
Design and Development in Rehabilitation Robotics for Home and Community-Based

Settings-Technical Notes

An open source graphical user interface
for wireless communication and
operation of wearable robotic technology

Luke A Tucker*, Ji Chen*, Lauren Hammel, Diane L Damiano
and Thomas C Bulea

Abstract

Introduction: Wearable robotic exoskeletons offer the potential to move gait training from the clinic to the commu-

nity thereby providing greater therapy dosage in more naturalistic settings. To capitalize on this potential, intuitive and

robust interfaces are necessary between robotic devices and end users. Such interfaces hold great promise for research

if they are also designed to record data from the robot during its use.

Methods: We present the design and validation of an open source graphical user interface (GUI) for wireless operation

of and real-time data logging from a pediatric robotic exoskeleton. The GUI was designed for trained users such as an

engineer or clinician. A simplified mobile application is also provided to enable exoskeleton operation by an end-user or

their caretaker. GUI function was validated during simulated walking with the exoskeleton using a motion capture

system.

Results: Our results demonstrate the ability of the GUI to wirelessly operate and save data from exoskeleton sensors

with high fidelity comparable to motion capture.

Conclusion: The GUI code, available in a public repository with a detailed description and step-by-step tutorial, is

configurable to interact with any robotic device operated by a microcontroller and therefore represents a potentially

powerful tool for deployment and evaluation of community based robotics.

Keywords

Graphical user interface, rehabilitation robotics, exoskeleton, gait rehabilitation

Date received: 27 November 2019; accepted: 14 September 2020

Introduction

Gait rehabilitation remains a major challenge in pedi-

atric populations. Clinic-based robotic assisted gait

trainers (RAGT) have become more prevalent in the

past decades for use in pediatric populations.1 Yet, sys-

tematic reviews of RAGT do not provide evidence to

support improved outcomes.2,3 Potential reasons for

the underwhelming results from these studies are the

relatively limited intervention schedules (2–5 sessions

per week, 25–60 minutes each, for up to 6weeks)3,4

and the absence of dynamic adaptable control systems

that challenge the user and ensure active participation

in rehabilitation.4 Wearable exoskeleton technology

offers the potential to address these shortcomings by

providing daily bouts of overground gait training tai-

lored to the individual user. As an example, we

previously developed a pediatric knee exoskeleton
that alleviates crouch gait in children with cerebral
palsy by using precisely timed knee extension assistance
to dynamically change posture.5 A recent cohort study
in children as young as 5 years of age showed that this

Functional & Applied Biomechanics Section, Rehabilitation Medicine

Department, National Institutes of Health Clinical Center, Bethesda, MD,

USA

*These authors contributed equally to this work.

Corresponding author:

Thomas C Bulea, Functional & Applied Biomechanics Section,

Rehabilitation Medicine Department, National Institutes of Health

Clinical Center, Building 10, Room 1-1469, 10 Center Dr., MSC-1604,

Bethesda, MD 20892, USA.

Email: thomas.bulea@nih.gov

Journal of Rehabilitation and Assistive

Technologies Engineering

Volume 7: 1–14

! The Author(s) 2020

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/2055668320964056

journals.sagepub.com/home/jrt

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-

NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and

distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.

sagepub.com/en-us/nam/open-access-at-sage).

https://orcid.org/0000-0002-2732-8255
mailto:thomas.bulea@nih.gov
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/2055668320964056
journals.sagepub.com/home/jrt

approach was safe and well tolerated, and knee exten-
sion was significantly increased and knee extensor
muscle activity was maintained during overground
walking with the exoskeleton.5 Our recent efforts
have expanded the assistive capabilities of the exoskel-
eton to include three different options; constant torque
assistance,5 target trajectory tracking with impedance-
based control, or real-time adaptive control.6,7 The
overall goal of our research is to develop a wearable
exoskeleton to provide gait training optimized for each
individual that can be performed outside of the labo-
ratory or clinical setting. In general, wearable pediatric
exoskeletons are an active area of research with several
recent studies in addition to our own demonstrating
new systems designed to improve pediatric gait and
facilitate gait training in a wide variety of movement
disorders.4,8,9

While much attention to date has focused on design-
ing the optimal method of human-machine interaction
between the exoskeleton and user,10 comparatively
little effort has been undertaken in design and imple-
mentation of an intuitive user interface for operating
these devices in rehabilitation and community settings.
A user interface serves as the primary means of com-
munication between engineers, clinicians, and ultimate-
ly end-users and the robotic exoskeleton. The interface
can serve a variety of functions, including device
powering on/off, adjusting device settings and mode
of operation, wirelessly recording and displaying
data, and reporting user performance metrics including
progress on rehabilitation goals. Graphical User
Interfaces (GUIs) have become commonplace in every-
day life and for human-robot interactions. Most web-
sites, phone apps, or electronic kiosks are designed with
a visual interface that allows for intuitive yet compre-
hensive control. User interfaces have also become an
integral component of commercially available rehabil-
itation robotic technology. One such example is
Ottobock’s Cockpit11 and Setup12 Applications, avail-
able for phone and tablet devices. This design approach
includes development of separate interfaces for each
type of user: the ‘Cockpit’ application for the end-
user and a ‘Setup’ application for clinicians to adjust
the technical settings of the devices. Yet despite the
commercial use of such interfaces and their obvious
value for human-robot interaction, little literature
exists regarding how to design such a system. To our
knowledge, there are no existing paradigms that dictate
guidelines or examples of designing an interface for a
wearable rehabilitation device.

Equally valuable to rehabilitation engineering
research are open source tools that can be easily
adapted for different technologies and research pur-
poses. Open source tools are used in many areas of
rehabilitation, such as electroencephalography

(EEGLAB13), human biomechanics (OpenSim14), and
even prosthesis design (OpenBionics15). Other more
general open source software and hardware tools
enable common engineering tasks for rehabilitation
applications, such as Lab Streaming Layer16 (LSL),
which allows the integration of data from multiple
sources onto a single platform, Unity game engine,17

which enables creation of custom virtual environments
that incorporate and respond to a person’s movements,
and Arduino,18 which provides integrated open source
electronics for sensor measurements and device con-
trols. Increasingly these open source tools have been
leveraged to create novel devices and systems that use
signals from body-worn and/or biological sensors to
implement closed loop robotic control for training or
exercise, i.e., to facilitate neurorehabilitation. Some
examples, in addition to our own and others’
microcontroller-based lower extremity exoskeletons6–9

include wearable exoskeletons for assistance and reha-
bilitation of hand function,19 EEG-based brain com-
puter interfaces for controlling functional electrical
stimulation (FES),20,21 robotic systems that provide
biologically-based haptic feedback for motor skill
development and training,22,23 and frameworks for
developing 3D interactive games for rehabilitation
exercise.24 Whereas these systems leverage open
source tools for operation, control and user-
interaction, and some even make their architecture
available for others to use,22 no open source graphical
user interfaces exist specifically to facilitate serial or
wireless communication of control parameters, opera-
tional commands or data logging for an open sourced,
microcontroller-based rehabilitation robot.

The goal of this project was to design an interface
capable of wirelessly communicating with and receiving
data from our wearable robotic exoskeleton using open
source software. Similar to previous commercial sys-
tems, this interface was developed with two distinct
components: a desktop (or laptop) interface for clini-
cians and engineers, and a phone interface for end-
users wearing the exoskeleton. A secondary goal was
to establish an open source resource for future graph-
ical interface design in rehabilitation by making all
source code for the GUI available through a public
software repository so that it can be adapted for use
with other devices.

Methods

Design requirements

The initial interface for our pediatric exoskeleton, or P.
REX,6 utilized a prompted command line interface.
While effective in the laboratory setting, this approach
is not robust to human error and required many entries

2 Journal of Rehabilitation and Assistive Technologies Engineering

(approximately 24) to initiate exoskeleton operation.
Further, data transfer and communication were via a
wired connection and two communication streams
were necessary, one for each leg. Based on this experi-
ence, we established general design requirements for a
GUI that were divided into two main areas: the inter-
face component, which describes design of the front-
end user interface, and the communication and data
handling component, which encompasses the back-
end software that passes data between the device run-
ning the GUI and the robotic exoskeleton (Table 1).

In addition to these inputs, a more abstract design
goal was to limit the user’s scope to only that informa-
tion necessary for them to control the device as desired
or as predetermined by the study or clinical team. By
only enabling certain features to the user at certain
times, the interface is more intuitive and more resistant
to user error. For instance, when using a constant
torque controller, the number of torque assistance
levels (i.e., setpoints) the user needs to set depends on
the state machine chosen. Therefore, if a two state
machine is chosen, the user is presented with two
torque setpoints. If a three state machine is chosen,
three setpoints are presented. The buttons to start
and stop data collection with the exoskeleton can be
similarly managed; these buttons are disabled until the

user has entered all required settings, at which point the

start button is enabled. After the exoskeleton is acti-

vated the start button is disabled and the stop button is

enabled. This limitation of the user’s scope makes the

desired action more intuitive and also helps ensure that

certain actions are only taken at the appropriate point

and in the appropriate way in the communication

process.

Design environment

P. REX (Figure 1(a)) is designed to provide individu-

alized assistance for knee extension during walking.

Because it is a pediatric exoskeleton, the individual

who dons the exoskeleton may be different from the

person who operates the GUI (for example, a young

child and caretaker, respectively). In particular, the

current GUI design is targeted for use by a trained

operator such as an engineer or clinician, although in

future versions that function may be served by a care-

taker as well. Therefore, for the remainder of the man-

uscript, the person donning the exoskeleton is referred

to as the “wearer” and the person operating the GUI is

termed the “user”. In future iterations, it may also be

possible for the wearer and the user to be the same

individual.
The exoskeleton controller (Figure 1(b)) has been

previously designed.5–7 The exoskeleton has two

Table 1. Design requirements for P.REX graphical user interface.

Design input Design output

Interface component

Turn robotic assistance on/off Buttons that control and display assistance status and device

operating mode

Enable initial testing and checking of exoskele-

ton motor and sensors prior to operation

during experimental trials

Separate tab on GUI that allows exoskeleton motor and

sensor data to be observed and calibrated

Set controller operational mode and corre-

sponding settings

Checkbox to identify control mode; automatically (in)activate

input boxes to specify required parameters for each mode

Minimize number of user-actions required to

upload all settings

Upload all specified inputs simultaneously through a single

“upload settings” button

Real-time display of sensor data and control

state to check exoskeleton performance

Embedded display windows that stream sensor data and motor

control states in real-time

Real-time visualization of sensor and motor

output data

Auxiliary plotting window with selectable data to be visualized

Communication & data handling component

Enable wired or wireless communication

between the host computer and the robot

Allow user to specify connection type (wired/USB or wireless/

Bluetooth)

Enable data from multiple robotic systems (i.e.,

individual embedded microcontrollers) to be

synchronized and saved on the host PC

Utilize open source lab-streaming layer (LSL) software to

automatically stream data from microcontroller to host PC

in real-time (with buffer), including time-stamp; provide

buttons to allow user to start and stop data recording

Synchronize data from robotic exoskeletons

with external laboratory systems

Provide microcontroller inputs to accept an external trigger

pulse and include it in the LSL data streams

Ensure sufficient sampling rate to enable

effective exoskeleton operation and offline

data analysis

Minimum sampling rate of 30Hz

Tucker et al. 3

operational modes: Standby Mode and Walking Mode.
In Standby Mode, the goal is to be transparent to the

wearer and therefore only minimal assistive torque is
provided to compensate for device friction and inertia

but no walking assistance is provided. In Walking

Mode, the user can select from three different torque-
based assistance strategies: 1) constant torque; 2)

impedance-based control that tracks a target knee tra-

jectory; or 3) real-time adaptive control. The exoskele-
ton control system is hierarchical (Figure 1(b)). At the

top level, a finite state machine is implemented to parse

the wearer’s gait cycle into as few as two states (stance
phase and swing phase) or as many as five states (early

stance, middle stance, late stance, early swing, and late
swing). The settings for this finite state machine are

individual-specific and therefore must be editable in

the GUI design. In the second layer, a user must
select one of the above 3 assistance strategies. Each

strategy requires unique, wearer-specific parameters

to be entered before the exoskeleton can function.
For example, the constant torque controller provides

different assistance levels within each gait phase, while
the adaptive controller adjusts assistance as a propor-

tion of the wearer’s estimated knee moment in real-

time.7 Each of these settings can be tuned based on

wearer preference, and therefore need to be available
as optional adjustments in the GUI. The lowest level of

the controller utilizes a closed loop feedback and feed-

forward PID controller to deliver torque at the knee as

specified by the control layers above it (Figure 1(b)).

The exoskeleton control system was written in AVR-C
using an Arduino Integrated Development

Environment (IDE) (Arduino, Somerville, MA) to

operate on a Teensy 3.2 microcontroller (PJRC,

Portland, OR). The operating code includes two

parts: First, a header file that contains definitions of
variables and imports proper libraries; and second, a

set of function files that carry out exoskeleton control

strategies at each level of the control hierarchy and

sensor monitoring. Each leg of the exoskeleton uses

an independent microcontroller running the same ver-
sion of the control code.

The desktop P.REX GUI was designed for engineers

and/or clinicians in a research laboratory or clinical

setting to interact with the control code running on

the exoskeleton microcontrollers. The graphical com-
ponents of the GUI were designed using the Tkinter

library and the backend operation was programmed in

Python 3.7.3 (Python, Wilmington, DE). The primary

goals of this interface are to communicate operational

Figure 1. Overview of a pediatric knee exoskeleton (P. REX). (a) The device incorporates a custom actuation assembly and
embedded electronic control system mounted on the lateral side of the leg. (b) The hierarchical real-time control loop running in the
embedded microcontroller during exoskeleton operation. The diagram in the top right inset shows the 5 state finite state machine.
Red blocks are states where extension assistance can be provided. The diagram in the bottom right inset shows the feed-forward and
feedback closed loop control for torque delivery.

4 Journal of Rehabilitation and Assistive Technologies Engineering

settings of the exoskeleton closed loop control system

running on the embedded microcontroller and to

receive data from the exoskeleton to be stored on the

computer running the GUI. The interface allows for

communication in two ways: 1) using a wired connec-

tion between the USB serial port of the computer and

the Teensy Microcontroller embedded in the exoskele-

ton electronics or 2) using a wireless Bluetooth serial

connection facilitated by the BlueSMiRF modem

(SparkFun Electronics, Niwot, CO) connected to the

microcontroller (Figure 1(a)). The wired USB and

Bluetooth communications require installation of a

serial module (pyserial) and Bluetooth module

(PyBluez) to allow Python code to access the host

machine’s serial and Bluetooth communication resour-

ces, respectively. The Bluetooth modems stream data to

and from the desktop computer using an USB

Bluetooth dongle (ASUS, Taipei, Taiwan). Two

BlueSMiRF Bluetooth adaptors, one for each exoskel-

eton leg, were connected to the dongle using a client-

server relationship.
The GUI was also designed to be modular such that

it can interface with any system that runs real-time

control code from a microcontroller with embedded

Bluetooth modem. For example, we have also devel-

oped a controllable electrical stimulation unit to be

used in tandem with the exoskeleton. We have there-

fore incorporated space in the desktop GUI to specify

the control parameters of the electrical stimulation,

including the desired gait phases in which electrical

stimulation should be on or off, and the amplitude,

pulse-width, and frequency of stimulus.
The GUI facilitates bi-directional communication

between the host desktop computer and the embedded

microcontrollers running the code that controls the

exoskeleton in real time. Custom functions were creat-

ed to package the control inputs entered by the user in

the GUI into a single communication string that is then

sent to the embedded exoskeleton code, where a second

function parses the inputs from the GUI and integrates

them into the real-time control system. These custom-

izable functions are intended to allow use of the GUI

with any robotic application equipped with the requi-

site hardware. A string was chosen because it provides

a constant format that can be used for any kind of

ASCII symbol, and only requires a marginally greater

amount of data space than the integer or double data

types in our context. This string (Table 2) contains

settings separated by a character delimiter (the forward

slash symbol, “/”,) with separate characters indicating

the start (“�”) and end (“>”) of the settings. The exact

string format and length is flexible and determined by

the exoskeleton operational settings that have been

selected in the GUI. For example, the controller type

(constant torque, adaptive, or impedance-based trajec-

tory tracking) and finite state machine (2–5 states)

selections will impact the number of control-specific

parameters that must be specified in the GUI. An

example of a GUI generated communication string is

shown in Table 2. The string can also contain other

information that is internally generated, such as the

total length of the string itself and the origin of the

settings (i.e., a desktop or phone) which are used by

the embedded code of the exoskeleton to unpack the

string, apply the updated control settings, and send

communication back to the GUI. If the user desires,

the exoskeleton code will save the updated settings to

the EEPROM (non-volatile data storage) in the micro-

controller which can be accessed by other GUI based

terminal devices such as a phone.
During exoskeleton operation, all sensor data

received by the desktop GUI is sent to Lab

Streaming Layer (LSL), an open source cross-platform

synchronization tool.16 Sensor data are formatted as

Table 2 Example string format for communication of controller specific parameters.

Setting Setting Length Start
Communication

Controller Parameters

End
Communication

String
Equivalent

9 ~ 0 / 0 / 0 / 5 / 0 >

Meaning Length of the
control parameters
string, in characters

Character denoting
start of settings
string

Reference the lower rows
of Table 2

Character denoting
end of settings string

Controller
Parameters

Controller Type State Machine Stance
Setpoint

Swing
Setpoint

Electrical
Stimulation

String
Equivalent

0 / 0 / 0 / 5 / 0

Meaning Use the 0th
controller, a
constant torque
controller.

Use the 0th state
machine, a 2-
state machine

The torque
setpoint for
stance (0 Nm)

The torque
setpoint for
swing (5
Nm)

Set electrical
stimulation to the 0th
setting (off)

Tucker et al. 5

floating point (single precision) data when read by the

microcontroller and sent to LSL. Lab Recorder, an
interface for LSL, is opened automatically as a sub-

process by the Python GUI. Once data are received

by LSL, any computer connected in the network can
access it. Due to inherent speed limitations of graphing

in Python, a separate graphing application was

designed in Unity (Unity Technologies, San
Francisco, CA) for data visualization during a trial.

This application is also opened as a sub-process by

the Python GUI and automatically calls data from
LSL for visual display. A complete schematic of the

system architecture is presented in Figure 2.

Validation test

We performed benchtop tests to evaluate the reliability,
speed, and systematic delay of the desktop GUI. The

exoskeleton was secured to an extruded aluminum

frame and manipulated by hand to simulate knee flex-
ion and extension similar to that experienced during

human walking. A motion capture system (VICON,
Oxford Metrics, UK) collected kinematic data from

the exoskeleton to externally calculate knee angle as

the ground truth. Four reflective markers were
attached to the thermoplastic shells of the exoskeleton

near the lateral hip, medial and lateral knee, and lateral

ankle centers of rotation. The posterior angle between
the thigh and shank segments was used to calculate

knee angle from the motion capture system as a refer-

ence for the exoskeleton sensors. Data from the on-
board sensors (three sensors per leg: knee joint torque

sensor, force sensitive resistor, and knee joint angle

from the motor encoder) were collected for angle com-
parison and to evaluate the GUI data streaming and
saving functionality.

During data collection, each system (motion capture
and P.REX GUI) was started independently and data
were saved in the respective software. To test the effi-
cacy, reliability and sampling rate of the desktop GUI
interface, we sent a series of twenty square wave pulses
over a wire to the P.REX and to a commercial DAQ
unit (National Instruments, Austin, TX) in the motion
capture system to serve as a reference. During the
experimental trial, the motor of each leg was back
driven by hand to increase computational effort of
the exoskeleton’s operating system. The P.REX GUI
collected the triggered pulses and data from the exo-
skeleton onboard sensors over the Bluetooth wireless
connection and sent them to LSL to be timestamped
and saved. Additionally, an incremental counter was
encoded into the main sampling loop of the Python
GUI to measure the desktop GUI sampling rate. This
counter incremented during each iteration of sampling
from the exoskeleton and was output as a separate
channel to LSL. The sampling rate of the desktop
GUI, which is different from the sampling rate of the
embedded microcontroller operating the exoskeleton,
was determined from the mean and standard deviation
of the time between samples from this counter. Signals
collected by the exoskeleton GUI over Bluetooth and
the Vicon motion capture system were synchronized in
post-processing using MATLAB (Mathworks, Natick,
MA) by aligning the leading edge of the first square
wave pulse in each data set. The time delay between
the GUI and DAQ system was then quantified by the

Figure 2. P.REX GUI system architecture: left, desktop interface; center, P.REX; top right, phone interface; bottom right, commercial
data collection instruments. All components on the computer screen constitute the desktop GUI. Data are sent over Bluetooth to
the Python application, shown on the top left of the computer screen. The Python application sends exoskeleton sensor data in real
time to LSL to be time-stamped and saved. A separate (optional) plotting application shown at the bottom left of the computer screen
pulls data in real time from LSL. Time series data are saved with LSL and can be compared with motion capture and force plate data
collected in the laboratory. The exoskeleton can also be controlled over Bluetooth with a phone interface, shown in the top right.

6 Journal of Rehabilitation and Assistive Technologies Engineering

mean and standard deviation difference in time

between the subsequent 19 pulses. The data sampling

rate for exoskeleton was computed from the mean of

the interval between LSL time stamps of the exoskele-

ton sensor data. Both legs of the exoskeleton were set

to send data at 100Hz which matches the commercial

DAQ for motion capture set to sample at 100Hz.

Results

GUI design

The GUI design splits the interface between three

pages; “instructions”, “preliminary testing”, and “run

trial” pages. The instructions page is the first page dis-

played to the user and gives guidelines for how to use

the GUI (Figure 3(a)). The preliminary testing page

(Figure 3(b)) incorporates all elements of the system

that would need to be checked before running a trial,

such as streaming live sensor data or testing control

modes by streaming data from each exoskeleton in

“Left Leg Output” and Right Leg Output” consoles.

For example, if the Potentiometer button is pressed, the

bits value, voltage value, and corresponding knee angle

values from both legs will be displayed and updated in

real-time in the corresponding output console as shown

in Figure 3(b). The “Universal Control Parameters”

frame sets low level motor PID gains. The “Motor

Parameters” frame allows diagnostics of the low level

feedback control for each leg by testing constant,

ramped, and sine-wave torque outputs. The motor per-

formance can be visually checked in real-time by press-

ing the Motor button in the “Sensor Checking” frame,

which then plots the set point and actual torque in the

corresponding output console for each leg. Similarly,

the “Torque Control Parameters”, “Impedance

Control Parameters” and “Speed Control

Parameters” frames allow diagnostic testing of these

motor control modes that can be checked visually by

pressing the corresponding button (Torque Controller,

Impedance Control, or Speed Control) in the “Sensor

Checking” frame. The Adaptive Control button dis-

plays motor output for a previously developed control-

ler that estimates user effort and is hard-coded into the

exoskeleton microcontroller.7 The real-time reading

from any sensor can be displayed in the Right and

Left Leg Output windows by clicking a corresponding

sensor button in the “Sensor Checking” frame. The

potentiometer requires calibration each time the user

dons the exoskeleton and the “Potentiometer

Parameters” frame allows the user to input the sensor

reading of each leg at two knee angles: 0 degrees (leg

straight) and 90 degrees (knee flexed so thigh is perpen-

dicular to the shank) to complete this calibration.

Figure 3. The P.REX GUI interface. (a) Instruction page. (b)
Preliminary testing page including windows for live streaming of
data from exoskeleton sensors. (c) Run trial page, including
controls to start and stop data collection, and windows for live
streaming of data from exoskeleton sensors and controllers. (d)
Electrical stimulation page; an optional (exemplar) system that
can interface through the GUI architecture via the addition of a
tab in the GUI interface.

Tucker et al. 7

The run trial page (Figure 3(c)) allows the user to
activate the desired assistance strategy and finite state
machine, adjust the settings to the selected control
modes, and enable collection, streaming and saving of
exoskeleton data. After the controller, state machine,
and data collection settings have been entered by the
user, the upload settings button can be pressed, causing
the GUI to create and send the aforementioned string-
based command to the exoskeleton. After receiving the
string, the embedded exoskeleton control code parses it
and assigns the appropriate parameters in the real-time
control code. After uploading settings on the run trial
page, the ‘Start Trial’ button becomes active in the
Data Collection Options frame (Figure 3(c)). The
‘Data Collection Options’ frame was customized for
the experimental workflow in our laboratory with the
exoskeleton and therefore includes several settings that
are frequently adjusted prior to and/or during a data
collection trial including: turning electrical stimulation
on/off, toggling between exoskeleton Standby and
Walking modes, adjusting the left and right FSR
thresholds that dictate whether each foot is on or off
the ground (normalized to the mean FSR value during
stance), adjusting the trial number, sending new con-
troller/sensor settings to the exoskeleton, and saving
those settings. After the trial is started, the ‘Start
Trial’ button automatically inactivates and the ‘Stop
Trial’ button activates. When pressed, the ‘Stop Trial’
button ends data streaming from the exoskeleton and
deactivates the motor. After the ‘Stop Trial” button is
pressed, this button is replaced by a ‘Continue Trials’
button and the ‘Finish Trials’ button activates as well
(Figure 3(c)). If the ‘Continue Trials’ button is pressed,
the user will go through start/stop trial with the same
settings. If the ‘Finish Trials’ button is pressed, the user
can configure and upload the new settings and then
restart the above start/stop/continue trial process.

The Run Trial page also incorporates other settings
important to exoskeleton operation. The ‘Universal
Controller Parameters’ subsection allows the user to
tune the lower-level PID gains before any given trial.
The PID gains are tuned manually for each exoskeleton
setup, so this feature is especially useful when a first-
time wearer walks with the exoskeleton. The E Stim
Options subsection allows the user to choose electrical
stimulation be on or off during the stance and/or swing
phases of the gait cycle. This feature is intended to
work with a separate controllable electrical stimulation
unit that contains its own embedded microcontroller.
(The electrical stimulation waveform parameters are
specified on a separate page of the GUI as shown in
Figure 3(d), located under ‘E Stim’ in the bottom left
navigation menu).

The GUI allows for a robust workflow (Figure 4) for
P.REX operation. The exoskeleton is first donned by

the wearer and secured using straps to the custom-fit
thermoplastic shells on each leg. The exoskeleton is
then connected to a power supply, either from a
lithium-ion battery or a DC power supply for in lab
use. Turning the exoskeleton on provides power to all
on-board electronics, including the microcontroller and
the BlueSMiRF Bluetooth module required for com-
munication with the desktop GUI. Concurrently, the
GUI can be started on a desktop computer by double-
clicking the Python script, automatically displaying the
Instructions Page of the GUI, Lab Recorder, and the
separate plotting application to the user. Before pro-
ceeding, the user should follow the instructions in Lab
Recorder to initiate data saving via LSL. All data from
each trial are saved in the Extensible Data Format
(XDF) and the filename can be specified in Lab
Recorder or alternatively one can be automatically
generated. Once the exoskeleton is powered on and
the GUI has been activated, the exoskeleton and
GUI can be paired either over wire or Bluetooth by
clicking either the ‘Wire’ or ‘Bluetooth’ button in the
bottom right corner of the Instructions page. A sub
menu appears to enter the MAC address (Bluetooth)
or serial communication port (wire) before a ‘Connect’
button is activated to pair with the exoskeleton. This
step also provides a layer of security by ensuring the
GUI can only connect to the intended robotic device.

After pairing, the user can move to the Preliminary
Testing Page by clicking the ‘Prelim Page’ button in the
bottom left corner. This page is optional and allows the
engineer or clinician operating the GUI to ensure that
all of the hardware on the P.REX is operating correct-
ly. For instance, to check that the potentiometer is
well-tuned to the true knee angle of the subject, the
green ‘Potentiometer’ button in the ‘Sensor Checking’
submenu can be pressed, streaming live data from the
potentiometer to the ‘Left Leg Output’ and ‘Right Leg
Output’ displays. As the person wearing the exoskele-
ton flexes and extends his or her knee, the engineer or
clinician operating the GUI can measure the wearer’s
knee angle and ensure that the potentiometer is
mapped to an equal value. If the potentiometer needs
to be tuned, the engineer or clinician can position the
wearer’s knee to 0 and 90 degrees, record the raw bit
value of the potentiometer from the ‘Left Leg Output’
and ‘Right Leg Output’ displays, and input them under
the ‘Potentiometer Parameters’ submenu. By clicking
‘Set Pots,’ each potentiometer is tuned to the true
knee angle of the patient. Similar tests can be per-
formed for the force-sensitive resistors, the motor
encoders, or torque sensors.

After checking the hardware of the exoskeleton on
the GUI, the Run Trial page of the GUI can be used to
prepare the state machine and controller modes of the
exoskeleton and activate a controller mode to provide

8 Journal of Rehabilitation and Assistive Technologies Engineering

assistive torque to the wearer. The page is displayed by
clicking the ‘Run Trial’ button in the bottom left
corner of the display. First, the engineer or clinician
must choose which assistance type to use, either con-
stant torque, impedance trajectory, or adaptive control.
If using the constant torque controller, the user then
chooses which state machine to use, ranging from the 2
to 5 as previously described. These operations are
accomplished by selecting the appropriate radio but-
tons under the ‘Controller Options’ submenu.
Depending on the control mode chosen, the GUI oper-
ator can then move to the respective submenu, either
‘Impedance Controller,’ ‘Adaptive Controller,’ or
‘Constant Torque Controller.’ The value of the con-
troller settings in each submenu depends upon the con-
troller chosen. A separate algorithm based on internal

knee moment prediction determines the settings of the
adaptive controller7; the impedance trajectory and con-
stant torque controller settings are individual-specific
and can be adjusted in the GUI. Settings for these
controllers are typically determined based on prelimi-
nary clinical analysis and observation as described in
our previous work.5 After entering the settings for the
chosen controller mode, the user selects whether or not
to use electrical stimulation during each gait phase by
selecting the boxes under the ‘EStim Options’ sub-
menu. Lastly, the engineer or clinician uploads the set-
tings to the exoskeleton by selecting ‘Upload Settings.’
This button sends the string of settings to the exoskel-
eton, which is automatically parsed by the exoskele-
ton’s operating system. After receiving a confirmation
message from the exoskeleton, the engineer or clinician

Figure 4. The P. REX GUI operational workflow. The top diagram shows operational sequence for the GUI user and P.REX wearer.
Dashed boxes and lines represent optional steps not required. The bottom inset displays the communication between the python GUI
and P.REX Arduino controller in response to GUI user input, including formatted strings and trial numbers from the GUI to the P.REX
and handshake signals (symbols: ‘$’,‘, [comma]’, ‘@’, and ‘^’) sent from the P.REX back to the GUI to confirm receipt of a command.

Tucker et al. 9

can select ‘Start Trial’ to engage the motor of exoskel-
eton. The P.REX initializes into frictionless Standby
Mode, allowing the wearer to walk without resistance
or assistance from the exoskeleton. The user can toggle
the ‘Mode’ radio button to ‘Walking,’ at which point
the exoskeleton monitors the user’s gait characteristics
and applies a corresponding torque as dictated by the
chosen control mode. Once a trial is initiated, all data
are streamed in real-time to LSL, where it is time
stamped and saved on the GUI desktop. To disengage
the motor and end a trial, the user can select the ‘Stop
Trial’ button. This automatically places the P.REX
back into Standby mode and the ‘Stop Trial’ button
changes to ‘Continue Trials’ button. The user can then
increment the trial number to activate the ‘Continue
Trials’ button, and collect more data using the same
controller settings (Figure 4(b)); the process can pro-
ceed as the user alternatively presses the Stop Trial and
Continue Trial buttons. The user can terminate an
experiment by pressing the ‘Finish Trials’ button, at
which point the assistance mode can be modified, or
the user can return to the Preliminary Testing page to
adjust sensor or controller settings (Figure 4).

The GUI also allows for a simple workflow when
testing the exoskeleton without a user wearing the exo-
skeleton. These tests are often desirable to determine
the characteristics of each control mode6,7 and when
troubleshooting issues with the onboard electronics of
the exoskeleton. In this workflow, the P.REX and GUI
are turned on and paired just as if a user was wearing
the exoskeleton. Once connected, all testing of the exo-
skeleton can be performed using the ‘Preliminary
Testing’ page. To characterize the actuator perfor-
mance during benchtop testing, the user can command
the motor with three different waveforms of current; a
constant current, a ramp to a current, or a sinusoidal
current. These options are selected from the ‘Motor
Parameters’ sub menu and the test is started when the
user clicks the green ‘Motor’ button under the ‘Sensor
Checking’ sub menu. The sensors on each leg of the
exoskeleton can also be checked and tuned from the
preliminary testing page.

A scaled-down version of the desktop interface was
implemented as a mobile app. This was designed for
use by the wearer and/or their caretaker, and therefore
incorporates a simpler design with less features. The
mobile app component was designed using the MIT
App Inventor to operate on Android devices.
This App is used only to start or stop a trial and turn
the current controller on (‘Walking Mode’) and off
(‘Standby Mode’). Use of the mobile app interface
requires a more sophisticated user to specify all settings
using the desktop GUI. Those settings are saved to the
EEPROM of the Teensy on each leg of the exoskeleton
and are then called by the phone interface. Therefore,

the phone interface incorporates only four buttons:

‘Start,’ ‘Stop,’ ‘Standby,’ and ‘Walk’ (Figure 5).

The start button turns the control loop on and auto-

matically puts the exoskeleton into Standby Mode. The

walk button begins motor actuation according to the

higher level controller saved from the desktop GUI.

The stop button disengages the motor and stops a trial.

Validation results

Table 3 presents the results from the exoskeleton vali-

dation tests. Both legs of the exoskeleton communicat-

ed with the host computer and GUI at almost exactly

100Hz. The slight deviation is most likely due to the

accuracy of the built-in timers on the microcontrollers.

Figure 5. A separate phone interface was developed in the MIT
App Inventor. This interface calls settings previously saved by the
desktop GUI and provides a simple method by which a wearer or
their caretaker could control the exoskeleton for community
ambulation.

10 Journal of Rehabilitation and Assistive Technologies Engineering

Additionally, the desktop interface operated at approx-

imately 15 kHz, far above the exoskeleton sampling

rate. For this reason, the signals collected by the com-

mercial DAQ unit and by the desktop interface aligned

almost exactly. The close alignment between the simu-

lated knee angles further emphasizes the signal fidelity

of the interface (Figures 6 and 7). During data collec-

tion, the Unity application was successfully able to dis-

play live data streaming from the exoskeleton.

Discussion

The desktop interface allows for complete, robust con-

trol of the exoskeleton and accurate data collection in

the laboratory. Our previous approach6 was a

command line interface that was not robust to human

error, provided no visual feedback of current settings,

and required approximately 24 separate entries to pre-

pare the exoskeleton for use. The GUI presented here

instead enables all settings to start the exoskeleton to

be updated at the same time and then uploaded to the

exoskeleton using a single button press. The GUI also

facilitates synchronization of exoskeleton data with

other modalities such as motion capture, force plates,

electromyography (EMG), and electroencephalogra-

phy (EEG) via LSL without relying on any proprietary

third party software. Additionally, the GUI is able to

interact with all of these systems using a network con-

nection either over WiFi or ethernet router.
To our knowledge, this is the first published design

of an operating methodology for a graphical interface

with wearable rehabilitative robotic technology that

also wirelessly time-stamps and saves data from the

system. All source code is made freely available in a

public repository (https://github.com/NIHFAB/

PREX-GUI-FAB). Important dependencies to use

our code include LSL, a Python 3.7.3 Interpreter, and

Python libraries (time, tkinter, os, sys, pylsl, pyserial,

subprocess, and PyBluez). These libraries can be

installed using ‘pip install’, a package management

system for Python, in the command line interface of

the desktop computer. Detailed instructions for code

installation, and a step-by-step tutorial, are available

on the GitHub website and wiki page. Our code was

tested on a HP EliteBook laptop running Windows 10

with an IntelVR CoreTM i7 7th Gen CPU processor and

would likely require modification for Linux and Mac

operating systems. Much of the underlying functional-

ity of our source code could be adapted for use with

Table 3. System characterization by pulse alignment.

Variable Mean Standard deviation

Specified DAQ sampling rate 100Hz N/A

Specified right and Left Leg sampling rate 100Hz N/A

Effective right leg sampling rate 99.998Hz 5.821E-7Hz

Effective left leg sampling rate 100.001Hz 3.111E-7Hz

Specified GUI sampling rate 15 kHz N/A

Desktop GUI sampling rate 14.979 kHz 2.545 kHz

GUI-to-DAQ alignment 1.000ms 3.078ms

Figure 6. Motion capture and exoskeleton angle measurement
comparison (top, left leg; bottom, right leg). Data were collected
from the encoder of each leg of the P.REX (blue) and overlaid
onto knee angle as collected by a commercial motion capture
system (red). This comparison shows that the communication
protocol is robust and comparable to commercially available
systems at the specified sampling rate (100Hz).

Figure 7. P.REX measurement of torque and controller state
during simulated walking. During data collection, each leg of the
exoskeleton was manually back-driven by hand to maximize the
computational load on the embedded microcontroller. The
torque setpoint, measured torque values, and finite state deter-
mined by the P.REX controller were accurately collected by our
data streaming protocol. The system was not attached to a
support when operating by hand, which accounts for oscillations.

Tucker et al. 11

https://github.com/NIHFAB/PREX-GUI-FAB
https://github.com/NIHFAB/PREX-GUI-FAB

another robotic device. The source code can be split
into 5 main categories; 1) functions to construct set-
tings strings, 2) functions to receive and parse data
from the device, 3) higher level communication func-
tions to send and receive data from another device, 4) a
GUI class to construct a visual display and connect
different visual features to the previous functions, and
5) functions to interact with external applications, such
as sending data to LSL or calling our plotting applica-
tion (Table 4). The source code can be adapted for use
with virtually any robotic device by modifying key
functions within each category. The general workflow
for adapting the GUI is as follows. First, a new string
format should be designed based on the device opera-
tional requirements, i.e., the control parameters that
are required inputs of the device. New developers
should create a logic diagram of the important operat-
ing features or editable inputs (in our case, these fea-
tures are the controller modes and state machine and
their associated parameters) and map which variables
fall into each case of the operation of their device. Once
each case is determined, a universal format similar to
that presented in Table 2 can be designed. The func-
tions that construct the strings (Table 4) should then be
customized to package the inputs into the designed
format to send the user inputs from the GUI to the
microcontroller. Next, the functions that receive and
parse data from the robot microcontroller should also
be customized so the number of received data variables
matches those sent from the microcontroller. Then, the
GUI Class functions and associated tkinter widgets,
which handle the text the user inputs into the GUI,
should be customized so the visual display provides
entry boxes, radio buttons or push buttons that corre-
spond to the necessary inputs to be communicated to
the microcontroller (i.e., the input values that will be
sent via the custom designed string). These widgets can
also be configured to display custom titles, instructions,
comments, institutional logos or images on the GUI
(Figure 3(a)). Finally, the functions that send data
from the GUI to external applications, such as LSL
for data-logging and timestamping, should be modified

to match the outputs sent from the robot microcontrol-
ler. After the code is customized to handle the inputs
and outputs of the new robotic device, the only other
modification necessary is to ensure the MAC address
(es) of the microcontroller Bluetooth modem(s) are
updated in the code to match the hardware.
Additional details and a simple example of program-
ming the GUI to accept and send an arbitrary input
from a user to a microcontroller are available in the
GitHub wiki (https://github.com/NIHFAB/PREX-
GUI-FAB/wiki). In addition to the python GUI
code, the phone app could also be adapted to a differ-
ent device using the IDE on the MIT App Inventor
website (https://appinventor.mit.edu/).

GUIs for wearable rehabilitative technology are
essential to deploying this technology in daily living
and therefore present a powerful avenue for research
in rehabilitation robotics. The most important feature
of our interface is its ability to stream data in real time
over a Bluetooth connection and timestamp those data
for further analysis, allowing untethered gait training
in the laboratory or at home. In the field of rehabilita-
tion robotics, this functionality is key to monitoring
device performance and user improvement over time.
For one, it allows researchers to study human-robot
interaction without the physical interference from
wires. Such a method of accurately saving data in
real time will also allow researchers to amass a large
data base of operating characteristics on their device.
In our context, this will allow our research group to
analyze the performance of each aspect of our exoskel-
eton’s hardware (motor, motor drive board, torque
sensor, and potentiometer) while testing the exoskele-
ton in a pediatric population. It will also enable the
device to report user statistics without relying on exter-
nal methods of collecting data, such as motion capture
or inertial measurement units. One of our primary clin-
ical populations is children with crouch gait, for whom
an important clinical outcome metric is change in knee
angle during gait. The ability to save data in real-time
from the onboard potentiometer and motor encoder of
the P. REX will allow us to track changes in knee angle

Table 4. P.REX source code function and classes.

Function or class description P.REX GUI source code function/class name

Functions for external applications ‘lab_recorder_subprocess’, ‘plotting_subprocess’, or LSL inlets/outlets

Construct settings strings ‘construct_data_string_left’, ‘construct_data_string_right’ (for left and right leg)

Receive and parse exoskeleton data ‘receive_communicationType’ (ser or BLE)

Higher level communication functions ‘receive_data’, ‘send_data’, and ‘receive_and_save_data’

GUI class ‘Main_View’

Child class for instructions page ‘LandingPage’

Child class for run trial page ‘MainMenuPage’

Child class for preliminary page ‘TestingPage’

Child class for electrical stimulation page ‘EstimPage’

12 Journal of Rehabilitation and Assistive Technologies Engineering

https://github.com/NIHFAB/PREX-GUI-FAB/wiki
https://github.com/NIHFAB/PREX-GUI-FAB/wiki
https://appinventor.mit.edu/

during gait, enabling the device to be closely monitored
during community ambulation without additional mea-
surement hardware. The GUI source code in the repos-
itory can be altered to wirelessly log data from any
sensor connected to a microcontroller (for an example,
see step 4 of the tutorial on the GitHub wiki), thereby
enabling its future use in community-based rehabilita-
tion robotics research.

Although the GUI presented here was designed for
modularity to enable its adaptation to and use with
other robotic applications, several limitations warrant
discussion. First, the software has several library
dependencies and the compatibility of the software
with future operating systems and hardware is contin-
gent on continued compatibility of these dependent
software packages. Second, although the GUI software
in principle can be used to communicate with any
microcontroller system containing an available and
configurable Bluetooth or serial communication
socket, it has only been evaluated using the Arduino
platform on Windows. Third, the software was
designed for implementation and use by engineers
and therefore knowledge and understanding of
Python coding principles is a prerequisite for using
and customizing the software. Finally, the P.REX
used for testing the GUI here includes an emergency
stop button that cuts power to the robot in the event of
abnormal or unexpected behavior arising from sensor,
actuator or GUI malfunction; it is recommended that
any wearable robotic device include this feature for
user safety. Additionally, a few hardware and software
requirements must still be met for community-based
gait training with P.REX. Most importantly, a frame-
work for privately sharing data from the exoskeleton in
a home or community setting must be implemented. As
currently constituted, the GUI saves data from the

exoskeleton on the desktop (or laptop) running the

GUI software. However, during actual deployment, it

would be desirable to transfer these data from the com-

puter running the GUI back to our institution. To

accomplish this task, we recommend the development

of an additional network communication framework to

encrypt data to protect each wearer’s privacy, and then

send those data over a wireless network to a server that

can be accessed by the clinic or laboratory. A proposed

system architecture for this modification is presented in

Figure 8. Additionally, we plan to perform subject test-

ing using this desktop GUI and the phone application

to ensure it is intuitive for unfamiliar users. Finally, a

second phone app that could be downloaded onto iOS

devices will ultimately be implemented.

Acknowledgements

We would like to thank CodeNIH and Blynn Shideler for

supporting development of the P.REX GUI.

Contributorship

DLD, TCB, and JC conceived the study. LAT, JC, LH and

TCB researched literature and participated in engineering

development. TCB, LAT, JC and DLD participated in exper-

imental design. LAT and JC collected and analyzed data.

LAT, JC, LH and TCB wrote the first draft of the manuscript

and created figures. All authors reviewed and edited the

manuscript.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Figure 8. Proposed system architecture for community based deployment of P.REX GUI for home based gait training.

Tucker et al. 13

Funding

The author(s) disclosed receipt of the following financial sup-

port for the research, authorship, and/or publication of this

article: This work was funded by the intramural research pro-

gram of the National Institutes of Health Clinical Center.

Guarantor

TCB.

ORCID iD

Thomas C Bulea https://orcid.org/0000-0002-2732-8255

References

1. Meyer-Heim A and van Hedel HJA. Robot-assisted and

computer-enhanced therapies for children with cerebral
palsy: current state and clinical implementation. Semin

Pediatr Neurol 2013; 20: 139–145.
2. Bayon C and Raya R. Robotic therapies for children

with cerebral palsy: a systematic review. Transl Biomed

2016; 7(1): 44.
3. Lefmann S, Russo R and Hillier S. The effectiveness of

robotic-assisted gait training for paediatric gait disorders:
systematic review. J Neuroeng Rehabil 2017; 14: 1.

4. Bay�on C, Mart�ın-Lorenzo T, Moral-Saiz B, et al. A
robot-based gait training therapy for pediatric popula-
tion with cerebral palsy: goal setting, proposal and pre-
liminary clinical implementation. J Neuroeng Rehabil

2018; 15: 69.
5. Lerner ZF, Damiano DL and Bulea TC. A lower-

extremity exoskeleton improves knee extension in chil-
dren with crouch gait from cerebral palsy. Sci Transl

Med 2017; 9: eaam9145.
6. Chen J, Hochstein J, Kim C, et al. Design advancements

toward a wearable pediatric robotic knee exoskeleton for
overground gait rehabilitation. In: 2018 7th IEEE inter-

national conference on biomedical robotics and biomecha-

tronics (Biorob), University of Twente, Enschede,
Netherlands, 26–29 August 2018, pp.37–42.

7. Chen J, Damiano DL, Lerner ZF, et al. Validating
model-based prediction of biological knee moment
during walking with an exoskeleton in crouch gait: poten-
tial application for exoskeleton control. In: 2019

IEEE 16th international conference on rehabilitation

robotics (ICORR), Toronto, Canada, 24–28 June 2019,
pp.778–783.

8. Eguren D, Luu TP, Kilicarslan A, et al. Development
of a pediatric lower-extremity gait system. In: 2017

international symposium on wearable robotics and

rehabilitation (WeRob), Houston, TX, USA, 5–
8 November 2017, pp.1.

9. Lerner ZF, Gasparri GM, Bair MO, et al. An untethered
ankle exoskeleton improves walking economy in a pilot

study of individuals with cerebral palsy. IEEE Trans

Neural Syst Rehabil Eng 2018; 26: 1985–1993.
10. Marchal-Crespo L and Reinkensmeyer DJ. Review of

control strategies for robotic movement training after

neurologic injury. J Neuroeng Rehabil 2009; 6: 20.
11. Ottobock. Cockpit app, www.ottobock.com/en/cockpit-

app/cockpit-app-2.0/cockpit-app_neu_en.html (2019,

accessed 24 September 2020).
12. Ottobock. C-BraceVR Setup app, www.ottobock.com/en/

c-brace-setup-app/index.html (2019, accessed 24

September 2020).

13. Delorme A and Makeig S. EEGLAB: an open source

toolbox for analysis of single-trial EEG dynamics includ-

ing independent component analysis. J Neurosci Methods

2004; 134: 9–21.
14. Delp SL, Anderson FC, Arnold AS, et al. OpenSim:

open-source software to create and analyze dynamic sim-

ulations of movement. IEEE Trans Biomed Eng 2007; 54:

1940–1950.
15. Kontoudis GP, Liarokapis MV, Zisimatos AG, et al.

Open-source, anthropomorphic, underactuated robot

hands with a selectively lockable differential mechanism:

towards affordable prostheses. In: 2015 IEEE/RSJ inter-

national conference on intelligent robots and systems

(IROS), Hamburg, Germany, 28 September–2 October

2015, pp.5857–5862.
16. Kothe C, Medine D, Boulay C, et al. Lab Streaming

Layer, https://github.com/sccn/labstreaminglayer (2018,

accessed 18 August 2020).
17. Unity. Unity Software, https://unity.com (accessed 17

August 2020).
18. Arduino, www.arduino.cc/ (accessed 17 August 2020).
19. Randazzo L, Iturrate I, Perdikis S, et al. Mano: a wear-

able hand exoskeleton for activities of daily living and

neurorehabilitation. IEEE Robot Autom Lett 2018; 3:

500–507.
20. Do AH, Wang PT, King CE, et al. Brain-computer inter-

face controlled functional electrical stimulation system

for ankle movement. J Neuroeng Rehabil 2011; 8: 49.
21. Jure FA, Carrere LC, Gentiletti GG, et al. BCI-FES

system for neuro-rehabilitation of stroke patients.

J Phys: Conf Ser 2016; 705: 012058.
22. Smith C, Pezent E and O’Malley MK. Spatially separated

cutaneous haptic guidance for training of a virtual sen-

sorimotor task. In: 2020 IEEE Haptics symposium

(HAPTICS) 2020, pp.974–979. Piscataway, NJ: IEEE.
23. Yang C, Zeng C, Liang P, et al. Interface design of a

physical human–robot interaction system for human

impedance adaptive skill transfer. IEEE Trans Automat

Sci Eng 2018; 15: 329–340.
24. Avola D, Cinque L, Foresti GL, et al. An interactive and

low-cost full body rehabilitation framework based on 3D

immersive serious games. J Biomed Inform 2019; 89:

81–100.

14 Journal of Rehabilitation and Assistive Technologies Engineering

https://orcid.org/0000-0002-2732-8255
https://orcid.org/0000-0002-2732-8255
http://www.ottobock.com/en/cockpit-app/cockpit-app-2.0/cockpit-app_neu_en.html
http://www.ottobock.com/en/cockpit-app/cockpit-app-2.0/cockpit-app_neu_en.html
http://www.ottobock.com/en/c-brace-setup-app/index.html
http://www.ottobock.com/en/c-brace-setup-app/index.html
https://github.com/sccn/labstreaminglayer
https://unity.com
http://www.arduino.cc/

