., 2004; Frank et al., 2005). To 

identify the ABC transporters responsible for the exclusion of Hoechst 33342 in melanoma 

SP cells, we first compared the expression levels of all 48 ABC transporters between SP and 

non-SP cells (from MB952-F1 and MB1009-F1 tumors) via microarray analysis. Results 

demonstrated that SP cells expressed 13-fold more ABCB1 and ABCB5 than non-SP cells 

(Figure 3a), verifying the accuracy of the SP isolation method and suggesting that these 
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ABC transporters but not ABCG2 are likely responsible for the exclusion of Hoechst 33342. 

Upregulation of ABCB1 and ABCB5 in SP cells was confirmed by real-time quantitative 

reverse transcription-PCR (qRT-PCR) using MF347-F1 and MB1009-F1 tumors (Figure 

3b), and flow cytometric analysis using HS294T (Figure 3c).

Resistance to paclitaxel in SP cells is associated with ABC transporters

Because of the upregulation of ABCB1 and ABCB5 in SP cells, we hypothesized that the 

drug resistance is associated with these transporters. Consistent with the hypothesis, the 

expression of ABCB1 and ABCB5 was upregulated after treatment with paclitaxel or 

temozolomide in vitro (in HS294T) (Figure 4a) and in vivo (in MB1009-F2 tumors) (Figure 

4b).

In order to determine if drug resistance is associated with a drug efflux capacity, tumor cells 

from MB952-F1 were treated with paclitaxel or temozolomide in vitro in the presence or 

absence of verapamil, an efflux pump inhibitor (Figure 4c). Verapamil treatment decreased 

sensitivity to paclitaxel but not temozolomide, suggesting that the resistance to paclitaxel in 

SP cells is at least partially dependent on drug efflux.

Next, to determine if the drug resistance of SP cells is associated with drug efflux by ABC 

transporters, we knocked down ABCB1 and ABCB5 using siRNA. Successful transfection 

of siRNA was confirmed by reduction in mRNA at 18 hours (60% and 65% reduction of 

ABCB1 and ABCB5, respectively) and protein levels at 72 hours in HS294T cells (Figure 

4d). Compared with control siRNA, transfection of ABCB1 and ABCB5 siRNAs led to 74% 

and 62% reduction in SP percentage at 72 hours, respectively (Figure 4e), suggesting that SP 

phenotype of melanoma cells is associated with ABCB1 and ABCB5. Cell viability assay 

revealed that transient transfection of ABCB1 and ABCB5 siRNA in HS294T decreased 

sensitivity to paclitaxel (38% and 39% decrease with ABCB1 and ABCB5 siRNA, 

respectively) but not temozolomide (Figure 4f), suggesting that the resistance to paclitaxel in 

SP cells is dependent on ABCB1 and ABCB5, whereas other mechanisms are responsible 

for temozolomide resistance in these cells.

Resistance to temozolomide in SP cells is at least partly due to IL-8 upregulation

Previous studies by other researchers have shown that IL-8, sphingosine kinase (SPHK), 

mutL homolog (MLH), mutS homolog (MSH), postmeiotic segregation (PMS), O-6-

methylguanine-DNA methyltransferase (MGMT), and excision repair cross-complementing 

rodent repair deficiency, complementation group (ERCC) 1 were related to the resistance to 

temozolomide (Boeckmann et al., 2009; Chelouche-Lev et al., 2004; Gerson, 2002; Narayan 

and Roy, 2003; Pilorget et al., 2007). The expression levels of these genes in SP and non-SP 

cells were therefore compared in our microarray data using patient-derived tumors, and we 

found that IL-8, SPHK1 and MLH3 were indeed selectively expressed in SP cells (Figure 

5a). Since IL-8 was the most differentially expressed gene (22-fold in MB952-F1 and 55-

fold in MB1009-F1), we focused on this molecule in our study. The upregulation of IL-8 in 

SP cells was verified by qRT-PCR in melanoma tissues (3.8-fold and 23.2-fold in MB952-

F1 and MB1009-F1 tumors, respectively) (Figure 5b) and HS294T (2.8-fold) (Figure 5c). 

This was further confirmed by ELISA analysis in melanoma tumor cells (16.1-fold in 

Luo et al. Page 4

J Invest Dermatol. Author manuscript; available in PMC 2013 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MB952-F1) (Figure 5b) and HS294T (5.2-fold) (Figure 5c). When HS294T cells were 

treated with paclitaxel or temozolomide, IL-8 expression was enhanced 2.7-fold or 2.2-fold, 

respectively (Figure 5d). To determine whether this increased IL-8 expression plays a role in 

temozolomide resistance, we blocked the IL-8 signaling pathway using anti-CXCR1, a 

neutralizing antibody for IL-8R, in HS294T cells, and found this blockade significantly 

increased the sensitivity of SP cells to temozolomide, an effect not observed in non-SP cells 

(Figure 5e). We then knocked down IL-8 using siRNA. Successful transfection of siRNA 

was confirmed by reduction in mRNA at 18 hours (69%) and secreted cytokine level at 72 

hours (37%) in HS294T cells (Figure 5f). Compared with control siRNA, transfection of 

IL-8 led to 48% reduction of SP percentage at 72 hours (Figure 5g), suggesting that SP 

phenotype of melanoma cells is associated with IL-8. Furthermore, cell viability assay 

revealed that transient transfection of IL-8 siRNA in HS294T decreased sensitivity to 

temozolomide (42%) but not paclitaxel (Figure 5h), suggesting that the resistance to 

temozolomide in SP cells is at least partially dependent on IL-8.

Because ABCB1, ABCB5 and IL-8 are associated with SP phenotypes, we investigated if 

they are related each other. We found that transfection of IL-8 siRNA did not affect the 

expression levels of ABCB1 and ABCB5 at 18 hours (Supplementary Figure S2a), and that 

transfection of ABCB1 or ABCB5 siRNA did not affect IL-8 expression levels at 18 hours, 

either (Supplementary Figure S2b), suggesting that these 2 mechanisms (ABC transporters 

and IL-8) are not directly associated with each other.

Gene profiling analyses via microarray and qRT-PCR

To further delineate chemoresistant mechanisms, we conducted microarray analysis to 

compare differentially expressed genes between SP and non-SP cells. 1729 transcripts were 

upregulated and 1888 transcripts were downregulated in SP cells (P<0.05, fold change > 

2.0) (Supplementary Figure S3a). The most common biological processes of these 

transcripts defined by gene ontology annotations included cellular process (28.54%), 

metabolic process (17.51%) and biological regulation (17.38%) (Supplementary Figure 

S3b). Significant pathway analysis using the 3617 differentially expressed transcripts 

identified NF- κB, α6-β4-integrin and IL-1 pathways (P<0.05) (Supplementary Figure S4).

More stringent analysis (P<0.001 and fold change > 15) revealed three unregulated genes 

(AXL, PCDHB11 and ZNF519) and six downregulated genes (TBX2, FUK, IL1R1, RAB40C, 

ACE and UTF1) in SP cells (Figure 6a). Due to the limited amount of SP cDNA template, 

only one unregulated gene (PCDHB11) and two downregulated genes (TBX2 and FUK) 

were validated by qRT-PCR. Expression of PCDHB11 in SP cells from the MB1009-F1 

tumor was 0.073-fold relative to that of GAPDH but its expression in non-SP cell was below 

the detection level (< 1 × 10−7 fold) (Figure 6b). Also, the non-SP/SP ratio was 91.7-fold for 

FUK measured by qRT-PCR, and 16.0-fold for TBX2. These results were further confirmed 

using the MB952-F1 tumor.

Previous studies using a direct in vivo xenograft model of pancreatic cancer have shown that 

the status of key genes in pancreatic cancer is stable and drug susceptibility is a stable trait 

after passaging tumors into mice (Rubio-Viqueira et al., 2006). To address whether 

passaging melanoma tumors in mice alters genes in this study, we determined the copy 
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number of 6 genes (ABCB1, ABCB5, IL8, PCDHB11, FUK and TBX2) in F0, F1, F2 and Fn 

tumors from 2 patient-derived samples. As shown in Figure 6c, we observed high 

concordance of gene copy number between original tumors and xenografted tumors.

DISCUSSION

This study isolated SP cells not only from the original patient melanoma tissues but also 

from in vivo xenograft mouse models. Melanoma SP cells were shown to be resistant to two 

melanoma drugs: paclitaxel and temozolomide, both in vitro and in vivo. Melanoma SP cells 

overexpressed ABCB1 and ABCB5, and their resistance to paclitaxel was at least partly 

attributed to ABC transporters. Furthermore, IL-8 plays a role in chemoresistance to 

temozolomide in SP cells. Microarray and qRT-PCR studies demonstrated upregulation of 

PCDHB11 and downregulation of FUK and TBX2 in SP cells, and identified NF- κB, α6-

β4-integrin and IL-1 signaling networks differentially expressed between SP and non-SP 

cells. ABCB1, previously known as MDR1 or P-glycoprotein, has been demonstrated to 

confer resistance to multiple hydrophobic drugs (Gottesman et al., 2002). Primary cultures 

of human melanoma contain ABCB1-positive cells that co-express ABCB5 and ABCC2 

(Keshet et al., 2008). ABCB5 was recently shown to mediate chemoresistance in human 

melanoma (Frank et al., 2005) and identify melanoma initiating cells (Schatton et al., 2008).

ABCB1, ABCB4 and ABCB5 are closely homologous (Tusnady et al., 2006), and ABCB5 

and ABCB1 have overlapping substrate specificities (Frank et al., 2005), implying their 

cooperative functions in mediating multidrug resistance in SP cells. Furthermore, recent 

studies indicate that in addition to serving as drug efflux pumps, ABC transporters also play 

fundamental roles in melanogenesis (Chen et al., 2009), tumor biology (Fletcher et al., 

2010) and immunomodulation (Schatton et al., 2010). Our results are consistent with the 

role that ABC transporters play in melanomas and the chemoresistance signature that 

characterizes SP cells.

The resistance of SP cells to temozolomide was observed in a glioma study (Bleau et al., 

2009), but the specific mechanisms were not previously studied. Interestingly, we found that 

IL-8 was upregulated in melanoma SP cells, which is consistent with data from ovarian 

cancer and endometrial SP cells (Cervello et al., 2010; Moserle et al., 2008). In addition, we 

found that IL-8 upregulation is responsible for chemoresistance to temozolomide in SP cells. 

IL-8 signaling activates a set of cell survival and proliferation pathways including MAPK, 

PI3-K, JAK2-STAT3 and β-catenin signalings (Waugh and Wilson, 2008); thus, it comes as 

no surprise that this molecule plays an important role in the intrinsic chemoresistance of SP 

cells.

In addition to ABC transporters and IL-8, melanoma SP cells expressed genes and pathways 

associated with development, stemness and metabolic process. For example, PCDHB11 

belongs to the protocadherin family, and the lack of protocadherins causes massive 

apoptosis of spinal interneurons in a mouse model (Lefebvre et al., 2008). TBX2 is necessary 

for cell proliferation and suppression of senescence in melanoma (Vance et al., 2005). FUK 

is associated with fucosylation, and reduced fucosylation in cancer induces immunoevasion 

and metastasis (Moriwaki et al., 2009).
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Three pathways identified in melanoma SP cells may be closely related to chemoresistance. 

For example, NF- κB protects cells from apoptosis following DNA damage, and is a 

principal mechanism for chemoresistance (Yamamoto and Gaynor, 2001). Notably, NF- κB 

was shown to induce ABCB1 expression (Bentires-Alj et al., 2003; Zhou and Kuo, 1997). In 

addition, both α6-β4-integrin and IL-1 signaling pathways induce resistance to apoptosis by 

activation of NF- κB in tumors (Arlt et al., 2002; Weaver et al., 2002).

Therefore, it appears that chemoresistance of SP cells derives from at least two different 

types of mechanisms (Figure 6d). One is the ABC-transporter-conferred resistance due to 

efflux of drugs. The other is the intrinsic resistance to cytotoxic drugs possibly by induction 

of certain signaling pathways and enzyme systems, changes in cytoskeleton, reduced 

apoptosis and increased DNA repair.

In conclusion, we provide evidence that SP is an enriched source of chemoresistant cells in 

human melanoma tumors. These data will pave the road for further mechanistic studies of 

melanoma SP cells, and provide potential targets for future melanoma therapies.

MATERIALS AND METHODS

Clinical melanoma specimens

Human melanoma tissues were obtained from surgical specimens with written patient 

consent under institutional review board-approved protocols at the University of Colorado 

Hospital, adhering to the Helsinki Guidelines. Human melanoma tissues were cut into 3-

mm3 pieces, and processed for cell isolation and direct in vivo xenograft.

Direct IN VIVO xenograft

Animal experiments were performed under the institutional guidelines for the use of 

laboratory animals. Under isofluorane anesthesia, patient tumors were implanted into 6-

week-old female athymic (nu/nu) mice (NCI) by a small incision and subcutaneous pocket 

made in each side of the lower back (Rubio-Viqueira et al., 2006). These mice were 

designated as F1 mice. F1 tumors were harvested when reaching a size of 1,500 mm3 and 

implanted into F2 mice. Tumors were serially passaged into mice.

Tumor cell isolation and sorting of SP cells from tumor cells

Mechanically minced tumor tissues were digested with 235 U/ml collagenase (Sigma-

Aldrich) and 850 U/ml hyaluronidase (Sigma-Aldrich) for 2 hours at 37 °C with intermittent 

vortex, followed by sequentially passing through 70- and 40-μm filters to obtain single cell 

suspension. Red blood cells were lysed using 1 X Red Blood Cell Lysis Buffer 

(eBioscience). Cells were washed and re-suspended in DMEM with 2% FBS and 1% 

HEPES at a concentration of 1 × 106 cells/ml, and stained with Hoechst 33342 dye (5 μg/ml, 

Sigma-Aldrich) in the presence or absence of Verapamil (50 μM, Sigma-Aldrich) at 37 °C 

for 90 minutes with intermittent vortex. Propidium iodide (1 μg/ml) was used to remove 

dead cells. Human stromal cells were eliminated from human melanoma tumors using 

phycoerythrin-cy7-labeled anti-human CD45 (eBioscience) and anti-human CD31 

(eBioscience) antibodies. Mouse stromal cells were eliminated from xenografted tumors 
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using phycoerythrin-cy7-labeled anti-mouse CD45 (eBioscience) and anti-mouse CD31 

(eBioscience) antibodies. Human melanoma cells were then positively selected by 

allophycocyanin-labeled anti-human CD147 (eBioscience). SP and non-SP cells were sorted 

by MoFlo (DakoCytomation) and the results were analyzed with Summit software 

(DakoCytomation).

Sorting of SP cells from cell lines

Human metastatic melanoma cell line, HS294T, was obtained from the American Type 

Culture Collection. Cells were maintained in RPMI 1640 medium (Mediatech, Inc.) 

supplemented with 10% fetal bovine serum (Mediatech, Inc.), 100 units/ml penicillin, 0.1 

mg/ml streptomycin and 2 mM L-glutamine. Single cells were prepared using 1 mM EDTA 

(Sigma-Aldrich) for 15 minutes at 37 °C and stained with Hoechst 33342 dye for SP 

analysis and sorting. Single cells were also used for biological analysis.

Copy number analysis of melanoma cells

DNA from human melanoma cells was isolated using QIAamp DNA Mini Kit (Qiagen) and 

quantified by PicoGreen® dsDNA assay (Invitrogen). Melanoma DNA (250 ng) was 

hybridized to SNP probes (Illumina) at the University of Colorado Denver microarray core. 

Probes consisted of 595 markers: 293 for ABCB1 (chr7:87132948-87342611); 249 for 

ABCB5 (chr7:20654830-20816658); 6 for IL-8 (chr4:74606223-74609433); 6 for PCDHB11 

(chr5:140579183-140582618); 31 for FUK (chr16:70488498-70514177); and 10 for TBX2 

(chr17:59477257-59486827). Probe copy number was analyzed using CNApartition V3.1.6 

(Illumina).

Other methods

Further information about the materials and methods used in this work are provided in the 

Supplementary Materials and Methods online section.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. SP is a rare population in patient melanoma tissues
(a) A representative SP flow cytometry profile from a patient tumor tissue (MB952-F0). 

Cells were stained with Hoechst 33342 dye in the presence (left panel) or absence (right 

panel) of verapamil. SP cells are shown in the lower left gated area. (b) Frequency of SP 

fractions in eight patient melanoma specimens (F0 tumors) and selected F1 tumors. (c) 

Study schema. Clinical melanoma specimens (F0) were used for SP analysis and copy 

number analysis. Tumor specimens used in each analysis are listed in parentheses. Tumors 

were serially passaged into mice (F1, F2, ---, Fn) for further analyses.
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Figure 2. Drug resistance of SP cells
(a) Left panels, microscopic images of MB1009-F1 cells following 48-hour treatment with 

vehicle, paclitaxel or temozolomide in vitro. Bar = 100 μm. Right panel, average number of 

cells in each microscopic field (n=6). (b) Left panels, SP cells from MB952-F1 tumors after 

in vitro treatment. Right panel, percentage of SP cells (n=3). (c) Growth curve of MB1009-

F2 tumors after treatment with vehicle, paclitaxel or temozolomide in vivo (n=6). 

***P<0.001 compared to vehicle. (d) Left panels, SP cells from MB952-F2 tumors after in 

vivo treatment. Right panel, percentage of SP cells (n=3). (e) Viability of SP and non-SP 

cells from HS294T after 72 hours of treatment with vehicle, paclitaxel, or temozolomide 

(n=3). All data represent mean ± S.E. *P<0.05, **P<0.01, ***P<0.001.
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Figure 3. Expression of ABC transporters in SP cells
(a) List of ABC transporters upregulated by more than 2-fold in SP cells from the 

microarray analysis, their fold changes and functions. The genes with a fold change of more 

than 10.0 were underlined. N/A indicates that gene function is not characterized. (b) qRT-

PCR validation of ABCB5 and ABCB1 expression (mean ± S.E.) in SP cells from MF347-

F1 and MB1009-F1 tumors (n=3). (c) Left panel, representative flow cytometry analysis of 

ABCB1 and ABCB5 in SP and non-SP cells from HS294T. Right panel, percentage of 

positive cells in SP and non-SP cells. **P<0.01, ***P<0.001.
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Figure 4. Mechanisms for paclitaxel resistance in SP cells
(a) qRT-PCR of ABCB1 and ABCB5 in HS294T after in vitro drug treatment (n=3). (b) Left 

panels, H&E, ABCB1 and ABCB5 staining of M1009-F2 tumors after in vivo treatment. 

Scale bar = 100 μm. Right panel, percentage of positive cells (n=3). (c) Viability of MB952-

F1 melanoma cells following treatment, with or without verapamil in vitro (n=3). (d) qRT-

PCR and Western blot analysis of ABCB1 and ABCB5 in HS294T after siRNA transfection 

of scrambled (si-ctrl), ABCB1 (si-ABCB1) or ABCB5 (si-ABCB5) (n=3). (e) Left panels, 

SP cells in HS294T after siRNA transfection. Right panel, percentage of SP cells (n=3). (f) 

Viability of siRNA transfected cells after 72 hours of treatment with paclitaxel or 

temozolomide (n=9). All data represent mean ± S.E. *P<0.05, **P<0.01, ***P<0.001.
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Figure 5. Mechanisms for temozolomide resistance in SP cells
(a) Heatmap of temozolomide resistance genes. Red/green colors represent high/low 

expressions. (b, c) qRT-PCR (left panels) and ELISA (right panels) of IL-8 in patient-

derived tumors (b) and HS294T (c). (d) qRT-PCR of IL-8 in HS294T after treatment. (e) 

Viability of SP and non-SP from HS294T cultured with or without temozolomide, and 

treated with vehicle or anti-CXCR1. (f) qRT-PCR (left panel) and ELISA (right panel) of 

IL-8 after siRNA transfection of scrambled (si-ctrl) or IL-8 (si-IL-8) in HS294T. (g) Upper 

panel, representative SP cells after IL-8-siRNA transfection in HS294T. Lower panel, 

percentage of SP cells after transfection. (h) Viability of IL-8-siRNA-transfected HS294T 

after treatment. All data represent mean ± S.E. (n=3 except h where n=9). *P<0.05, 

**P<0.01, ***P<0.001.
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Figure 6. Differentially expressed genes in SP cells
(a) A list of microarray genes that most discriminated SP from non-SP cells (P<0.001, fold 

change > 15). (b) qRT-PCR expression levels (mean ± S.E.) of PCDHB11, FUK and TBX2 

in SP and non-SP cells (n=3). *P<0.05, **P<0.01. (c) Copy number analysis of genes 

analyzed in this study from F0-Fn tumors from 2 patient-derived tumors. (d) Two different 

drug resistance systems exist in SP cells. ABC transporters contribute to transporter 

resistance by pumping out drugs which are their substrates. Intrinsic resistance represents 

inherent survival systems in SP cells, such as induction of certain signaling pathways, 

enzyme systems, reduced apoptosis and increased DNA repair. Non-SP cells are sensitive to 

drug exposure because they lack the resistant systems.
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