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SARS-CoV-2, the cause of COVID-19, has generated a global emergency. The endo-
thelium is a target of SARS-CoV-2, generating endothelial dysfunction, an essential
step for the development of cardiovascular complications. The number of endothelial
progenitor cells acts as an indicator of vascular damage. However, its role in SARS-
CoV-2 is unknown. The aim of this study was to quantify the number of endothelial col-
ony forming cells (ECFCs) and assess for the first time if there is a significant increase
after SARS-CoV-2 infection. This study also evaluates whether the number of ECFC is
related to the presence of pulmonary embolism (PE), and if this increase correlates
with any of the clinical parameters studied. A total of 63 subjects were recruited
including 32 subjects 3-months after overcoming COVID-19 and 31 healthy controls.
The results confirm the presence of vascular sequelae in post-COVID-19 patients, with
an abnormal increase in the number of ECFCs in blood circulation compared to con-
trols (2.81 § 2.33 vs 1.23 § 1.86, P = 0.001). There was no difference in ECFC production
in COVID-19 who presented acute PE compared to those that did not (3.21 § 2.49 vs
2.50 § 2.23, P > 0.05). The appearance of ECFC colonies in COVID-19 patients was
significantly related to male gender (P = 0.003), the presence of systemic hypertension
(P = 0.01) and elevated hemoglobin levels (P = 0.02) at the time of ECFC isolation and
lower PaO2 levels (P = 0.01) at admission. Whether these results indicate a prompt
response of the patient to repair the damaged endothelium or reflect a postinfection
injury that will persist in time is not known. (Translational Research 2022; 243:14�20)
Abbreviations: 6MWT = 6-minute walk test; ACE-2 = Angiotensin-converting enzyme 2; BMI =
Body mass index; CRP = C-reactive protein; DD = Dimer-D; DLCO = Carbon monoxide diffusing
capacity; DLP = Dyslipidemia; DM = Diabetes mellitus; ECFC = Endothelial colony forming cell;
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EPC = Endothelial progenitor cell; EPO = Erythropoietin; FEV = Forced expiratory volume; FIB =
Fibrinogen; FVC = Forced vital capacity; Hb = Hemoglobin; HTA = Arterial hypertension; HTC =
Hematocrit; LDH = Lactate dehydrogenase; Lym = Lymphocytes; MF = Maximum ferritin; PaO

2

= Partial pressure of oxygen; PBMC's = Peripheral blood mononuclear cells; PE = Pulmonary
embolism; RV = Residual volume; TLC = Total lung capacity;
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INTRODUCTION

Type 2 Coronavirus causing severe acute respiratory

syndrome, SARS-CoV-2 and coronavirus disease 2019

(COVID-19) is an ongoing complex pandemic. The

endothelium is one of the main targets of SARS-CoV-2

infection and it has been suggested that SARS-CoV-2

directly infects endothelial cells binding to the angioten-

sin-converting enzyme 2 (ACE-2) receptor and causes

severe endothelial damage.1 Postmortem COVID-19

patient samples have shown the presence of intracellular

SARS-CoV-2 viral structures within endothelial cells1

together with evidence of endothelial cell damage.

The endothelium is a dynamic organ involved in a wide

range of vital functions. Endothelial dysfunction produces

an unbalanced vascular homeostasis and represents a key

step in the development of cardiovascular complications

including coagulopathies and thromboembolisms.2 Recent

studies showed that 30%�70% of COVID-19 patients

admitted to intensive care units (ICUs) developed blood

clots in the deep veins of legs or lungs. Wichmann et al2

reported that out of the total 174 of autopsies from

COVID-19 patients performed, 33% of the patients

showed massive pulmonary embolism (PE) with or
without underlying deep vein thrombosis, despite the

absence of a history of venous thromboembolism, indicat-

ing the possibility of an in situ pulmonary thrombosis.

Endothelial progenitor cell (EPC) number and func-

tion are shown to be important biomarkers of vascular

injury for a wide range of diseases.3 Under pathological

conditions, EPCs are thought to be mobilized from the

bone marrow or from its niche in the vessel wall and

recruited to sites of vascular injury with the aim to pro-

mote vascular regeneration.4,5 Kong et al5 demon-

strated that EPC mobilization improved the repair of

injured arteries by facilitating re-endothelialization.

Similarly, Werner et al6 showed that vascular lesion

and neointimal formation was moderated by bone mar-

row-derived progenitor cells. Recently, circulating

bone marrow-derived CD34+CD31+CD146� EPCs has

been shown to be increased in COVID-19 patients.7

However, the role of EPCs in SARS-CoV-2 is

unknown.

EPCs considered to fulfil the criteria of a true EPC,

have been named late outgrowth endothelial cells or

endothelial colony forming cells (ECFCs).8 While the

literature points out to the existence of more than one

population of circulating EPCs, ECFC are the only

ones with a robust clonogenic and proliferative poten-

tial, express endothelial markers, form tubule structures

in vitro and support de novo angiogenesis when trans-

planted in vivo into immunodeficient mice.9 Addition-

ally, ECFCs can be expanded in vitro and operate as a

disease in vitro model to understand the disease pathol-

ogy and to develop potential novel treatments.

It is not fully understood which factors trigger the

release of ECFCs into the blood�s circulation. Previous
reports have shown a significant increase of ECFCs 6-

12h after coronary artery bypass surgery or burn injury,

and 7 days after myocardial infarction.10,11 EPCs

migrate in response to ischemia, to hypoxic sites fol-

lowing chemokine gradients, where they experience in

situ differentiation and finally take part in the forma-

tion of new blood vessels.12 Under hypoxic conditions,

there is an increase in the expression of EPC-attracting

factors, induced by hypoxic-inducible factor-1, enhanc-

ing nitric oxide and erythropoietin (EPO) levels in the

bone marrow, and mobilizing EPCs into circulation.13

The present study aims to evaluate for the first time,

whether an increase of ECFCs is present after SARS-

CoV-2 infection and whether the number of ECFCs

differs from COVID-19 patients who suffered an acute

PE during admission than the patients that did not.
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Table 1. Clinical and cellular parameters collected from COVID-19 patients and healthy controls. Clinical characteristics of

3-months post-COVID-19 patients, with or w/o pulmonary embolism (PE) and healthy controls. Percentage of ECFC colonies,

number of ECFC colonies and time for ECFC to appear in 3-months post-COVID-19 patients with or w/o PE and healthy con-

trols, Mann-Whitney test, *p<0.05. Relationship between appearance of ECFC colonies and clinical characteristics in

COVID-19 patients, Chi-square test, *p<0.05.

Variables Total
COVID-19,
n=32

CL, n=31 P-value
(Total COVID-19
vs CL)

COVID-19
w/o PE,
n=18

COVID-19
with PE,
n=14

P-value
(COVID-19 with
PE vs w/o PE)

Age, years 64,2 ± 13,6 58,6 ± 8,21 ns 67,5 ± 10,2 59,9 ± 16,5 ns
Male sex n (%) 27 (84,4%) 20 (64,5%) ns 16 (88,9%) 11 (78,6%) ns
BMI (Kg/m2) 27,5 ± 3,71 26,7 ± 4,78 ns 27,1 ± 3,10 27,9 ± 4,47 ns
Smokers (%) 1 (3,1%) 1 (3,23%) ns 0 (0%) 1 (7,14%) ns
No smokers (%) 15 (46,9%) 19 (31,3%) ns 5 (27,8%) 10 (71,4%) ns
Ex-smokers (%) 16 (50,0%) 11 (35,5%) ns 13 (72,2%) 3 (21,4%) ns
HTA (%) 17 (53,1%) 7 (22,6%) P<0.05 * 8 (44,4%) 9 (64,3%) ns
DM (%) 4 (12,5%) 0 (0%) P<0.05 * 2 (11,1%) 2 (14,3%) ns
DLP (%) 5 (15,6%) 2 (6,45%) ns 3 (16,7%) 2 (14,3%) ns
FVC (%) 98,5 ± 16,2 95,2 ± 13,8 ns 98,0 ± 18,5 98,8 ± 12,9 ns
FEV1 (%) 92,8 ± 27,9 100 ± 15,1 ns 90,3 ± 31,7 95,4 ± 21,8 ns
FEV1/FVC (%) 94,3 ± 22,5 81,0 ± 5,32 P<0.0001**** 92,9 ± 27,5 95,8 ± 14,1 ns
TLC (L) 109 ± 25,8 ND x 113 ± 33,2 104 ± 13,9 ns
RV (L) 109 ± 25,9 ND x 106 ± 20,7 114 ± 31,3 ns
DLCO (%) 74,3 ± 16,7 ND x 72,9 ± 20,3 74,5 ± 12,3 ns
6MWT (m) 364 ± 72,3 ND x 343 ± 82,7 385 ± 55,5 ns
Hb (g/dL) 14,1 ± 1,80 14,4 ± 1,60 ns 13,7 ± 1,78 14,7 ± 1,77 ns
HTC (%) 43,2 ± 4,89 43,0 ± 3,92 ns 42,3 ± 5,20 44,6 ± 4,28 ns
Lym (K/mcL) 2,23 ± 0,87 1,94 ± 0,54 ns 2,33 ± 0,95 2,08 ± 0,74 ns
LDH (mg/dL) 193 ± 32,6 180 ± 18,4 ns 188 ± 34,6 201 ± 29,0 ns
MF (ng/mL) 153 ± 117 108 ± 93,9 ns 149 ± 105 161 ± 146 ns
CRP (mg/dL) 0,31 ± 0,58 0,10 ± 0,06 ns 0,42 ± 0,70 0,10 ± 0,05 ns
Troponin (ng/L) 17,94 ± 12,7 6,37 ± 3,65 P<0.0001**** 20,2 ± 12,7 14,2 ± 12,4 ns
Positive DD (%) 2 (6,25%) 1 (3,23%) ns 2 (12,5%) 0 (0%) ns
FIB (mg/dL) 396 ± 76,3 410 ± 62,2 ns 408 ± 73,0 372 ± 82,4 ns

Appearance of
ECFC colonies (%)

27 (84,4%) 15 (48,4%) P<0.01 ** 14 (77,8%) 13 (92,9%) ns

Number of ECFC
colonies

2,81 ± 2,33 1,23 ± 1,86 P<0.01** 2,50 ± 2,23 3,21 ± 2,49 ns

Time for ECFC
to appear (days)

10,9 ± 4,39 14,3 ± 4,76 P<0.01** 11,1 ± 3,16 10,7 ± 5,54 ns

Abbreviations and acronyms: Healthy control (CL); Pulmonary embolism (PE); Body mass index (BMI); Arterial hypertension (HTA); Diabetes mellitus
(DM); Dyslipidemia (DLP); Forced vital capacity (FVC); Forced expiratory volume (FEV); Total lung capacity (TLC); Residual volume (RV); Carbonmon-
oxide diffusing capacity (DLCO); Six minute walk test (6MWT); Hemoglobin (Hb); Hematocrit (HTC); Lymphocytes (Lym); Lactate Dehydrogenase

(LDH); Maximum Ferritin (MF); C reactive protein (CRP); Dimer-D (DD); Fibrinogen (FIB); Endothelial colony-forming cells (ECFC).
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MATERIALS AND METHODS

We recruited a total of n = 32 3 months post-

COVID-19 patients and n = 31 healthy controls.

N = 14 COVID-19 patients suffered PE during admis-

sion, detected by computed tomography (CT) examina-

tion. Post-COVID-19 patients included in the study

were patients discharged from the Pulmonology Ser-

vice with severe pneumonia and a diagnosis of

COVID-19 by positive PCR. COVID-19 patients were

classified based on whether they had a diagnosis of pul-

monary embolism. Healthy control subjects were non-

hospitalized and non-staff volunteers residing in our

city and negative for SARS-CoV-2 infection. Healthy
controls were confirmed negative for SARS-CoV-2

infection at the time of ECFC isolation by PCR and did

not suffer any previous COVID-19 infection. ECFCs

from all subjects were isolated during the months of

March/April and October 2020 and were not vacci-

nated. Subject characteristics are described in Table 1.

The study was approved by the Clinical Research Ethic

Committee from Hospital Universitari de Girona Dr.

Josep Trueta (CEIm_COVID-Pneumo 2020.0099) in

accordance with the Declaration of Helsinki. All sub-

jects gave written informed consent.

The isolation of ECFC from all subjects and immu-

nofluorescence analysis were performed as previously

described14,15 (Fig 1, A and B). Briefly, peripheral

https://doi.org/10.1016/j.trsl.2022.01.004


Fig 1. A, ECFC colonies of 3-months post-COVID-19 patients resembling typical cobblestone morphology

appeared within 1-3 weeks of culture (4£). B, Immunofluorescence staining for CD31 (red), vWF (Green),

nuclei (blue) of endothelial cells from healthy controls and post-COVID-19 patients (40£). (For interpretation

of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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blood mononuclear cells (PBMC’s) were isolated by

buoyant density centrifugation over Ficoll�Paque Plus

(GE Healthcare), resuspended in endothelial cell

medium (ECM�2 medium, ScienceCell, Research

Laboratories) supplemented with 20% fetal bovine

serum (FBS hyclone, Cytiva) and 1% penicillin-strep-

tomycin (P/S, Lonza); and plated onto type�1 rat�tail

collagen�coated 6�well tissue culture plates (BD Bio-

sciences). Cells were incubated at 37˚C, 5% CO2, and

95% relative humidity for 3�4 weeks.15 The medium

was changed every 2 days until the appearance of

ECFC colonies. Cells were expanded in ECM-2 culture

medium supplemented with 10% FBS and were cryo-

preserved in 90% FBS with 10% DMSO.

Colonies were counted after appearance, as an asso-

ciation of 2 or more individual cells together with the

presence of a typical cobblestone endothelial morphol-

ogy of ECFC. These colonies may appear on
consecutive days and the number of colonies used in

this study is the total number of colonies generated by

a subject throughout their culture. The number of days

it took for the first colony to appear was also quantified.

All these parameters were evaluated between post-

COVID-19 patients compared to healthy controls and

between COVID-19 patients who suffered PE during

admission than those that did not.

Statistical analyses were performed using Graph-

Pad Prism 7 software, version 7.0e. Data are shown

as mean § SD. Pairwise comparisons were per-

formed using t-student test or Mann-Whitney U test

for non-normally distributed variables and Chi

squared test in categorical variables. Pearson or

Spearman rank correlation coefficient was used as a

hypothesis test to study the dependence between 2

random variables. Statistical significance was

assumed if P � 0.05.

https://doi.org/10.1016/j.trsl.2022.01.004


Fig 2. A�C, Percentage of appearance and no appearance of ECFC colonies, number and time for ECFC colo-

nies to appear in healthy controls and 3 months post-COVID-19 patients, Mann-Whitney test **P < 0.01. D,

Relationship between appearance of ECFC colonies and presence of hypertension in COVID-19 patients with or

w/o PE, chi-square test, *P < 0.05 ECFC appearance vs no ECFC appearance w/o PE. E, Levels of troponin

(ng/L) in healthy controls and post-COVID-19 patients at 3 months after SARS-CoV-2 infection. F and G,

Number of ECFC colonies and levels of PaO2 (F) at admission *P < 0.05 and Hb (G) **P < 0.01 of 3 months

post-COVID-19 patients, Mann-Whitney test. (Color version of figure is available online.)
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RESULTS AND DISCUSSION

Our results showed a significant increase in ECFC

production in 3 months post-COVID-19 patients com-

pared to healthy subjects. Twenty-seven COVID-19

patients out of the total of 32 had ECFC colonies at a

particularly high level of 84.4% compared to 48.4% of

ECFC isolation in healthy subjects (Fig 2, A; Table 1).

The average number of colonies in post-COVID-19

patients was also higher compared to healthy subjects

(Fig 2, B; Table 1) and the time needed for the colonies
to appear also differed between patients and controls

(Fig 2, C; Table 1). Additionally, there was no differ-

ence regarding the presence and the number of ECFCs

between COVID-19 patients who suffered PE during

admission than those that did not (Table 1).

In our series, the appearance of ECFC colonies in

COVID-19 patients was significantly related to male

gender (92.6%) and the presence of systemic hyperten-

sion (100%), both known risk factors for COVID-19

(Fig 2, D). In addition, although troponin levels were

https://doi.org/10.1016/j.trsl.2022.01.004
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significantly higher in 3 months post-COVID-19

patients compared to healthy controls (Fig 2, E and

Table 1), no correlation was found between troponin

levels and the number or appearance of ECFC colonies.

Interestingly, patients who had higher numbers of ECFC

colonies presented levels of hemoglobin (Hb) above the

median value (�14.5 g/dL) at the time of ECFC isola-

tion and higher hypoxemia with PaO2 levels below the

median values (<80 mmHg) at admission (Fig 2, F�G).

Bahlmann et al16 showed that EPO was able to enhance

progenitor cell mobilization in both patients and healthy

subjects and increase at a dose-dependent manner EPC

angiogenic potential in vitro. Our study is the first to

show that 3 months post-COVID-19 patients with

greater amounts of Hb levels and more severe hypoxic

conditions, were able to generate higher numbers of

ECFCs when compared to patients with higher PaO2

levels. Whether these results indicate a counteractive or

protective patient response to quickly restore the injured

endothelium or it reflects greater vascular damage is not

known and deserves further study.

Although there is literature about the importance of

EPCs and their role in blood clot development and

pulmonary embolism it remains largely understudied.

Some observational studies hypothesize and support

that EPCs would have a vascular protective role in

venous thrombotic disease.17 Others demonstrated

that circulating EPCs can accelerate thrombus recana-

lization by restoring damaged endothelium and

enhancing neovascularization.18,19 Certainty, the

renewal of the endothelial layer is crucial for the pre-

vention of thrombus development or recurrency. In

our series, there was no difference in the number of

colonies generated between COVID-19 patients with

or without PE and both subpopulations showed simi-

lar Hb levels. No significant differences were found

between both populations in the clinical parameters

analyzed (Table 1 and Supplementary Table 1). These

results indicate that the rise of ECFC in COVID-19 is

related to the infection itself and not to the develop-

ment of PE.

EPCs are considered promising non-invasive surro-

gates providing insights on endothelial function status.

Whether they can be used as biomarkers of endothelial

damage in post-COVID-19 patients, and whether its

monitoring could become a marker of long-term effects

of coronavirus (long COVID) or response to therapy is

still unknown.

This study has some limitations. Despite that our data

shows a vascular dysfunction in post-COVID-19 patients

does not indicate the ability of ECFC generation to pre-

dict better cardiopulmonary outcomes or reduce days of

hospitalization. Additionally, larger cohorts and longitu-

dinal studies are needed to evaluate whether this increase
in ECFCs is transient until the patient’s endothelium is

repaired or becomes permanent in some individuals that

could be associated with long-COVID effects. Another

limitation of this study is that some conditions such as

hypertension and diabetes are common among COVID-

19 patients, and it could be difficult to interpret whether

the elevated number of ECFCs in patients with COVID-

19 was related to the presence of this underlying condi-

tion or as a consequence of the viral infection. Neverthe-

less, our data showed that the increase of ECFC in

COVID-19 patients versus controls seems to be related

to the infection rather than the presence of such co-mor-

bidities (Supplementary Figs 1 and 2).

In summary, the results of our study identify for the

first time, the presence of vascular sequelae in patients

3 months post-SARS-CoV-2 infection with an abnor-

mally elevated ECFC number in the patient’s periph-

eral blood circulation irrespective of whether they

presented an acute PE or not. This data infers that the

higher number of ECFC is related to the infection itself

rather than subsequent PE episode.
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