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ABSTRACT

Summary: Huge amount of metagenomic sequence data have been
produced as a result of the rapidly increasing efforts worldwide
in studying microbial communities as a whole. Most, if not all,
sequenced metagenomes are complex mixtures of chromosomal
and plasmid sequence fragments from multiple organisms, possibly
from different kingdoms. Computational methods for prediction of
genomic elements such as genes are significantly different for
chromosomes and plasmids, hence raising the need for separation
of chromosomal from plasmid sequences in a metagenome. We
present a program for classification of a metagenome set into
chromosomal and plasmid sequences, based on their distinguishing
pentamer frequencies. On a large training set consisting of all the
sequenced prokaryotic chromosomes and plasmids, the program
achieves ~92% in classification accuracy. On a large set of
simulated metagenomes with sequence lengths ranging from 300 bp
to 100kbp, the program has classification accuracy from 64.45%
to 88.75%. On a large independent test set, the program achieves
88.29% classification accuracy.

Availability: The program has been implemented as a
standalone prediction program, cBar, which is available at
http://csbl.bmb.uga.edu/~ffzhou/cBar

Contact: xyn@bmb.uga.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

One of the major challenges in analyzing a metagenome lies in the
reality that metagenomic data are generally very complex in terms
of their composition, often consisting of sequence fragments from
numerous genomes possibly from different kingdoms (McHardy
and Rigoutsos, 2007). While analyses of a metagenome as a
whole could definitely reveal useful information about a microbial
community, more detailed analyses generally requires the binning
of the metagenomic sequences into multiple taxonomical groups
according to some criteria (McHardy and Rigoutsos, 2007). There
have been a number of published computer programs designed to bin
metagenomic sequences into multiple groups, each of which consists
of sequences from the same taxonomical group (Chan et al., 2008;
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Diaz et al., 2009; McHardy and Rigoutsos, 2007), e.g. from the same
genera.

Another important metagenome binning problem that has not
been well addressed by metagenome sequence analysts is to
separate chromosomal from plasmid sequences. This problem is
important because sequence features associated with various classes
of genomic elements in chromosomal and plasmid genomes are
generally different (Zhou ez al., 2008); hence separation of these two
classes of sequences is the prerequisite to accurate computational
identification of such genomic elements. For example, identification
of genes in chromosomal and plasmid sequences represents two
different problems even when they are from the same organism,
since their di-codon frequency biases in coding versus non-
coding regions, the basis for computational gene finding, could
be substantially different (Davis and Olsen, 2010). For genome
sequencing projects, this has not been a general problem since
plasmids have been typically extracted using alkaline lysis (Li ez al.,
2008) or removed using nuclease (Kock et al., 1998) so they can
be sequenced separately from chromosomal sequences. However,
microbial community sequencing projects typically do not separate
chromosomes from plasmids in advance due to various technical
reasons. So the sequenced metagenome is generally a mixture of
chromosomal and plasmid sequences, hence raising the needs to
computationally separate them.

Here, we present the first computer program for classification
of a given metagenome into chromosomal and plasmid sequences,
based on observed differences in their pentamer frequencies. Using
the pentamer frequencies collected from 881 completely sequenced
prokaryotic genomes, including both chromosomal and plasmid
sequences, we have trained an sequential minimal optimization
(SMO)-based model (Cessie and Houwelingen, 1992) to separate
chromosomal from plasmid sequences, which achieved consistent
accuracies at ~90% in our 10-fold cross-validations (10FCVs) on
our training data, on an independent testing dataset and on the
simulated metagenomes.

2 MATERIALS AND METHODS

We downloaded the genome sequences of all the 881 completely sequenced
prokaryotic genomes from the NCBI Microbial Genome Projects at
http://www.ncbi.nlm.nih.gov/genomes/lIproks.cgi, as of May 4, 2009. This
dataset was partitioned into a training dataset (denoted as Training) consisting
of all 808 prokaryotic genomes released before January 1, 2009 and a testing
dataset (denoted as Testing) consisting of the remaining 73 genomes, all
released after January 1, 2009.
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We calculated the frequencies of each k-mer and its reverse complement
(considering each such pair as one entity) on the whole sequences from both
sets. The collection of 512 frequencies for each genome sequence is called its
k-mer profile, which is used as the input of the classification models. We have
used the classification tool provided in the Weka package (Frank et al., 2004)
to train our classifier. We chose k=35, due to its significant improvement in
the overall accuracy, as described in details in the Supplementary Material.

We have used the following measurements to evaluate the classification
accuracy of a model: sensitivity (Sn), specificity (Sp), the overall accuracy
(Ac) and the Matthews correlation coefficient (MCC) (Matthews, 1975). In
addition, the area under the receiver operating characteristic curve (AUC)
is also used to measure the overall performance of a prediction model. The
detailed definitions of the aforementioned measurements can be found in the
Supplementary Material.

We conducted the 10FCV on the dataset Training and All. We studied
whether the model has consistent prediction performance on an independent
dataset Testing, by training the model on the dataset Training. We also
tested our model on simulated metagenome sequences, as discussed in the
Supplementary Material.

3 RESULTS

We have tested five types of classification approaches, namely C4.5
decision tree, Bayes Network, Support Vector Machine, SMO and
Nearest neighbor, for solving our classification problem. The results
of our three evaluations, as described above, on the five approaches
are listed in Table 1. On the 10FCVs on the Training dataset, four
out of five algorithms, except for Bayes network, worked well with
the overall accuracy better than 83% and the SMO approach has
the highest performance in all the performance measurements with
overall accuracy 91.82%. On the Testing dataset, the performance of
the trained classifier dropped slightly as shown in Table 1, and the
SMO approach remains the best performer with Ac =88.29%. Using
the 10FCVs on the combined Training and Testing set, the SMO-
based classifier has approximately the same level of performance
accuracy, still the best among the five. The ~90% AUC-value
strongly suggests that the SMO-based classifier is accurate and
robust.

Some bacteria harbor chromids, whose lengths are between those
of chromosomes and plasmids (Harrison et al., 2010). cBar predicted
84.85% of them as chromosomes, due to their similarities in the
nucleotide compositions to the host chromosomes (Harrison et al.,
2010).

A few other validations, including the comparison with a BLAST-
based strategy, can be found in the Supplementary Material.
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Table 1. The prediction performance by five classification approaches, C4.5
decision tree, Bayes network, SVM with the RBF kernel, SMO and nearest
neighbor

Strategy Algorithm  Sn Sp Ac MCC AUC
10FCV Training C4.5 0.8766 0.7832 0.8371 0.6646 0.832
Bayes net 0.6594 0.8034 0.7203 0.4585 0.807
RBF 0.9463 0.7613 0.8681 0.7315 0.854
SMO 0.9474 0.8783 09182 0.8321 0913
NN 09177 0.8128 0.8734 0.7395 0.865
Testing C4.5 0.7667 0.8627 0.8108 0.6280 0.811
Bayes net  0.6333 0.8039 0.7117 0.4398 0.764
RBF 0.8500 0.8235 0.8378 0.6735 0.837
SMO 0.8667 0.9020 0.8829 0.7664 0.884
NN 0.8667 0.8039 0.8378 0.6730 0.835
10FCV All C45 0.8759 0.8020 0.8445 0.6809 0.841
Bayes net  0.6877 0.7905 0.7314 0.4730 0.815
RBF 0.9358 0.7746 0.8672 0.7290 0.855
SMO 0.9422 0.8887 09195 0.8349 0915
NN 09112 0.8165 0.8709 0.7349 0.864

These algorithms were evaluated using the 10FCV on the Training dataset, the Testing
dataset and the A/l dataset.
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