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Abstract

Motivation: The extraction of sequence variants from the literature remains an important task. Existing

methods primarily target standard (ST) mutation mentions (e.g. ‘E6V’), leaving relevant mentions nat-

ural language (NL) largely untapped (e.g. ‘glutamic acid was substituted by valine at residue 6’).

Results: We introduced three new corpora suggesting named-entity recognition (NER) to be more

challenging than anticipated: 28–77% of all articles contained mentions only available in NL. Our

new method nala captured NL and ST by combining conditional random fields with word embed-

ding features learned unsupervised from the entire PubMed. In our hands, nala substantially out-

performed the state-of-the-art. For instance, we compared all unique mentions in new discoveries

correctly detected by any of three methods (SETH, tmVar, or nala). Neither SETH nor tmVar dis-

covered anything missed by nala, while nala uniquely tagged 33% mentions. For NL mentions the

corresponding value shot up to 100% nala-only.

Availability and Implementation: Source code, API and corpora freely available at: http://tagtog.

net/-corpora/IDP4þ.

Contact: nala@rostlab.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genetic variations drive biological evolution. Yet, most mutations

might harm (Rost, 1996; Rost et al., 2003; Sawyer et al., 2007).

Experimental studies elucidating the effects of sequence variation re-

main precious and expansive. Today, the important results from such

studies are still published in papers. Repositories, such as OMIM, rely

primarily on labor-intensive and time-consuming expert curation.

Searching PubMed with relevant keywords (http://1.usa.gov/

1rCrKwR) brought up >1M articles; most of those (>630K) for vari-

ation in human. An equivalent search of UniProtKB/Swiss-Prot
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(Boutet et al., 2016; UniProt, 2015) revealed �13K indexed publica-

tions, and the professional version of the Human Gene Mutation

Database (HGMD) (Stenson et al., 2003) listed �179K mutations.

These numbers sketch the immense information gap between

literature and database annotations (Jimeno and Verspoor, 2014a,b,

Database). Despite two decades of high-level efforts to increase the

incentive for authors to link their findings to databases, this gap is

likely to expand even more rapidly in the future. Instead of requiring

administrative overhead, the text mining of free literature pursues a

solution that could scale and substantially narrow the gap (Krallinger

et al., 2008).

Mutation mentions refers to the format used to report experi-

mental results for sequence variants. Mining mutation mentions is

referred to as named-entity recognition (NER). We focused on the

task to recognize and parse text fragments such as the following two

equivalent mutation mentions: ‘glutamic acid was substituted by

valine at residue 6’ or ‘p.6E>V’. The two differ only in their syntax:

the first is written in natural language (NL), the second follows a

standardized format (ST).

Existing extraction methods primarily target simple and standar-

dized mutation mentions. MutationFinder (MF) (Caporaso et al.,

2007a,b) uses a large set of regular expressions (regexes) to recog-

nize single nucleotide or amino acid variants written in simple ST

form (e.g. ‘E6V’) and slightly more complex semi-standard (SST)

form (e.g. ‘Glu 6 to Val’ or ‘glutamic acid for valine 6’). SETH

(Thomas et al., 2016) recognizes other short sequence variations

such as insertions and deletions (indels, e.g. ‘c.76_77insG’ and

‘c.76delA’, resp.) by implementing a formal grammar and regexes

that cover recommended, deviations and deprecated cases of the

HGVS nomenclature (den Dunnen et al., 2016). The HGVS nomen-

clature aims to frame mutation mentions in a canonical normalized

language (e.g. the complete form ‘p.Glu6Val’ is preferred over alter-

natives). tmVar (Wei et al., 2013) has introduced probabilistic meth-

ods and recognizes ST mentions for a large variety of variant types:

point variants (SNVs: Single Nuclear Variants, SAVs: Single Amino

acid Variants), structural variations (insertions, deletions, frame-

shifts: e.g. ‘p.(Arg97fs)’, duplications: e.g. ‘c.76dupA’), and rsids

(reference SNP ID numbers, e.g. ‘rs206437’, i.e. dbSNP accession

numbers (Sherry et al., 2001)). None of these three methods appear

to extract genetic markers (e.g. ‘D17S250’) nor large-scale muta-

tions, i.e. variations of regions longer than a few nucleotides or

amino acids (e.g. ‘TP73Dex2/3’ or ‘abrogated loss of Chr19’).

Existing methods are reviewed in detail elsewhere (Jimeno and

Verspoor, 2014a,b, F1000Res.; Nagel et al., 2009). Mapping the

variant E6V to a particular sequence, e.g. that of hemoglobin S in

human with the SWISS-PROT identifier hbb_human and relating it

to sickle cell anemia (SKCA) and finally identifying that the variants

is actually at position 7 in the sequence, i.e. should have been named

E7V (p.Glu7Val), are all essential steps toward ‘parsing the mean-

ing’ of the annotation. We ignored these mapping problems in this

work. Instead, our work focused on presenting the first comprehen-

sive study of the significance of natural language mutation mentions

(e.g. ‘in-frame deletion of isoleucine 299’). Our new method com-

pleted the picture by recognizing different mutation types (for both

genes and proteins) written in simple form or complex natural

language.

2 Materials and methods

2.1 Classification of mutation mentions: ST, SST and NL
There is no single reliable classification of natural language (NL)

or standard (ST) mutation mentions. Some annotators might

consider ‘alanine 27 substitution for valine’ as NL because it does

not follow the standard HGVS nomenclature. Others might con-

sider it as standard or semi standard (SST) because simple regexes

might capture this mention. Previous mutation extraction

methods primarily used regexes and did not capture long muta-

tion mentions.

As an operational definition, we considered any long mention that

was not recognized by previous methods as NL, any mention that

resembled the HGVS nomenclature as ST, and any mention in be-

tween as SST. We defined the following if-else chain algorithm to cap-

ture this idea: given a mutation mention, if it matches custom regexes

or those from tmVar, then it is ST; else if it has 5 or more words or

contains 2 or more English-dictionary words, then it is NL; else if it

contains 1 English-dictionary word, then it is SST; else it is ST (ex-

amples in Table 1). Our custom regexes matched one-letter-coded

mentions such as ‘p.82A>R’ or ‘IVS46: del T -39 . . . -46’

(Supplementary Table S9). The collected tmVar regexes were used by

the authors (Wei et al., 2013) as features of the tmVar probabilistic

model and as post-processing (PstPrc) rules.

2.2 Evaluation measures
We considered a named entity as successfully extracted if its text off-

sets (character positions in a text-string) were correctly identified

(tp: true positive). We considered two modes for tp: exact matching

(two entities match if their text offsets are identical) and partial

matching (text offsets overlap). Any other prediction was considered

as a false positive (fp) and any missed entity as a false negative (fn).

Partial matching is more suitable to evaluate NL mentions lacking

well-defined boundaries. For instance, in finding ‘[changed con-

served] glutamine at 115 to proline’, we did not distinguish solutions

with and without the words in brackets, because we focused on the

extraction of the mention not on that of additional annotations

(here ‘conserved’). We computed performance for all cases and for

the subclasses (ST, SST and NL). A test entity of subclass X was con-

sidered as correctly identified if any predicted entity matched. We

then used the standard evaluation measures for named-entity recog-

nition, namely, precision (P: tp=tpþ fp), recall (R: tp=tpþ fn) and

F-Measure (F: 2 �
�

P � RÞ=ðPþRÞ). Within a corpus, we computed

Table 1. Classification of mutation mentions

Class Examples MF SETH tmVar

ST • Q115P; Asp8Asn; 76A>T
• c.925delA; g.3912G>C; rs206437
• c.388þ 3insT
• delPhe1388; F33fsins; IVS3(þ1);

D17S250;
• TP73Dex2/3

yes

no

no

no

yes

yes

no

no

yes

yes

yes

no

SST • 3992-9g–>a mutation; codon 92,

TAC–>TAT
• Gly 18 to Lys; leucine for arginine 90
• G643 to A; abrogated loss of Chr19

no

yes

no

no

yes

no

yes

no

no

NL • glycine to arginine substitution

at codon 20
• glycine was substituted by

lysine at residue 18
• deletion of 10 and 8 residues

from the N- and C-terminals

yes

no

no

yes

no

no

no

no

no

Note: Examples of mutation mentions of increasing level of complexity as

found in the literature (ST: standard; SST: semi-standard; NL: natural language).

The columns MF, SETH and tmVar indicate if the methods MutationFinder,

SETH and tmVar, respectively, recognize the examples listed.
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the StdErr by randomly selecting 15% of the test data without re-

placement in 1000 (n) bootstrap samples. With<x> as the overall

performance for the entire test set and xi for subset i, we computed:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i¼1

xi � xh ið Þ2
s

StdErr ¼ rffiffiffi
n
p (1)

Across corpora, we did not merge documents. Rather, we computed

the mean of P, R and F between the considered corpora, and com-

puted the StdErr of the mean without subsampling.

2.3 Previous corpora
Some well-known corpora annotate mutation mentions and specific

text offsets, including: SETH (Thomas et al., 2016), tmVar (Wei

et al., 2013) and Variome (Verspoor et al., 2013). All corpora con-

tain different mutation types, including SNPs, frameshifts, or dele-

tions (primarily in ST or SST forms). SETH and tmVar annotated

abstracts, Variome full-text articles. The Variome corpus annotated

many vague mentions (e.g. ‘de novo mutation’ or ‘large deletion’).

With Variome120 we referred to a Variome subset of position-

specific variants with 118 mentions as described earlier (Jimeno and

Verspoor, 2014a,b, F1000Res.) plus two new annotations with ref-

erence to both a DNA and a protein mutation.

2.4 Three new corpora: IDP4, nala and nala_discoveries
We annotated three new corpora (IDP4, nala and nala_discoveries)

at different times and with slightly different objectives. These solu-

tions substantially enriched the status quo. All three were annotated

with the tool tagtog (Cejuela et al., 2014). The differences were as

follows.

2.4.1 IDP4 corpus

We introduced the IDP4 corpus to offer an unbiased representation

of mutation mention forms (NL in particular). Previous corpora

focused on ST or SST mentions. We annotated the entities

Mutation, Organism and GGP (gene or gene product), as well as,

relations between GGP and both Mutation and Organism. We

included abstract-only and full-text documents. Documents were se-

lected in four steps. (1) Include particular organisms/sources (Homo

sapiens, Arabidopsis thaliana, Drosophila melanogaster, Caeno-

rhabditis elegans, Schizosaccharomyces pombe, Saccharomyces cer-

evisiae, Mus musculus, Rattus norvegicus and HIV). (2) Collect the

PubMed identifiers linked from SWISS-PROT (Boutet et al., 2016)

that cite the keywords variation or mutagenesis. (3) Accept all ab-

stracts that contain any of five keywords (mutation, variation, inser-

tion, deletion, SNP). (4 optionally) Retrieve full-text articles

through keyword open access (on PubMed Central).

Our method and thus our annotation guidelines needed mutation

mentions with three components: (1) W (word): a clear word or pat-

tern giving the variant and its type (W is binary, i.e. present or not),

e.g. W¼ yes as in ‘His72 substitution to Arg’ or ‘24bp duplication

of ARX exon 2’. (2) L (letter): giving the mutated nucleotides or resi-

dues (L is binary, i.e. present or not), e.g. L¼ yes as in ‘delta

Phe581’ and L¼no as in ‘deletion at pos. 581’. (3) P (position): giv-

ing the sequence location of the variation (P has three values: exact,

vague, or no, i.e. not applicable), e.g. P¼ exact as in ‘Tyr838 muta-

tion’ or ‘Del 1473-IVS16(þ2)’ and P¼ vague as in ‘placed immedi-

ately downstream of I444’ or ‘at the carboxyl end’.

We annotated two cases: (1) W¼ yes, L¼ yes, P¼ yesjvague, e.g.

‘p.Phe54Ser’, ‘Arg-Thr insertion between 160 and 161 residues’, or

‘(499)leucine (TTA) to isoleucine (ATA)’; (2) W¼ yes, L¼no,

P¼ yes, e.g. ‘point mutation at amino acid 444’, ‘SNPs affecting

residues, 282, 319 and 333’. The rationale was that we could assign

to the missing nucleotide/residue the unknown value X. We also

annotated total gene knockouts (‘D/D’), deletions of subparts

(‘deleted C1 domain’), or deletions of larger regions (‘deletions of

chromosome 9p22.3’). We considered those positions as specific.

Moreover, we annotated rsids.

We measured the agreement between annotators (F-Measure of

the inter-annotator agreement: F_IAA) as proxy for the consistency

of the annotations. Four annotators participated. Across 53 overlap-

ping documents, for IDP4 we observed F_IAA¼91 for all mutation

mentions and F_IAA¼77 for NL mentions. In total, the IDP4 cor-

pus collected 157 documents (72 full textþ85 abstracts) with 3337

mutation annotations: 3113 ST mentions (93%), 198 NL (6%) and

26 SST (1%).

2.4.2 nala corpus

We introduced the nala corpus to expand the amount of NL muta-

tion mentions necessary for the training of probabilistic methods.

No previous corpus tagged enough (Results) (Ravikumar et al.,

2012). We annotated only abstracts for they contained higher den-

sities (number of mentions/number of words) of NL mentions than

full articles. In particular, the IDP4, Variome and Variome120 cor-

pora contained more NL mentions per word in abstracts than in full

texts (ratios: 5.5, 1.6 and 3.8). We selected documents as for the

IDP4 corpus but applied active learning to simultaneously build cor-

pus and method (details below). The nala corpus consisted of two

disjoint sets: nala_training and nala_known. The latter ‘blind’ set

with 90 randomly chosen abstracts (15% of the entire nala corpus)

was used only to test. We stopped adding abstracts to this test set

when the standard error estimate plateaued. Moreover, nala_known

contained 8 documents (9% of test) without any annotation, i.e. no

mutation mentions, to effectively probe the precision of methods.

Annotating NL mentions strictly following our IDP4 corpus

guidelines was more challenging. For example, mutation positions

were often vague and/or referenced indirectly in other sentences

than the variant and often in different paragraphs. In particular, we

relaxed the rules more for insertions and deletions, e.g. ‘2-bp dele-

tion in exon 6’, ‘somatic 16-bp deletion’, or ‘in-frame insertion of 45

nucleotides’. Another unique feature of the nala corpus was the an-

notation of genetic markers. To limit the workload, for the nala cor-

pus we refrained from annotating organisms or GGP terms. Only to

ease the reading of mutation mentions, we used the GNormPlus tag-

ger (Wei et al., 2015) to automatically annotate gene/protein terms.

Three experts annotated nala; their agreement over 30 docu-

ments was F_IAA¼95 for all mutation mentions and F_IAA¼89

for NL. The nala corpus collected 591 abstracts with 2108 mutation

annotations. Despite the explicit focus on NL mentions, ST men-

tions still dominated (presumably because they are easier to anno-

tate): 1097 ST (52%) versus 841 NL (40%) and 170 SST (8%). As a

result, the nala_known set benchmarked both ST and NL mentions

(SST mentions were underrepresented).

2.4.3 nala_discoveries corpus

We introduced another novel corpus, nala_discoveries, to gauge

automatic tagging of papers with ‘new discoveries’. The idea is best

explained in comparison to our generic nala corpus: there we picked

the PubMed articles beginning from identifiers of genes and proteins

that had already been described experimentally and annotated in

SWISS-PROT (Boutet et al., 2016). We had not realized how crucial

this constraint was until we created a new corpus just before
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submitting the manuscript. The usage of previously-indexed articles

and knowledge has been common practice, e.g. for SNPs indexed by

dbSNP or HGVS-compliant mentions (SETH corpus), disease- and

mutation-specific MeSH terms indexed by PubMed (tmVar corpus),

mutation-specific citations indexed by SWISS-PROT (IDP4 and nala).

Only the Variome corpus directly searched PubMed, but it was limited

to three Lynch syndrome genes. For nala_discoveries, we found all art-

icles in PubMed using the keyword mutation and published between

2013 and 2016 in the journals Nature, Science and Cell, without fur-

ther filtering (exact search: http://bit.ly/2aHthKP). To limit the work-

load, we randomly selected abstracts with at least one mutation

mention (any form) and stopped at 60 abstracts with at least one NL

mention. We applied the guidelines used for IDP4 and nala. Compared

to other corpora, we found more large-scale mutations (e.g. chromo-

somal translocations) and significant differences in the semantics of

mutation mentions. The numbers for nala_discoveries were: 78

abstracts (18 with ST or SST mentions only) and 215 mutation

annotations spanning 104 ST mentions (48%), 71 NL (33%) and

40 SST (19%). The corpus nala_discoveries effectively bench-

marked all mention classes (incl. SST) and was annotated by the

same three annotators as the nala corpus.

2.5 New method: nala
The new method nala was based on conditional random fields (CRFs)

(Lafferty et al., 2001). Techniques for CRFs are amply described

(Settles and Burr, 2004; Wei et al., 2013; Wei et al., 2015). We used

the python-crfsuite implementation, a python binding of the CRFSuite

Cþþ library (software URLs in Supplementary Table S10). We used

our in-house implementation of the tmVar tokenizer (Wei et al., 2013),

but did not split tokens upon case changes at the sentence beginning

(‘The’ not ‘T’þ ’he’). We applied BIEO token labeling: tokens at the

beginning of a mutation mention were labeled as B; continuing (inside)

tokens as I; ending tokens as E; all other tokens (outside a mention) as

O. For NL, BIEO outperformed our implementation of the 11 tmVar

labels. We also included standard features such as token stems, word

patterns, prefix and suffix characters, presence of numbers, or the

word belonging to term dictionaries such as nucleotides, amino acids,

or other common entities. We also added PstPrc rules such as fixing

small boundary problems (‘þ1858C>T’ not ‘1858C>T’). Finally, we

introduced two optional post-processing (PstPrc) regex-based filters

that can be switched on or off by users: 1) annotate rsids or not, and 2)

annotate genetic markers or not.

Word embedding features (WE) contributed most to our new

method. WE features had already helped in biomedical named-

entity recognition (Guo et al., 2014; Passos et al., 2014; Seok et al.,

2016; Tang et al., 2014). Specifically, we used neural networks with

the CBOW architecture (continuous bag of words) (Mikolov et al.,

2013) and trained on all PubMed abstracts until mid 2015. We used

window¼10 and dimension D¼100. Tokens were converted to

lowercase and digits were normalized to 0. For each token, the vec-

tor of 100 real values was translated into 100 features. The real val-

ues were used as weights in the CRF features, e.g.:

word_embedding[0]¼0.00492302. In analogy to the optional PstPrc

filters, users also have the option to run nala with WE features (de-

fault) or not (the features are not computed).

We built the nala corpus and method in parallel through iterative

active learning (Fig. 1). We implemented a base version (nala_1)

using the features from tmVar and trained on the IDP4 corpus (iter-

ation_1 training set). For later iterations (iteration_t), we used the

previous model (nala_t-1) and a high-recall set of regexes to select

documents with non-ST mentions. We selected only documents

with�1 NL mention. In each iteration, we arbitrarily selected ten

documents. These were pre-annotated by nala_t-1 and then posted

to the tagtog annotation tool for expert review and refinement; the

reviewed annotations were saved as iteration_t. In each iteration

step, we trained through 5-fold cross-validation. Annotators selected

documents with annotation errors (missing entities, wrong offsets,

or false positives) to learn those. In the end, the merging of iteration

sets without IDP4 created the nala_training corpus. We trained the

final method solely on nala_training (without using IDP4 as training

data), due to two reasons. Firstly, NL mentions were learned much

better with nala_training. Secondly, ST mentions were learned better

including IDP4, yet the small improvement did not justify the com-

plexity of two separate models (ST and NL). We used nala_known

and nala_discoveries only to evaluate the final method.

2.6 Methods for comparison
We compared nala with two state-of-the-art methods, namely SETH

and tmVar. To run SETH locally, we slightly modified the original

scala code to print out the results in brat format. To run tmVar, we

used its official API. We could not benchmark the tmVar API on the

tmVar test set, as it had been trained on this set. For each method, we

evaluated its default and its best performance. To compute the best

performance, we filtered out some test annotations and predictions

originating from arbitrary annotation guidelines of the individual cor-

pora. For example, the best performance of tmVar on the SETH cor-

pus disregarded rsids; tmVar predicts rsids but the SETH corpus does

not consistently annotate them (9 out of 69). Analogously, nala pre-

dicted many NL mentions not annotated in the SETH, tmVar, or

Variome120 corpora. Overall, we applied the two PstPrc filters (rsids

and genetic markers) and the usage or not of WE features (only for

nala). WE features improved the performance for NL mentions (de-

tails below) but without WE features nala did better on the ST-scoped

corpora. For all methods, the difference between default and best per-

formance was consistently and substantially larger than the standard

Fig. 1. nala method active learning process. Each blue box represents an iter-

ation state of the nala method. The method and the iteration training sets are

implemented in parallel. The previous iteration method (nala_t-1) is used to

automatically annotate unseen documents. Selected documents with out-

standing errors are reviewed manually and added to the iteration training set

t. New features are evaluated in 5-fold cross validation and the method is re-

trained with all previous sets (nala_t). At the end, the sum of iteration training

sets without IDP4 form the nala_training corpus. The final nala method is

trained on nala_training (only) and evaluated against the nala_known and

nala_discoveries corpora
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error within the corpus. This underlined the significance of annotation

guidelines. Consequently, we reported (Results) the averages for de-

fault and best performance and their standard errors (individual re-

sults in Supplementary Tables S1–S5).

3 Results and discussion

3.1 Natural language (NL) mutation mentions important
The Variome120 and IDP4 corpora (no bias in mention forms) had

much higher fractions of NL over ST or SST mentions (8% and 6%,

respectively; Fig. 2, grayed out bars) than SETH (4%) and tmVar

(2%). Removing repetitions, the fraction of unique NL mentions

increased to 17% and 13% (Fig. 2, highlighted bars). The Variome

corpus contained the largest fraction of SST mentions (53% with and

19% without repetitions). NL mentions dominated abstracts even

more (12% in Variome120 and 13% in IDP4 with mention repeti-

tions and 29% and 17% without repetitions). The nala corpus, intro-

duced here, was built with a higher fraction of NL mentions (40%

with repetitions and 49% without repetitions). All these corpora

relied on well-annotated genes and proteins (indexed articles). In con-

trast, the nala_discoveries corpus randomly sampled abstracts without

considering previous functional annotations (no previous indices). It

contained the largest percentage of combined NLþ SST mentions

(52% with repetitions and 65% without repetitions).

How many experimental results will methods miss from the three

corpora (IDP4, Variome and Variome120) that focus on ST or SST

mentions? 28–36% of all abstracts contained at least one NL mention

not in ST form (Table 2). The corresponding per-mention fractions

were 13–27% (Table 2). For nala_discoveries the numbers were sub-

stantially higher: 67–77% (per-document) and 43–51% (per-mention).

3.2 New method nala performed top throughout
In our hands, the new method nala compared favorably with exist-

ing tools for extracting standard (ST) mutation mentions and signifi-

cantly outperformed the status-quo for natural language (NL)

mutation mentions (Fig. 3). This baseline was valid for all evalu-

ations that we carried out. We found it more difficult to yield a

single answer for the performance of nala (and from nala compared

to other methods) because the performance depended crucially on

the corpus. Each corpus has its own focus and bias. Which one best

reflects what users expect?

We tried to simplify by grouping results into those for previously

indexed mutations (SetsKnown corpora: SETH, tmVar_test,

Variome120 and nala_known; Supplementary Table S6) and those

without prior knowledge (nala_discoveries; Supplementary Table

S5). To establish the performance on well-annotated genes and pro-

teins, the SetsKnown corpora might provide the least biased esti-

mate: the nala method overall obtained F¼89 6 3 compared to the

highest performing competitor, i.e. tmVar with F¼87 6 3 (Table 3).

In contrast, the nala_discoveries corpus best established how well

text mining works for new articles: the nala method reached

F¼55 6 7 compared to the highest performing competitors SETH

and tmVar with F¼41 6 10 (Table 3). Precision was very high for

all methods on all evaluations and always lower than recall (for nala

avg. on SetsKnown P¼87/R¼92; on nala_discoveries P¼90/

R¼40). Thus, precision is a proxy for the performance on docu-

ments without mutation.

Fig. 2. Natural language (NL) mutation mentions important. What type of muta-

tion mentions dominates annotated corpora that somehow sample the literature:

standard (ST, e.g. E6V), semi-standard (SST), or natural language (NL)? Grayed

out bars indicate counts with repetitions, full bars unique mentions (e.g. E6V

occurring twice in the same paper, is counted twice for the grayed out values and

only once per paper for the others). The Variome, Variome120, IDP4 and nala_dis-

coveries corpora assembled different representations of NL mentions. The dashed

line separates corpora with papers describing well-known, well-indexed genes

and proteins (left of dashed line: SETH, tmVar, Variome, Variome120, IDP4 and

nala_known) and articles describing more recent discoveries that still have to be

indexed in databases (right of dashed line: nala_discoveries) (Color version of this

figure is available at Bioinformatics online.)

Fig. 3. nala performed well for all corpora. The bars give two different results:

values above the horizontal lines in bars reflect the F-measures for all mentions,

while values below the horizontal lines in bars reflect the F-measures for the

subset of NL-mentions in the corpus (high error bars indicate corpora with few

NL mentions). The exception was the result for the method tmVar on the corpus

tmVar_test, which was taken from the original publication of the method in

which no result was reported for NL-only (Wei et al., 2013). That publication re-

ports only exact matching performance, i.e. its overlapping performance might

be higher than shown here. nala consistently matched or outperformed other

top-of-the-line methods in well-indexed corpora (SetsKnown; left of dashed

line) and substantially improved over the status quo in recent non-indexed dis-

coveries (nala_discoveries; right of dashed line). The F-measures of tmVar and

SETH for NL-only on nala_discoveries was essentially zero (two rightmost bars)

(Color version of this figure is available at Bioinformatics online.)

Table 2. Significance of NL mentions

IDP4 Variome Var.120 nala_discoveries

Annotator* (1) (2) (1) (2) (3)

Documents 30% 42% 22% 33% 78% 62% 77%

Mentions 14% 19% 6% 40% 52% 39% 49%

Note: Percentages of documents (3rd row) or mentions (4th row) that con-

tain at least one NL (natural language) or SST (semi-standard) for which no

ST (standard) mention exists in the same text. *Two different annotators

were compared for the corpus IDP4; three different annotators were com-

pared for the corpus nala_discoveries.
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Our new method nala essentially constituted a superset for the other

two top methods in the following sense. The mutations correctly detected

by tmVar and SETH were also found by nala. On top, nala correctly de-

tected many mutations that had been missed by both other methods

(Supplementary Fig. S1). Specifically, we looked at the subset of mentions

correctly detected by any of the three methods (without considering repe-

titions, i.e. counting the detection of E6V only once per publication):

12% (SetsKnown corpora) and 33% (nala_discoveries) of mentions

were exclusively found by nala (Fig. 4). In contrast, only 1% and 0%

(SetsKnown and nala_discoveries) were exclusively found by tmVar;

SETH added no exclusive detection. Moreover, 50% (SetsKnown) and

100% (nala_discoveries) of NL mentions were exclusively found by nala

and only tmVar found 2% of novel NL mentions in the SetsKnown.

3.3 WE features are crucial/large variants are

challenging
The Word Embedding (WE) features contributed significantly to the

success of nala (Fig. 5). WE features improved performance for all men-

tion types, most importantly for NL mentions (from F(WE¼off)¼70 to

F(WE¼on)¼83 on nala_known corpus and from F(WE¼off)¼5 to

F(WE¼on)¼34 on nala_discoveries corpus). In particular, WE vastly

improved recall and even slightly improved the precision

(Supplementary Table S8). All other features by the nala method were

specific to mutation mentions and resulted from a laborious expert opti-

mization. In contrast, WE features leveraged unsupervised data, i.e. can

be adopted with minor modifications to any task or corpus.

We studied NER – Named Entity Recognition and ignored the

considerably more difficult problem to map mutation mentions to

sequences as needed to curate databases. Recent methods aim at this

end (Mahmood et al., 2016; Ravikumar et al., 2015; Vohra and

Biggin, 2013). However, all methods still primarily target SNVs/

SAVs. We plan to extend the new corpora with exhaustive mapping

annotations and to adapt the nala method to better cope with large-

scale variations (predominant in nala_discoveries).

On new discoveries, the recall was 40%, i.e. 60% of the annota-

tions were missed. 70% of these were large-scale variants, i.e. vari-

ations of regions longer than a few nucleotides or amino acids

(presumably because their descriptions were less well-defined). For

44 of the 70% missed annotations, the annotators succeeded to pos-

ition the sequence region (e.g. ‘Deletion of the class 2 KNOTTED1-

LIKE HOMEOBOX’ or ‘Robertsonian translocation between

chromosomes 15 and 21’ or ‘amplification of 3q26/28 and 11q13/

22’). For the remaining 26 of the 70% the descriptions of the vari-

ants were so vague that we could not assign sequences, but recog-

nized large chromosomal changes (e.g. ‘DNA double-strand breaks’

or ‘copy-number variants’). To complete the analysis of the 60% an-

notations missed in nala_discoveries: 22 of the ‘small variation’

30% (100-70¼30) were SAVs and SNVs, and 8% were other short

variants such as insertions, deletions and frameshifts involving only

a few nucleotides. This implied that methods missed at least 2-3

times more single variants (SAVs and SNVs) in nala_discoveries

than in SetsKnown, i.e. in proteins without previous annotations

(data not shown; cf. 92% recall on SetsKnown, i.e. 8% missed an-

notations). As a practical use, we plan to research the performance

of nala to effectively map HIV mutation mentions from whole

PubMed (Davey et al., 2014).

4 Conclusion

Previous accounts (Jimeno and Verspoor, 2014a,b, F1000Res.; Thomas

et al., 2016; Wei et al., 2013) suggested that the strict named-entity rec-

ognition (NER) of mutation mentions constitutes a solved problem with

performance levels reported to be F>85. Despite this optimism, the

Table 3. Previously indexed versus new discoveries

SetsKnown (indexed texts) nala_discoveries (no indices)

method P R F 6 StdErr P R F 6 StdErr

nala 87 92 89 6 3 90 40 55 6 7

tmVar 95 79 87 6 3 93 26 41 6 10

SETH 97 74 83 6 5 93 25 40 6 10

Note: Precision (P), Recall (R) and F-Measure (F) for methods on corpora

with previously indexed articles (SetsKnown: SETH, tmVar_test,

Variome120, nala_known) and a corpus directly sampled from PubMed with-

out index (nala_discoveries).

Fig. 4. nala could fully replace other methods. For each publication we con-

sidered all mentions correctly identified by one of the top three methods and

kept only the findings unique in each publication. The y-axis plots the per-

centage of those mentions identified uniquely by one of the methods (All: all

mentions, NL: NL-only mentions). For all corpora containing publications of

genes and proteins indexed in the databases (SetsKnown), 1% of the men-

tions were detected only by tmVar and 12% only by nala, while SETH found

no mention in this dataset that nala had not detected. Only nala correctly de-

tected NL-only mentions in abstracts with new discoveries (100% bar on right

triplet)

Fig. 5. Word embedding (WE) features crucial for success. The inclusion of

WE features (WE¼on versus WE¼off) substantially improved performance

for both nala_known (texts previously indexed) and nala_discoveries (no pre-

vious indices). The increase in performance was highest for NL mentions, but

for ST mentions it was also significant
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same authors (Caporaso et al., 2007a,b; Jimeno and Verspoor,

2014a,b, Database) observed that methods failed to identify many

mutations for database curation. Our work shed some light on this

apparent paradox. First, mutation mentions often use natural lan-

guage (NL) and were often missed by existing tools as they focused

on standard (ST) forms. Second, existing corpora and methods pri-

marily treated articles that had been previously indexed in databases.

We showed that the percentage of publications with at least one men-

tion in only NL ranged from 28 to 36% for indexed articles

(SetsKnown) while it was twice as high (67–77%) for new discoveries

(nala_discoveries, Table 2). Thus, most mentions relevant for data-

base curation are only captured by methods versatile in NL.

We introduced the method nala designed to handle NL and ST

mentions. In particular, word embedding (WE) features boosted per-

formance for NL mentions (Fig. 5). In our hands, nala at least

matched the best existing tools for publications that have already

been curated in databases (corpora SetsKnown, dominated by ST

mentions (F(nala)¼89 6 3 vs. F(tmVar)¼87 6 3, Table 3).

Randomly sampling PubMed for new discoveries (nala_discoveries),

nala was substantially better than existing methods (F(nala)¼55 6 7

versus F(SETH, tmVar)¼40-41 6 10, Table 3).

What do users have to expect: F¼89 or F¼55? The answer de-

pends on what is known about the genes/proteins you are looking

for. For older articles, point mutations, or indels, the current per-

formance of all methods may suffice. For novel work or large-scale

mutations, nala identifies many mutation mentions that are missed

by others (Fig. 4). However, nala still missed about half of all vari-

ants described in the literature.

An important contribution of this work was the addition of three

new corpora (IDP4, nala_known and nala_discoveries). These three new

corpora accumulated the largest collection of mutation mentions: 826

documents (72 full texts), 627,953 tokens and 5660 mutation annota-

tions (1110 NL). In comparison, the previous SETH, tmVar and

Variome120 corpora combined collect: 1,140 documents (10 full texts),

355,518 tokens and 2,933 mutation annotations (216 NL). In other

words, this work boosted the available resources manifold. We released

the new method as an open source python library and as API service and

made the new corpora freely available: http://tagtog.net/-corpora/IDP4þ
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