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Abstract

Background: Global concerns have been raised due to upward trend of Multi-drug Resistant (MDR) Pseudomonas
aeruginosa reports in ocular infections. Our aim was to characterize the virulence determinants of MDR P.
aeruginosa causing ocular infections.

Methods: P. aeruginosa strains were isolated from 46 patients with conjunctivitis (2), endophthalmitis (11) and
active keratitis (25) seen at our Institute, between 2016 and 2020. The isolates were identified by Vitek-2 and
characterized based on growth kinetics, biofilm formation, motility, pyoverdine and pyocyanin production,
phospholipase and catalase activity, urease production along with expression of exotoxins (exo-A, exo-U and exo-S)
and correlated to its antibiotic profiles.

Results: Of the 46 P. aeruginosa isolates, 23 were MDR and were significantly (p = 0.03) associated with older (> 65)
patients, along with higher production of pyoverdine (58.3%), pyocyanin (30.4%), phospholipase (91.6%) and
protease (62.5%) activity, formed strong biofilms and exo-A (30.4%). No significant relation between motility, urease
and catalase production with antibiotic susceptibility was observed. Heatmap and PCoA analysis confirmed this
unigue virulence profile associated with MDR-PA strains.

Conclusion: Phenotypic characteristics of P.aeruginosa might be responsible for increased colonization and
antibiotic resistance observed in vivo and understanding these differences may lead to development of clinical
guidelines for the management of MDR infections.
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Introduction

Pseudomonas aeruginosa is the most common Gram-
negative isolate causing vision-threatening ocular infec-
tions including conjunctivitis, keratitis, orbital cellulitis
and endophthalmitis [1-4]. P. aeruginosa has low nutri-
tional requirements and can high tolerance to a range of
physical conditions, thus making it more pathogenic. P.
aeruginosa infections are very difficult to eradicate due
to their intrinsic resistance to antibiotics [5], in addition,
to various virulence factors like flagellin and lipopolysac-
charide, as well as secreted products such as cytotoxins
[6, 7], elastase [8, 9], alkaline protease [10, 11], protease
IV [12], as well as its invasiveness and increased
colonization has been reported to contribute to its
pathogenicity [13—16]. The presence of these secretion
toxin-encoding genes in clinical isolates from different
infections is associated with differences in bacterial viru-
lence [17, 18] and clinical outcomes [19]. Proteases is
said to contribute to pathogenesis through destruction
of connective tissue and degradation of host immuno-
logical factors [20] in patients with keratitis. Previous re-
ports have also suggested that pyocyanin and pyoverdine
not only contribute to the increased colonization in the
lungs of patients with cystic fibrosis, it also interferes
with cell respiration, calcium homeostasis and prostacyc-
lin release from lung endothelial cells as well [21].
Another important factor is the ability of P. aeruginosa
in biofilm formation beginning with the involvement of
redundant planktonic cells in a complex and highly
regulated physicochemical and biological signalling and
thereby confers resistance and protects the bacteria
against host immune responses [22-27]. Increasingly,
clinical isolates of Pseudomonas are exhibiting multiple
resistance to antibiotics and becoming pan drug resistant
(XDR) [28]. The Emergence of resistant (MDR and
XDR) strains in ocular settings, particularly in tropical
countries like ours [29], has become a major problem,
leaving few alternatives for treatment of these patients
[30]. This increase in incidence of MDR and XDR
infections is also associated with increased morbidity,
mortality, and costs [31, 32]. The aim of our present
study was to screen P. aeruginosa strains isolated from
ocular infections, for their potential to produce various
phenotypic virulence factors and correlating them with
biofilm formation and their antibiotic susceptibility
profile. The hypothesis tested was that MDR and XDR
P. aeruginosa strains possess distinguishing virulence
characteristics in comparison with P. aeruginosa that
were susceptible to most antibiotics.

Materials and methods

The study was approved by the Institutional Review
Board of the L V Prasad Eye Institute, and was per-
formed in accordance with the ethical standards as laid
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down in the Declaration of Helsinki. Clinical and micro-
biology records were retrospectively reviewed for pa-
tients who were evaluated at our institute and diagnosed
with culture-confirmed infections [keratitis, endophthal-
mitis, cellulitis, conjunctivitis] due to P. aeruginosa.

Bacterial isolates

Forty-six, Pseudomonas aeruginosa isolates from various
clinical samples from patients with eye infections during
the period of April 2016 to March 2020 were included
in the study. The preserved isolates were revived and
their identification was confirmed by standard microbio-
logical and biochemical methods based on gram staining
technique and colonial morphology in addition to Vitek
2 compact system testing using GN strips (bioMérieux).

Antibacterial susceptibility testing

For antibiotic susceptibility testing, minimum inhibitory
concentration (MIC) was determined using E-test strips
(Himedia) or VITEK® 2 AST cards according to the man-
ufacturer’s protocol [33] and this included ciprofloxacin,
moxifloxacin, gatifloxacin, ofloaxacin, ceftazidime, gentami-
cin, tetracycline, amikacin, tobramycin, piperacillin, norflox-
acin, colistin and imipenem. All results were compared to
the Clinical and Laboratory Standards Institute (CLSI) in-
terpretative guidelines and the isolates were classified as
susceptible (S), susceptible dose dependent (SDD), and re-
sistant (R) [34]. However, for the purpose of analysis, SDD
isolates were clubbed with susceptible isolates (S-PA). Mul-
tiple drug resistant (MDR) phenotype was assigned for
strains that was resistant to >3 classes of antibiotics. The P.
aeruginosa ATCC 27853 strain (American Type Culture
Collection), was used as the quality control. The P. aerugi-
nosa phenotype was defined as MDR and XDR according
to the international expert proposal for interim standards
guidelines [18].

Growth curve analysis

The in vitro growth rate was assessed by diluting 1 x 10°
CFU/ml of each isolate in BHI broth, on a rotary shaker
at 160 rpm for 48 h. At periodic intervals, serial dilution
of each culture was plated on an antibiotic-free Mueller
Hinton agar and the number of CFUs [colony-forming
units] was counted after 24 h incubation at 37 °C.

Phenotypic characterization of P. aeruginosa isolates

All phenotypic assays (described below) were performed
as three independent biological replicates unless other-
wise specified. The P. aeruginosa ATCC 27853 strain
was used as the positive control to assay motility, biofilm
formation and secreted virulence factors.
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Measurement of Pyoverdine production and qualitative
assessment of pyocyanin

Pyoverdine production by P. aeruginosa was assayed
spectrophotometrically as previously described [35].
Briefly, the isolates were cultured in MHB to late sta-
tionary phase (OD of ‘3 was recorded at 600 nm). The
cultures were then centrifuged at 10,000xg for 2 min
and the supernatant were normalized for differences in
cell density, and the absorbances measured at 405 nm.
The concentration of pyoverdine was then calculated
using the extinction coefficient as follows: Molar
concentration = Absorbance/Extinction coefficient (1.9 X
100*M tem™ ).

Pyocyanin production was assessed using a qualitative
method as described earlier by Alonso et al. [36]. Inocu-
lated plates were incubated at 37 °C for 24 h. Colonies
appearing Dark green or blue in colour were considered
to be pyocyanin producers.

In vitro microplate biofilm assay

The ability of P. aeruginosa strains to develop biofilm
was determined on 96-well microtiter plates with crystal
violet (CV) staining method as previously described [37].
Briefly, each P. aeruginosa strain was cultured on
Mueller Hinton agar overnight, and a colony of each iso-
late was suspended in brain heart infusion (BHI) broth
and incubated at 37°C for 4h. Bacterial suspensions
were then adjusted to an optical density of 0.1 at 600 nm
and added to flat-bottomed 96-well sterile culture plates.
Following a 48h incubation period at 37°C, non-
adherent bacteria were removed by washing and stained
with 0.1% crystal violet. Following incubation at 30 min,
the plates were again washed and ethyl alcohol was
added each well, after which the absorbance was mea-
sured at 590 nm. The OD590 values were then normal-
ized with initial OD600 values to account for differences
in bacterial growth and biofilm was classified as weak,
moderate or strong as described earlier [38].

Motility assay

Motility of the strains was determined in motility
medium, which consists 1 (w/v) tryptone, 0.3% yeast
extract, 0.5% NaCl and 0.3% agar. Plates were stab-
inoculated from overnight cultures and incubated at 37
‘C for 24h. Each strain was assayed in triplicate. The
diameter of the circular zone of growth was measured
and expressed as a mean value in mm. An isolate
showing a change of = 10% was considered highly motile
while the rest were categorized as weakly motile or non-
motile.

Catalase activity
Determination of the enzyme’s presence in the bacterial
strains was done using a sterile loop to place a small
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amount of growth onto the base of a Petri dish, followed
by a drop of hydrogen peroxide and covering the Petri
dish with a lid [39]. The development of effervescence
indicates a positive result.

Extracellular protease activity

Qualitative protease activity was evaluated by streaking
bacteria onto modified basal medium supplemented with
6.2g/L skim milk protein and incubated for 48h at
37 °C. Proteolytic activity was demonstrated by a clearing
zone (> 12 mm) surrounding the bacterial growth.

Phospholipase [plc] activity assay

Haemolytic activity of the isolates was analysed by pres-
ence of clear halos around growth of the organism on
blood agar plates after 24 h incubation at 37 °C [40].

Urease test

Urease activity was determined by inoculating the strains
on to Christensen’s urea agar slope (Oxoid, Thebarton,
South Australia) and incubated at 21 °C with protection
from light for seven days [41]. Following incubation, the
slopes were examined visually for a colour change to
pink which was considered to be a positive result, and
no change (or a yellow colour) was considered a negative
result.

DNA extraction and genotypic detection of virulence
genes

Strain DNA was extracted using the QIAamp DNA Mini
Kit (50) (QIAGEN) following the manufacturer’s instruc-
tions. DNA was eluted in 30 ul of elution buffer. The
genes, exotoxin S (exoS), exotoxin U (exoU), exotoxinA
(exoA) were amplified using the specific primers as
described earlier [41, 42]. The PCR protocol involved
initial denaturation step at 95 C for 10 min, followed by
40 cycles of 94'C for 2min, annealing (30s at 57 to
65°C) and 72'C for 1 min and the final extension step at
72°C for 5 min.

Statistical analysis

The data were processed on spreadsheets and all statis-
tical analyses were performed using GraphPad prism
[5.0]. Phenotypes were treated as either categorical or
continuous variables and analysed as appropriate.
Wherever applicable all comparisons were evaluated
using either x* test or unpaired student t test. The CFU
were represented as mean CFU + SE of 23 strains in each
group at indicated time points and a P value of less than
0.05 was considered significant.

Results
Forty-six isolates of P. aeruginosa were obtained from
various clinical specimens [corneal, conjunctival and
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scleral scraping, corneal buttons and vitreous fluids] dur-
ing the study period and the clinical and demographic
details are elaborated in Table 1. Clinical diagnosis in-
cluded conjunctivitis [3], scleritis [1], endophthalmitis
[12], cellulitis [2] and active keratitis [28] diagnosed at
our institute, during the study period. Of these isolates,
23 [50%] were found to be MDR which also included 9
(19.5%) XDR strains. As expected, MDR-PA was
significantly associated with poor visual outcome and
prognosis (p = 0.03). Interestingly, these MDR strains
were significantly (p =0.03) associated with older (> 65)
patients. Out the 23 patients infected with S-PA strains,
2 patients underwent evisceration who were diagnosed
with post enucleation socket syndrome and microbial
keratitis. Additionally, 2 patients with MDR-PA caused
microbial keratitis and 2 patients with MDR-PA induced
endophthalmitis cases lead to evisceration.

Growth kinetics differences between MDR-PA and S-PA

To determine potential differences in growth kinetics,
the colony forming units on MHA plates were deter-
mined for each strain, by plotting the mean CFU of all
S-PA and MDR-PA strains at different time points
(0,2,6,18,24h). At 6h, 18h and 24h significant differ-
ences in colony counts were observed between the drug
susceptible strains vs multi-drug resistant strains as
shown in Fig. 1. The mean CFU at 6 h of S-PA Vs MDR-
PA strains were (7.82x 107 Vs 1.31x 10°, p=0.01), at
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18 h (5.22 x 10° Vs 5.6 x 10'% p=0.01) and 24 h (1.01 x
10" Vs 6.65 x 10", p = 0.03). The plotted growth curve
suggests that MDR-PA strains demonstrate significantly
higher growth kinetics at later time points compared to
S-PA strains.

Phenotypic characterization of S-PA and MDR-PA strains
Almost all the strains in both S-PA and MDR-PA group
were catalase positive. While 11/23 (48%) S-PA strains
were urease positive and 12/23 (52%) of the MDR-PA
group were positive for urease. Similarly, for citrate pro-
duction, 91% of MDR-PA and 70% of the S-PA isolates
were positive. Additionally, phospholipase C activity was
significantly (chi square test, p = 0.02) higher in MDR-
PA (96%) strains when compared with the S-PA strains
(70%) as shown in Fig. 2, suggesting a potential role in
strain virulence. We found that 7 (30.4%) out of the 23
MDR-PA isolates produced pyocyanin while only one S-
PA (4.3%) isolate produced pyocyanin pigment and there
is significant association of pyocyanin production with
multidrug resistant (p = 0.02).

Looking at the pyoverdine production, the mean
absorbance (Fig. 3A) was again significantly higher in
MDR-PA strains, compared to the S-PA (0.39 + 0.03 nm
Vs 0.28 £0.02nm, p =0.01) indicating its role in viru-
lence. Though the MDR-PA strains showed increased
motility compared to the S-PA group, this difference
(7.82+090mm vs 8.04+0.04mm, p=0.8) was not

Table 1 Demographic and microbiological data of the patients included in the study

Categories Susceptible(S-PA) Multi-drug resistant (MDR-PA) p-value
N =23(%) N =23(%)
Gender
Male 12 (52.17%) 13 (56.52%) a1
Female 11 (47.82%) 10 (44.47%)
Mean Age + SD (years) 39.29 +20.05 4934+ 1867 20.11
(Range) (1-80) (4-73)
Disease
Microbial keratitis 14 (60.86) 11 (47.83)
Endophthalmitis 3 (13.04) 8 (34.78)
others 6 (26.08) 4(17.39)
VA
> (20/200) 12 16 0.03
> (20/20) - (20/200) < 6 1
Evisceration 2 4
Unknown 3 2
Polymorphs
(0-1,0-3,0-5) 8 5 0.2
(0-10, plenty) 13 17
Unknown 2 1

a: Pearson’s chi-squared test
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Fig. 1 Clinical isolates of P. aeruginosa were plated on MHA at indicated time points. Bacterial load and viability were enumerated by plate count
method. Student's test was used for the statistical analysis and data are represented as the mean colony forming units (CFU + SD) from three sets
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statistically significant (Fig. 3B), however, 50% strains
belonged to the XDR group. Similarly, protease activity
was significantly higher in MDR-PA group when com-
pared to S-PA group (9.48 £ 0.96 mm vs 5.17 + 1.88 mm,
p =0.02) (Fig. 3C) of which, 80% strains belonged to the
XDR phenotype. Analysis of biofilm ability revealed an
increased production of biofilm by AMDR-PA group
(39.04 + 4.88 nm vs 21.10 £ 4.19 nm, p = 0.007) as shown

in Fig. 3D. Additionally, among the S-PA strains, 48%
formed weak biofilms, 4% were moderate, 4% were
strong biofilm formers (Fig. 4) and 44% were non biofilm
producers. In comparison, in the MDR-PA group, 50%
of the strains were strong biofilm producer, while 25%
were weak biofilm producers. Next, we compared XDR-
PA and MDR-PA group to find out if there is any associ-
ation of XDR with the virulence traits. In our present
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expression. Pearson’s Chi-square test was used for the statistical analysis and data are represented as the mean from three sets of independent
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study we didn’t find any significant association of XDR
with virulence factors (biofilm; p = 0.51, urease; p = 0.13,
protease; p = 0.42, motility; p = 0.40, pyoverdine; p = 0.71,
citrate; p = 0.84) compared to the MDR-PA isolates.

This trend suggests a significant association of biofilm
production with multi-drug resistance. Summarizing the
virulence factors, we observe that production of catalase,

urease and swarming ability does not have any correl-
ation with the level of antibiotic resistance (Table 2)
whereas pyoverdine production, biofilm ability, protease
and phospholipase activity were significantly associated
with antibiotic resistance and virulence.

Further, we compared association of anatomical site
with the virulence factor. Out of the 25 samples 14(56%)
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Fig. 4 Graphic representation of a biofilm production by S-PA and MDR-PA group. 50% of the MDR-PA isolates were strong producer whereas in
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Table 2 Frequency and Statistical correlation of different virulence factors among Resistant and susceptible P. aeruginosa strains

Phenotypic character S-PA MDR-PA P-value OR (95% CI)
Pyoverdine 4 14 20.01* 6.65 (1.7-25.6)
Pyocyanin 1 7 20.02* 0.1 (0.01-0.93)
Biofilm 13 18 20.007* 223 (06-7.9)
Swarming 4 8 %0.12 -

Catalase 23 22 -

Protease 5 15 20.02* 3.8(1.1-12.8)
Phospholipase 16 22 20.01* 58 (1.0-31.5)
Urease 11 12 #0.88 -

a:Pearson’s chi-squared test, P probability, OR Odds Ratio, CI confidence interval

were antibiotic susceptible and 11(44%) were multi-drug
resistant. We did not observe any difference in the viru-
lence factor (biofilm; p = 0.20, urease; p = 0.46, phospho-
lipase; p=0.12, protease; p=0.32, motility; p=0.57,
pyoverdine; p = 0.30, citrate; p = 0.4) between the S-PA
isolates and MDR-PA isolates.

To further confirm our results, we carried out a princi-
pal Coordinate Analysis to explore and to visualize dis-
similarities of these virulence factors amongst the S-PA
and MDR-PA group. Application of this method to our
data showed that the samples could be divided into two
principal groups: one consisting primarily of S-PA
strains (Fig. 5, cluster 1) and second independent
clusters of mainly MDR-PA strains (Fig. 5, clusters 2).
Red dot indicates MDR-PA and green indicates S-PA.
The plot shows the Euclidian distance between the two
groups based on how the two groups can be

distinguished. We further constructed a heat map to de-
pict the relative virulence factors expressed by each
strain as shown in Fig. 6. The relative colour intensity of
heat map gave a good overview of the profile differences
between the two groups and demonstrates that the viru-
lence factors are more strongly associated with the
MDR-PA clinical isolates.

Detection of exotoxins in S-PA and MDR-PA strains

Our study found that the exoA was present in 1/
23(4.3%) and exoS 2/23(8.69%) of the S-PA isolates while
we couldn’t detect exoU gene in any of the S-PA isolates.
In case of MDR-PA isolates, exoA was present in 7/23
(30.4%) of the isolates, being significantly associated with
multidrug resistance (p = 0.02). However, exo-S was not
detected in any of the MDR-PA strains and only 2
strains showed the presence of exo-U (8.69%).

0S-PA
® MDR-PA

motility test (n =23 in each group)

Fig. 5 Principal coordinate analysis (PCoA) plot of S-PA (left) and MDR-PA (right) and the high-resolution display of red square indicates MDR-PA
isolates while the green dot represents S-PA isolates. PCoA plot was generated from the values obtained from Pyoverdine, biofilm, protease and
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Discussion

P. aeruginosa is a predominant Gram-negative bacter-
ium causing ocular infections [43]. In the present study,
P. aeruginosa strains were obtained from corneal ulcers,
vitreous fluids and purulent discharge from patients di-
agnosed at our institute with various infectious condi-
tions. Characterization of the armor of P. aeruginosa
virulence factors is essential to understand the pathogen-
esis of this opportunistic pathogen as well as helps in
exploring new antimicrobial strategies in MDR strains.
P. aeruginosa is also known to secrete a number of
extracellular products that aid in survival and increased
virulence [44]. We hypothesized that distinct virulence
traits of ocular P. aeruginosa strains would be associated
with increased antibiotic resistance in patients with posi-
tive P. aeruginosa cultures, and as expected we found
that 35 out of the 46 P. aeruginosa strains had more
than two virulence factors. Factor analysis of the
measured bacterial variables revealed interrelationships
between several of these phenotypes. In our study, the
growth curve analysis showed that the MDR-PA strains
had shorter doubling time, especially at later time points,
along with increased swarming motility, and though this
association was not statistically significant, it explains its
longer persistence in the host. Similarly, pyoverdine
which is said to play a critical role in the pathogenesis of
host infection by P. aeruginosa by removing ferric iron
from the host causing mitochondrial damage and
compromising ATP production [45] was significantly
associated with MDR-PA group. This is in agreement
with findings by Rodulfo et al. [6] and Finlayson [7]
wherein pigment production was reported to be signifi-
cantly associated with MDR expression along with
elastase, protease, siderophore and DNase activity. To
date, considerable number of studies have shown the po-
tential importance of pyocyanin in the virulence and
pathogenicity of pseudomonal infections [46, 47]. In the
present study, ocular MDR-PA strains showed a signifi-
cant association with pyocyanin production.

Our experiments also show that protease production
had a role in increased virulence of resistant strains and
the XDR group showed higher activity compared to
MDR strains. While catalase activity has been demon-
strated to be essential for the intracellular survival of
bacteria such as Mycobacterium tuberculosis [48], our
study did not find any association of catalase and urease
activity with antibiotic profile. We did however, find a
correlation between resistance patterns and phospholi-
pases activity which is reported to play an important role
in host cell penetration, cell lysis and are active compo-
nent of bacterial toxins. On the contrary, other studies
have shown association of catalase with virulence. This
enzyme has been demonstrated to be an essential factor
for the intracellular survival of few bacteria such as
Mycobacterium tuberculosis [49], Campylobacter jejuni
[50] and Helicobacter pylori [51]. Similarly, Urease activ-
ity has been shown to be an important pathogenic factor
for the bacteria Helicobacter pylori and Proteus mirabilis
[52-54]. It is also known to be involved in a series of
processes that allow bacteria to colonize and induce a
strong inflammatory response in the gastric epithelium
[55]. Citrate is known important activator of master
regulators expression of virulence factors, central
metabolism, iron acquisition, and bacterial virulence
of S. aureus [56].

Biofilm is another reported cause of multi-drug resist-
ance in P. aeruginosa [57] and our results were in agree-
ment with previous studies wherein production of
biofilm was significantly associated with MDR and XDR
strains. An earlier study on E.coli strains had suggested
that although the virulence of an organism cannot be
predicted accurately on the basis of its measurable phe-
notypes, the presence of multiple virulence factors in-
creases the virulence of the organisms [58], and along
with host conditions decrease the need for multiple viru-
lence factors in the strains leading to serious infections
[59]. Our study is in agreement with Subedi et al. [45]
who reported that virulence factors, extracellular products
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including proteases, and the ability to produce biofilm
may explain the poor visual prognosis in P. aeruginosa en-
dophthalmitis despite rapid antibiotic therapy [60]. The
most important extracellular factors of P. aeruginosa in-
clude exo-S, exo-U, exo-A. Each of the aforementioned
factors are known to have toxic effect on mammalian cells
[61, 62]. In the present study, we found that exo-A is asso-
ciated with multidrug resistant not exo-S and exo-U. An
earlier study by wolf et al. [63] has shown that the exoA-
deficient mutants exhibit virulence 20 times less than the
wild type strain in the mouse models.

Principal component analysis and heat map data reit-
erates the unique virulence profile of MDR-PA strains
compared to S-PA group and these five factors (pyover-
dine production, biofilm ability, protease and phospho-
lipase activity) could thus be used as independent
predictors of resistant profiles and virulence. Several
limitations however, exist in our study. Firstly, these
experiments were measured in vitro of P. aeruginosa iso-
lated from primary clinical specimens, although these
phenotypes were reproducible upon repeat assay, we
only determined potential of expression of virulence fac-
tors under defined in vitro conditions, and not actually
expressed in the host. Secondly, the visual outcome in
resistant strains was not correlated with antibiotic resist-
ance in our clinical practice. Nonetheless, our findings
would be more representative of patients with positive
cultures for P. aeruginosa seen in tertiary eye care hospi-
tals and may aid in clinician decision-making in such a
setting.

Conclusion

While antibiotic resistance is multifactorial, recognition
of virulent strains by phenotypic characterization, is
easier and allows immediate institution of appropriate
therapy. To the best of our knowledge, this study was
the first investigation regarding the phenotypic virulent
characteristics amongst susceptible and resistant strains
of P. aeruginosa in India. Further studies would focus to
understand the genotypic characteristics involved in
MDR-P. aeruginosa strains, which would aid in develop-
ing a rapid signature biomarker for resistant strains.
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