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A B S T R A C T   

As a significant public health hazard with several drug side effects during medical treatment, searching for novel 
therapeutic natural medicines is promising. Sulfated polysaccharides from algae, such as fucoidan, have been 
discovered to have a variety of medical applications, including antibacterial and immunomodulatory properties. 
The review emphasized on the utilization of fucoidan as an antiviral agent against viral infections by inhibiting 
their attachment and replication. Moreover, it can also trigger immune response against viral infection in 
humans. This review suggested to be use the fucoidan for the potential protective remedy against COVID-19 and 
addressing the antiviral activities of sulfated polysaccharide, fucoidan derived from marine algae that could be 
used as an anti-COVID19 drug in near future.   

1. Introduction 

World Health Organization (WHO) has confirmed the occurrence of 
novel coronavirus (nCoV-2019) on January 12, 2020 in Wuhan, China. 
WHO has termed COVID-19, the first unknown acute respirational tract 
infection (Guo et al., 2020). COVID-19 cases spread rapidly worldwide 
and were labeled a pandemic on March 11, 2020 (Elengoe, 2020). The 
most communal indicators of COVID-19 comprise cough, fever, head-
ache, sore throat, breathlessness, and fatigue, which gradually lead to 
the death of the patients. The death is due to severe infection in the 
respiratory tract, pneumonia and multiple organ failure. People with 
diabetes, cardiovascular problems, hypertension, cancer, HIV, and 
several auto-immune disorders have a great life threat due to COVID-19 
(Singhal, 2020). 

The fresh and marine ecosystems are rich in biodiversity and hold a 
potential source of sulfated polysaccharides (Behera et al., 2020; Behera 
et al., 2021; Dash et al., 2020; Dash et al., 2021; Maharana et al., 2019; 

Pradhan, Maharana, Bhakta, & Jena, 2021; Pradhan, Patra, Behera, 
et al., 2020; Pradhan, Patra, Dash, et al., 2021). Algae-derived sulfated 
polysaccharides such as fucoidan have potentially been used as an 
antiviral agent (Pagarete et al., 2021; Pradhan, Bhuyan, et al., 2022; 
Pradhan, Nayak, et al., 2022; Pradhan, Patra, Nayak, et al., 2020). Many 
marine algae species contain large amounts of complicated structural 
sulphated polysaccharides that have been demonstrated to impede 
enveloped virus replication (Pereira & Critchley, 2020). To date, several 
bioactive compounds from marine algal sources have been screened 
(Mohanty et al., 2020; Pradhan, Nayak, Patra, et al., 2021; Pradhan, 
Patra, et al., 2022), isolated and tested for their therapeutic value from 
which fucoidan is promising. Previously, the antiviral activities of 
sulfated polysaccharides such as fucoidan has been tested against human 
cytomegalovirus, human enterovirus, influenza virus, HIV-1 (Human 
immunodeficiency virus type-1), HSV (Herpes simplex virus), hepatitis B 
virus, murine norovirus, and RSV (respiratory syncytial virus) (Shi et al., 
2017; Wang et al., 2012). With this notation, the fucoidan can exert 
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promising therapeutic value against coronavirus to halt the disease 
progression. 

Immunity is considered the primary concern during the treatment of 
viral infections, such as COVID-19 (Dhar & Mohanty, 2020). Studies on 
antiviral immunity have been demonstrated against several viral dis-
eases and fucoidan has displayed promising effect (Wang et al., 2012). 
To date, many sulfated polysaccharides from plant and animal sources, 
including marine organisms and microorganisms, have been tested 
against HIV and HSV (Alam et al., 2021). Nutraceuticals from Spirulina 
have been well explored and commercially available as an innate and 
adaptive immunity booster against HIV and HSV (Hayashi et al., 1996; 
Ratha et al., 2021). Hence, the use of immune-boosting algal-derived 
fucoidans may contribute a leading role to combat against coronavirus 
infections via alleviating innate immune responses. Although vaccina-
tion against COVID-19 has developed and is in force, no clinically 
approved drugs have been approved for therapeutic purposes. Hence, 
the outbreak needs an imperative retort from the scientific community 
for the development of novel synthetic as well as natural drugs as im-
mune boosters against COVID-19. As limited research has been carried 
taking algal-derived sulfated polysaccharides concerning fucoidan, in 
this review, we have focussed on this aspect that might be castoff as an 
antiviral drug against SARS-CoV-2. 

2. Coronaviruses and their pathogenesis 

Coronaviruses (CoVs) are single-stranded RNA viruses commonly 
seen in humans and animals (V'Kovski et al., 2021). It causes several 
respiratory disorders and intestinal infections with life-threatening 
bronchiolitis and pneumonia. Persons with a compromised immune 
system are particularly vulnerable to CoV infection (Subbarao & 
Mahanty, 2020). This virus was called new coronavirus (nCoV) by the 
International Committee on Virus Taxonomy (ICTV), and it was previ-
ously known as SARS-CoV-2, which causes COVID-19 sickness (Liu et al., 
2020). Novel coronavirus-2019 is a rounded virus similar to other re-
ported coronaviruses. The virus has a capsid made up of nucleocapsid 
protein (N-protein) and the viral genome is present inside it. 

Furthermore, the capsid is covered by a cover from which various 
structural proteins are derived. There are three types of essential 
structural proteins were found on the envelope surface such as spike 
proteins (S), membrane proteins (M), and envelope proteins (E) (Huang 
et al., 2020). Amongst these three proteins, S-proteins show outcrop and 
mediated the viral entry into the host cell and stretch the crown-like 
appearance to the virus (Fig. 1). 

2.1. Host and coronavirus interaction: The basis of disease 

The ORF1 of Coronaviruses contains unique genes on the down-
stream region that encrypt structural proteins essential for viral 

multiplication (Huang et al., 2020). Coronavirus glycoprotein spikes are 
critical for virus attachment and penetration into host cells (Huang et al., 
2020). The coronavirus entry depends upon the cellular proteins such as 
HAT (Human Airway trypsin-like proteases), cathepsins, TMPRS2 
(transmembrane protease serine 2), which support spike protein split-
ting, which leads to further penetration (Subbarao & Mahanty, 2020). 
Coronavirus needs ACE2 (Angiotensin-Converting Enzyme 2) as a key 
receptor in human cells (Parasher, 2021). The spike proteins can bind to 
the ACE2 receptor. It causes a conformational change that promotes 
membrane fusion via the endosomal route and the release of viral RNA 
into the host (Wan et al., 2020). The translation of ORF1a and 1b into 
polyproteins pp1a and pp1ab start the replication of CoVs. The proteo-
lytic cleavage of these proteins gives rise to non-structural proteins 
(NSPs). The NSPs come together to create the RTC (Replicase-Poly-
merase Replication-Transcription Complex), which is involved in the 
viral genomic RNA replication and subgenomic RNA transcription (Wan 
et al., 2020) to produce structural proteins by translation and other 
accessory proteins. The buildup of gRNA and viral proteins leads to fast- 
track virions (Chatterjee et al., 2020). After the assembly process is 
complete, the nucleocapsid is budded, then transported through secre-
tory vesicles, and the host cell is released. The endoplasmic reticulum to 
golgi intermediate complex assembly pathway leads to budding (ERGIC) 
(Chatterjee et al., 2020). The pathogenesis of novel coronavirus patho-
genesis and replication of novel coronavirus pathogenesis is shown in 
Fig. 2. 

2.2. Pathogenesis 

The pathogenesis of novel coronavirus infection displays a close 
similarity to infection of SARS CoV with aggressive inflammation. SARS- 
CoV-2 is spread mainly through respiratory dews, comparable to other 
coronaviruses that cause respiratory illness (Jin, Yang, et al., 2020). 
Chills, a dry cough, temperature, a painful throat, exhaustion, and 
breathing difficulties are common symptoms of COVID-19 infection. 
COVID-19 cases that are severe Shortness of breath and low blood ox-
ygen levels characterize ARDS (acute respiratory distress syndrome), 
which leads to lung failure. The biopsy specimens from the liver, lung, 
and heart tissue of Covid-19 patients showed alveolar impairment, hy-
aline membrane formation, and modest microvesicular steatosis, indi-
cating ARDS, and showed modest microvesicular steatosis, indicating 
ARDS (Huppert et al., 2019). 

SARS CoV-2 infects cells by infiltrating them and connecting with the 
ACE2 protein (Perrotta et al., 2020). The virus's multiplication and 
release cause the host cell to enter pyroptosis. The onset of pyroptosis 
releases PAMPs (pathogen-associated molecular patterns) and DAMPs 
(damage-associated molecular patterns) with subsequent generation of 
pro-inflammatory markers (Tay et al., 2020). Immune cells are recruited 
to the infection site by these protein molecules, which increase 

Fig. 1. Structure of the novel corona virus.  
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inflammation. Monocytes, T-cells, and macrophages are examples of 
immune cells (Schijns & Lavelle, 2020). The cells may compromise the 
air-blood barrier by eliminating vascular endothelial cells and airway 
epithelial cells, resulting in collateral tissue harm. The high expression 
of ACE2 receptor in endothelial cells and airway epithelial cells is used 
by coronavirus to penetrate inside the cell (Flerlage et al., 2021). As a 
result, acute illness is caused by virus infection and by overexcited im-
mune responses. 

3. Algae-derived sulfated polysaccharides and their potential 
role as antiviral agents 

Sulfated polysaccharides are potent antiviral agents due to their 
diverse structure. They have a pivotal role in boosting the host antiviral 
retort by preventing virus attachment, adsorption, and viral reproduc-
tion. Systematic studies on the antiviral activity of marine algae-derived 
polysaccharides have been achieved both in vitro and in precise animal 
models. Marine algae are rich in sulfated polysaccharides that prevent 
the replication of viruses clinically tested against HSV-1. Poly-
saccharides from Spirulina platensis has displayed antiviral activity 
against HSV-1, measles virus, influenza A virus, mumps virus, human 
cytomegalovirus, and HIV-1 (Hayashi et al., 1996). Sulfated poly-
saccharides inhibit antiviral pathways and act as potential replication 
inhibitors of retroviruses such as HIV-V (Buck et al., 2006). Carra-
geenan, a common polysaccharide isolated from red algae such as Gig-
artina, Chondrus, Eucheuma and Hypnea exhibits antiviral activity against 
virus infection. Carrageenan blocks the viral entry by inhibiting host cell 
binding capacity (Li et al., 2017). It limits the dengue virus's repro-
duction in mosquitoes and mammalian cells (Buck et al., 2006). 

Moreover, it plays an operative role against HPV (human papillo-
mavirus), leading to genital warts and cervical cancer (Zeitlin et al., 
1997). Carrageenans with low molecular weight (3–10 10 kDa) display a 
repressing effect against the influenza virus (Grassauer et al., 2008; 
Hilliou et al., 2006). The nasal spray carrageenan administration (Iota- 

carrageenan), also recognized as “super-shedders,” is operative against 
the communal cold by improving viral clearance and reducing the dis-
ease duration. Carrageenan extracted from red algae (Schizymenia 
pacifica) restricts infection of avian as well as mammalian retroviruses 
by activating reverse transcriptase function and subsequent inhibition of 
viral replicate. In addition, carrageenan also prevents the binding be-
tween the host and viruses at the early stages of infection (Koenighofer 
et al., 2014). 

Extracellular polysaccharides such as galactoses isolated from red 
algae Agardhiella tenera display antiviral properties against DENV, HIV- 
1, HIV-2, HSV-1, HSV-2, and Hep A virus (Hepatitis A virus) (Myriam 
Witvrouw et al., 1994). With low cytotoxicity, galactans isolated from 
Callophyllis variegata show antiviral action against HSV-1, HSV-2, and 
DENV-2 (Rodríguez et al., 2005). The antiviral efficacy of sulfated gal-
actan isolated from Schizymenia binderi effectively counter HSV-1 and 
HSV-2 (Matsuhiro et al., 2005). Extracellular sulfated polysaccharides 
such as A1 and A2 from Cochlodinium polykrikoides, reduce blood 
coagulation by inhibiting influenza A and B virus in MDCK cells. It is also 
effective against respirational virus types A and B in Hep-2 cells and 
immunodeficient virus type-1 in MT-4 cells (Hasui et al., 1995). Sulfated 
exo-polysaccharide derived from Gyrodinium impudicum display antiviral 
properties against EMCV (Encephalomyocarditis virus) without toxicity 
in HeLa cells (Yim et al., 2004). It also inhibits influenza A virus 
duplication via targeting adsorption and integration into the host cell 
(Yim et al., 2004). 

3.1. Algae-derived sulfated polysaccharide modulates antiviral 
mechanism via inhibiting virus attachment, penetration, interiorization, 
uncoating transcription, and translation process 

The main stages of the virus life cycle are classified as attachment of 
virus, viral penetration, uncoating, biogenesis, viral assembly, and 
release of a virus that play a key role during viral infection and disease 
progression (Fig. 3). Algae-derived sulfated polysaccharides display 

Fig. 2. The viral entry and replication of novel coronavirus pathogenesis.  
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exceptional molecular structures and exert potential antiviral properties 
by inhibiting several phases of the viral life cycle by directly deacti-
vating virions before contamination starts or hindering its reproduction 
inside the host cell. Marine seaweeds are a promising source and rich in 
polysaccharides and give attention to the development and discovery of 
antiviral drugs. 

The ionic interface between positively charged exterior glycopro-
teins on the encapsulated viral surface and negatively charged compo-
nents of the host cell's surface causes early contact during the viral 
attachment. The presence of sulfate residues interacts with the positively 
charged area of viral glycoprotein, causing a higher density of negative 
charge on the cell surface and disrupting the first virus-cell interaction 
(Sepúlveda-Crespo et al., 2017). The sulfated polysaccharide may 
impede virus entry into the host cell by directly limiting virus binding to 
the cell surface. When the virus connects to the host cell, it causes 
irreversible adsorption via electrostatic interaction between the host cell 
and viral receptors. Some sulfated algal polysaccharides interact with 
virus receptors, preventing virus infection by blocking contact with the 
host cell surface or directly interacting with virions. Several in-
vestigations have revealed that negative charges on fucoidan's sulfate 
group interact with the virus by masking the positive charge on viral 
receptors (Wang et al., 2012). The virus infiltrates the host cell by 
invaginating the outer membrane and producing a vacuole. It is then 
transported to endosomes and additional intracellular organelles 
through the intracellular fluid or cytoplasm. The virus interacts with the 
cell membrane or forms a compartment within the cell that encloses the 
virus after endocytosis, modifying the shape of the virus's capsid. Spe-
cific signals are produced after the interaction of the virus with receptor 
protein around the endosome, uncoating and releasing the virions 

(Mercer et al., 2010). The virus replicates inside the host cell after 
internalization and uncoating. Sulfated polysaccharides interfere with 
virus internalization by interaction with the viral membrane proteins. 
Moreover, they bind to carbohydrate groups on the polypeptide chains 
of the virus to prevent it from penetrating host cells. Sulfated poly-
saccharides also attach to the allosteric location of the viral capsid, thus 
preventing the virus from uncoating inside the host cell. Several algal- 
derived polysaccharides can hinder virus transcription and replication 
once they reach the host cell by interfering with replicating enzymes like 
reverse transcriptase or by blocking the synthesis of proteins from m. 
RNA (messenger RNA) (Queiroz et al., 2008). 

4. Intricate role of fucoidan as an antiviral agent 

Fucoidan, the chief composition of the extracellular background of 
brown algae, is rich in fucose and sulfated polysaccharide. Fucoidan is a 
complicated structure with l-fucose molecule, sulfate groups, and one or 
more mannose, galactose, xylose, glucose, rhamnose, glucuronic acid, 
arabinose, and acetyl groups. Typically, there are two forms of homo-
fucose in fucoidan (type (I) encompasses repeated (13))-l-fucopyranose 
and type (II) include alternating and repetitive (13)- and (14)-l-fuco-
pyranose chains, as well as standard backbone chains. Fucoidan is the 
most frequent brown seaweed backbone chain. Type I (A) and type II (B) 
are represented in the figure and the molecular structure of isolated 
fucoidan used against SARS-CoV-2 such as F. vesiculosus (C) and Undaria 
pinnatifida (D) (Fig. 4). 

Viral infections cause enormous health problems leading to death. 
Initially, nucleoside drugs were used as antiviral drugs and have several 
side effects such as acute renal failure, cardiac arrest, hepatological 

Fig. 3. Sulfated polysaccharides (SPs) modulates antiviral mechanism of via inhibiting virus attachment, penetration, interiorization, uncoating and transcription 
and translation process. 
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dysfunction and gastrointestinal problems (Marchetti et al., 1995). 
Therefore, searching for new and effective drugs without toxicity has 
gained more importance in the present times (Patra, Nayak, Patro, 
Pradhan, Sahu, et al., 2021; Patra, Pradhan, Nayak, Behera, Das, Patra, 
and Bhutia, 2021b; Patra, Pradhan, Nayak, Behera, Panda, Das, and 
Jena, 2021c; Patra, Pradhan, Nayak, Behera, Rout, Jena, and Bhutia, 
2021d). Natural polysaccharides have alleviated specific viral infections 
(Marchetti et al., 1995). In this context, the search for natural antiviral 
specific to sulfated polysaccharides from marine sources has been 
attentive in recent times. The degree of sulfation, sulfate group content, 
molecular weight, monosaccharide composition, molecular structure 
conformation, and stereochemistry are key factors in sulfated poly-
saccharides' antiviral action fucoidan. Sulfated polysaccharides with low 
molecular weight and high sulfate concentration have greater antiviral 
activity (Duarte et al., 2001). 

Fucoidan is a type of sulfated polysaccharide that provides a wide 
spectrum of antiviral activity with minimal toxicity (Queiroz et al., 
2008). Inclusively, fucoidan prevents HIV, human cytomegalovirus, 
HSV, bovine viral diarrhea virus, and influenza virus by inhibiting viral 
adsorption onto cells, thus hindering viral entry (Dinesh et al., 2016; 
Mandal et al., 2007; M. Witvrouw & De Clercq, 1997). Interacting with 
the positively charged portion of viral envelope glycoproteins important 
in virus attachment helps the virus attach; fucoidan suppresses virus 
attachment to host cells (Harden et al., 2009; J. B. Lee, Hayashi, 
Hashimoto, et al., 2004). The antiviral effect of fucoidan is mediated by 
Immune cells' phagocytic function and humoral immunity. The LMWF 
extracted from L. japonica can boost up immune action and raise thymus 
and spleen indexes. Furthermore, LMWF can raise the half hemolysin 

value (Sun et al., 2018). Fucoidan extracted from Undaria pinnatifida is 
beneficial against HSV-1 through reducing viral reproduction and acti-
vating innate and adaptive immune systems (Hayashi et al., 2008). The 
anti-HSV activity of fucoidan appears to depend on a sulfate at C-4 of the 
unit of the (1–3)-linked fucopyranosyl (Mandal et al., 2007). Wang et al. 
(2017a, 2017b) recently published a study that targeted Kjellmaniella 
crassifolia fucoidan infection is limited by viral neuraminidase and the 
cellular EGFR pathway (536 kDa, 30.1% sulfate content). The findings 
open that the K. crassifolia fucoidan inhibited IAV infection in in vitro 
model with little toxicity and had a broad anti-IAV range. Moreover, it 
had a short tendency to induce viral struggle, surpassing the standard 
anti-IAV medication amantadine. Before infection and after adsorption, 
K. crassifolia fucoidan can deactivate virus particles via binding to viral 
neuraminidase (NA) and inhibited the activity of NA to hunk the release 
of IAV. In addition, intranasal treatment of fucoidan derived from 
K. crassifolia to IAV-infected mice significantly increased the survival 
and reduced the viral titers. Furthermore, a novel nasal drop or spray of 
K. crassifolia fucoidan prevented the influenza virus in subsequent 
infection (Wang et al., 2017a, 2017b). LMWF fractions such as LF1 and 
LF2 derived from L. japonica, which include 42.0%and 30.5% fucose; 
19.8% and 23.9% galactose; 5.3% and 3.7% uronic acid; and 30.7% and 
32.5% sulfate, respectively, showed excellent antiviral activity in in 
vitro models at doses of 1.2 and 2.4 mg/mL (Sun et al., 2018). After 
intravenous treatment of LMWFs (2.5, 5, 10, and 15 mg/kg; 14 days), in 
vivo results showed that LF1 and LF2 were able to lengthen the survival 
duration of mice infected with the virus, as well as dramatically increase 
the value of immune organs, immune cells, phagocytosis, and humoral 
immunity. LMW fucoidans extracted from L. japonica displayed antiviral 

Fig. 4. The most common backbone chains of brown seaweed fucoidan type I (A), type II (B). The molecular structure of isolated fucoidan used against SARS-CoV-2 
such as F. vesiculosus (C) and Undaria pinnatifida (D). 
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activity in both in vitro (2.5, 5, 10, 15 mg, adenovirus, I-type influenza 
virus, and Parainfluenza virus I were used to infect Hep-2, Hela and 
MDCK cells) as well as in vivo (virus-infected mice; 2.5, 5, 10, 15 mg 
kg− 1) (Sun et al., 2018). Fucoidan extracted from K. crassifolia could be 
used to combat extremely pathogenic strains like H5N1 and H7N9. 
Fucoidan has the immense potency to be used as a novel nasal drop or 
sprig for influenza therapy (Moscona, 2009). In mice, fucoidan extracted 
from Fucus evanescens (130–400 kDa) worked as an adjuvant by 
encouraging the development of definite antibodies against HBV's sur-
face antigens, like HBs-AG (Liang, 2009). Fucoidan from Fucus ves-
iculosus repressed HBV reproduction in in vivo and in vitro models by 
activating the EKR signalling pathway. It also increased the type I 
interferon production by activating the host immune system (Kuznet-
sova et al., 2017). In addition to this, fucoidan can be used as an indi-
vidual drug or in combination with other drugs to treat HBV. HBV 
replication was considerably suppressed in a rat model of fucoidan (100 
mg) of 0–7 days after infection with HepG2.2.15 cells. Mechanistically, 
F. vesiculosus extracted fucoidan activated the MAPK-ERK1/2 pathway 
and elicited the expression of IFNs, thereby resulting in a decrease in 
HBV DNA and associated proteins synthesis. 

Current treatments towards HIV are cost-prohibitive with several 
side effects. Fucoidans could repress the contamination in Jurkat cells 
with pseudo-HIV-1 elements, which preferentially hold envelope pro-
teins of HIV-1 (Prokofjeva et al., 2013). Fucoidans from Saccharina 
cichorioides (1.3-α-l-fucan) and S. japonica (galactofucan) displayed a 
substantial repressing effect on HIV-1. In addition, even at negligible 
concentrations (0.001–0.05 μg/mL), fucoidans demonstrated inhibitory 
efficacy against the transduction of lentiviral cells. Fucoidan isolated 
from S. swartzii can be used as a potential anti-HIV agent (Dinesh et al., 
2016). Adenocystis utricularis fucoidan inhibited the HIV-1 infection by 
hindering the entry of the virus (Trinchero et al., 2009). Crude Fucoidan 
fractions such as FF1 and FF2 (Total content of sugar in the FF1 and FF2 
61.8% and 65.9%; the content of sulfate 19.2% and 24.5%, the uronic 
acid content 17.6% and 13.4%, and the Mw 30 and 45 kDa, respectively) 
were extracted from S. swartzii displayed anti-HIV-1 properties. More-
over, at doses (1.56 and 6.25 g/mL), FF2 fraction showed anti-HIV-1 
efficacy, as evidenced by a >50% decrease in HIV-1 p24 antigen levels 
and the activity of reverse transcriptase. Fucoidan from Sargassum 
mcclurei can hunk the entry of the HIV-1 virus (Thuy et al., 2015). 
S. polycystum (FSP), S. mcclurei (FSM), and Turbinaria ornata (FTO) 
fucoidans demonstrated anti-HIV activities with IC50s ranging from 
0.33 to 0.7 g/mL (Thuy et al., 2015). These fucoidans suppressed the 
HIV-1 infection when pre-incubated with the virus but not with the cells 
after infection, indicating that they can limit HIV entrance into aimed 
cells at an early stage (Thuy et al., 2015). 

With no cytotoxicity, Fucoidan (galactofucan) from Adenocystis 
utricularis inhibited HSV-1 and HSV-2 (Ponce et al., 2003). Moreover, 
Dictyota dichotoma fucoidan (galactofucan) inhibited HSV-1 by 
decreased plaque formation (Rabanal et al., 2014). Fucoidan (glucur-
onic acid, sulfated fucose) isolated from Cladosiphon okamuranus 
inhibited DENV-2 directly binding to the spike protein (Hidari et al., 
2008). Sulfated fucans isolated from Cystoseira indica inhibited adsorp-
tion of HSV-1, HSV-2 (Mandal et al., 2007). Xylan-fucoidan extracted 
from Caulerpa brachypus displayed inhibitory activity against HSV-1 via 
inhibiting attachment, penetration, and later stages of replication (Lee, 
Hayashi, Maeda, & Hayashi, 2004). Fucoidan isolated from Fucus ves-
iculosus exhibited antiviral activity against BVDV (Bovine viral diarrhea 
virus) via inhibition of the binding of the virus (Güven et al., 2020). 
Fucoidan extracted from Laminaria japonica hindered the H5N1 (Avian 
influenza virus) (Makarenkova et al., 2010). Galactofucan isolated from 
Undaria pinnatifida displayed potent antiviral activity, restricting viral 
entry and host-virus binding in HSV-1, HSV-2, and HCMV virus (Hem-
mingson et al., 2006). Fucoidan extracted from Sargassum trichophyllum 
showed promising antiviral activity via inhibiting the virus adsorption, 
penetration and replication in the HSV-2 virus (Lee et al., 2011). 
Fucoidan from C. okamuranus displayed antiviral potency against NDV 

La Sota (Newcastle Disease Virus) with low-toxicity than Ribavirin. In 
addition, it also inhibited early stages of viral infection within 0–60 min. 
Post-infection treatment displayed 48% reduction in viral infection and 
abridged HN protein expression. Moreover, it inhibited syncytia for-
mation (70%) via exact communication between fucoidan and the F0 
protein (Elizondo-Gonzalez et al., 2012). Fucoidan extracted from 
brown seaweed, Sargassum wightii and Artemia franciscana on Penaeus 
monodon has been found to be effective against white spot syndrome 
virus (WSSV) with reported mortality of 61.65% (Sivagnanavelmurugan 
et al., 2012) (see Table 1). 

5. Fucoidan modulates antiviral activity against SARS-CoV-2 

A wide range of fucoidans was used to examine the current pandemic 
produced by the SARS-CoV-2 in vitro and in vivo models. In in vitro 
models, fucoidan demonstrated direct inhibitory efficacy against SARS- 
CoV-2, indicating that it could be useful as a therapeutic drug. The 
fucoidan fractions have an inhibitory effect on viral spike protein 
binding. In an in vitro infection model, unfractionated of fucoidan from 
F. vesiculosus and U. pinnatifida showed minimal efficacy against SARS- 
CoV-2 (Fitton et al., 2021). Fucoidan (15.6 μg/mL) inhibited SARS- 
CoV-2 in vitro via binding to the S glycoprotein of the virus. Sulfated 
polysaccharides (9.10 μg/mL) inhibited SARS-CoV-2 in vitro model via S 
glycoprotein binding (Song et al., 2020a, b). LMW and HMW extracted 
from S. japonica are expected to display in vitro antiviral properties 
against SARS-CoV-2 via binding to S-proteins of SARS-CoV-2. HMW 
fucoidan (8.3 μg/mL) from Saccharina japonica are more potent than 
LMW (16 μg/mL) (Kwon et al., 2020). Sulfated fucan extracted from 
Lytechinus variegatus and sulfated galactan isolated from Botryocladia 
occidentalis demonstrated an SGP binding efficacy and transduction ef-
ficacy of a third progeny lentiviral (pLV) vector. It modulated pLV-S 
particles even with an IC50 of lower ng to higher μg/L (Tandon et al., 
2021). Sulfated galactofucan (1, 3-linked-L-Fucp residues sulfated at C4 
and C2/C4 and 1, 3-linked-L-Fucp residues sulfated at C4 and branched 
with 1, 6-linked-D-galacto-biose) reduced interaction between SARS- 
CoV-2 SGPs and heparin, but not ACE2 (Jin, Zhang, et al., 2020a, 
2020b). Sulfated fucoidan and crude polysaccharides, isolated from six 
seaweed species such as Laminaria japonica, Undaria pinnatifida sporo-
phyll, Sargassum horneri, Hizikia fusiforme, Porphyra tenera, Codium fragile 
inhibited viral infection with an IC50 value (12–289 μg/mL) against 
SARS-CoV-2 pseudo virus in HEK293/ACE2 (Yim et al., 2021b, a). 

The crude polysaccharide extracted from S. horneri exhibited robust 
antiviral activity, with an IC50 value of 12 μg/mL, to prevent the entry of 
the COVID-19 virus (Yim et al., 2021b, a). The crude polysaccharide 
from H. fusiforme can also hinder SARS-CoV-2 infection with an IC50 
value of 47 μg/mL (Yim et al., 2021b, a). The higher molecular weight 
(>800 kDa), higher total carbohydrate (62.7–99.1%), higher fucose 
content (37.3–66.2%), and highly branched structures contribute to-
wards their antiviral activity. Fucoidan (3.90–500 μg/mL) can prevent 
the SARS-CoV-2 entry into the cell via binding to the S glycoprotein 
(Song et al., 2020a, b). Fucoidan at a 0.01–10% concentration prevented 
the respirational tract infections triggered by the SARS-CoV-2 virus 
(Flaviviridae et al., 2020). Fucoidan, at an approximate concentration of 
83 nM binds to the spike protein of the SARS-CoV-2 in in vitro model, 
averting its host cell binding (Kwon et al., 2020). Moreover marine 
sulfated polysaccharides displayed potent inhibitory activities against 
SARS-CoV-2 at concentrations of 3.90–500 μg/mL (Song et al., 2020a, 
b). Fucoidan significantly restores the ΔΨm of HPBMC, suggesting that 
fucoidan can be useful to improve mitochondrial homeostasis after 
SARS-CoV-2 infection (Díaz-Resendiz et al., 2022). Crude poly-
saccharides from seaweeds inhibit SARS-CoV-2 Virus entry (Yim et al., 
2021b, a). Rhamnan sulfate from Monostroma nitidum displayed strong 
antiviral activities against wild type SARS-CoV-2 and the delta variant in 
vitro (Song et al., 2021). Sulfated galactofucan from Saccharina japonica 
showed strong binding ability to SARS-CoV-2 SGPs, suggesting that 
might be a good candidate for preventing and/or treating SARS-CoV-2 
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(Jin, Zhang, et al., 2020a, 2020b). 

6. Preclinical efficacy status of fucoidan 

Preclinical progress, also known as preclinical studies or nonclinical 
studies, is a stage of drug development that occurs before clinical trials 
(human testing) and collects essential feasibility, iterative testing, and 
drug safety data, usually in laboratory animals. Preclinical studies' major 
goals are to select a starting, safe dose for first-in-human studies and to 
analyse the product's potential toxicity, which usually includes new 
medical devices, prescription medications, and diagnostics. Companies 

utilise exaggerated numbers to show the dangers of preclinical research, 
such as the fact that only one out of every 5000 molecules that go from 
drug discovery to preclinical development becomes an approved medi-
cine. In this regards, fucoidan gaining the attraction of preclinical test, 
fucoidan from Kjellmaniella crassifolia significantly increased the sur-
vival and reduced the viral titers IAV-infected mice (Wang et al., 2017a, 
2017b). Low molecular weight of fucoidan from brown algae Laminaria 
japonica tested in an infected mouse model displayed a prolonged sur-
vival time of mice infected with HPIV 1 (Sun et al., 2018). Sulfated 
polysaccharide Laminaria japonica was tested in an infected mouse 
model. IV injection of low molecular weight fucoidan showed a 

Table 1 
Intricate role of fucoidan as an anti-viral agent against human pathogenic viruses and their mode of action.  

Sl. 
no 

Sources of fucoidan Viruses involved Mode of action References  

1 L. japonica HSV-1 Boost immune function and raise thymus and spleen indexes. (Sun et al., 2018)  
2 Undaria pinnatifida HSV-1 Reducing viral replication and activating innate and adaptive 

immune systems 
(Hayashi et al., 2008)  

3 Kjellmaniella crassifolia IAV infection Inhibition of viral neuraminidase and cellular EGFR pathway in 
vitro model 

(Wang et al., 2017a, 2017b)  

4 Kjellmaniella crassifolia IAV infection Induce viral resistance, surpassing the standard anti-IAV 
medication amantadine and inactivate virus particles via binding 
to viral neuraminidase (NA) and inhibited the activity of NA to 
block the release of IAV 

(Wang et al., 2017a, 2017b)  

5 Kjellmaniella crassifolia IAV-infected mice Significantly increased the survival and reduced the viral titers (Wang et al., 2017a, 2017b)  
6 Kjellmaniella crassifolia influenza virus Prevents the virus in subsequent infection (Wang et al., 2017a, 2017b)  
7 LMWF fractions from 

L. japonica 
virus-infected mice Modulates the lengthen the survival duration of virus-infected 

mice, as well as dramatically increase the quality of immune 
organs, immune cells, phagocytosis, and humoral immunity 

(Sun et al., 2018)  

8 LMWF fractions from 
L. japonica 

I-type influenza virus, adenovirus and 
Parainfluenza virus I were used to infect 
Hep-2, Hela and MDCK cells 

Modulates the lengthen the survival duration of virus-infected 
mice, as well as dramatically increase the quality of immune 
organs, immune cells, phagocytosis, and humoral immunity 

(Sun et al., 2018)  

9 LMWF fractions from 
L. japonica 

virus-infected mice Modulates the lengthen the survival duration of virus-infected 
mice, as well as dramatically increase the quality of immune 
organs, immune cells, phagocytosis, and humoral immunity 

(Sun et al., 2018)  

10 K. crassifolia H5N1 and H7N9 Antiviral activity (Moscona, 2009)  
11 Fucus evanescens HBV Inhibited HBV replication in in vivo (Kuznetsova et al., 2017)  
12 Fucus evanescens HBV Inhibited in in vitro models by activating the EKR signal pathway (Kuznetsova et al., 2017)  
13 Fucus evanescens HepG2.2.15 cells Modulates MAPK-ERK1/2 pathway and stimulated the expression 

of IFNs and decrease in HBV DNA and associated proteins synthesis 
(Kuznetsova et al., 2017)  

14 Fucus evanescens Infection in Jurkat cells with pseudo-HIV-1 Suppressing the infection (Prokofjeva et al., 2013)  
15 Saccharina cichorioides HIV-1 Displayed a significant inhibitory effect (Dinesh et al., 2016)  
16 S. japonica 

(galactofucan) 
HIV-1 Displayed a significant inhibitory effect (Dinesh et al., 2016)  

17 S. swartzii HIV Antiviral effects (Dinesh et al., 2016)  
18 Adenocystis utricularis HIV-1 Inhibited via blocking the entry of the virus (Trinchero et al., 2009)  
19 S. swartzii HIV-1 Reduction in HIV-1 p24 antigen levels and reverse transcriptase 

activity 
(Dinesh et al., 2016)  

20 Sargassum mcclurei HIV-1 Inhibited via blocking the entry of the HIV-1 virus (Thuy et al., 2015)  
21 S. mcclurei HIV-1 Inhibition of virus with low IC50 value ranging from 0.33 to 0.7 g/ 

mL and limit HIV entry into target cells at an early stage 
(Thuy et al., 2015)  

22 S. polycystum HIV-1 Inhibition of virus with low IC50 value ranging from 0.33 to 0.7 g/ 
mL and limit HIV entry into target cells at an early stage 

(Thuy et al., 2015)  

23 Turbinaria ornata HIV-1 Inhibition of virus with low IC50 value ranging from 0.33 to 0.7 g/ 
mL and limit HIV entry into target cells at an early stage 

(Thuy et al., 2015)  

24 Adenocystis utricularis HSV-1 and HSV-2 Inhibition of virus without toxicity (Ponce et al., 2003)  
25 Dictyota dichotoma HSV-1 Inhibition of virus through reduction in plaque formation (Rabanal et al., 2014)  
26 Cladosiphon 

okamuranus 
DENV-2 Inhibition of virus via direct binding to the spike protein (Hidari et al., 2008)  

27 Cystoseira indica HSV-1, HSV-2 Antiviral activity via inhibition of adsorption (Mandal et al., 2007)  
28 Caulerpa brachypus HSV-1 Antiviral activity via inhibiting attachment, penetration, and later 

stages of replication 
(Lee, Hayashi, Maeda, & 
Hayashi, 2004)  

29 Fucus vesiculosus BVDV (Bovine viral diarrhea virus) Anti-viral activity via inhibition of the binding of the virus (Güven et al., 2020)  
30 Laminaria japonica H5N1 Inhibition of virus (Makarenkova et al., 2010)  
31 Undaria pinnatifida HSV-1, HSV-2, and HCMV virus Antiviral activity via inhibiting the viral entry and host-virus 

binding 
(Hemmingson et al., 2006)  

32 Sargassum 
trichophyllum 

HSV-2 Anti-viral activity via inhibiting the virus adsorption, penetration 
and replication 

(Lee et al., 2011)  

33 C. okamuranus NDV La Sota (Newcastle Disease Virus) Anti-viral activity via inhibited early stages viral infection via 
abridged HN protein expression. Moreover, it inhibited syncytia 
formation (70%) via specific interaction between fucoidan and the 
F0 protein 

(Elizondo-Gonzalez et al., 
2012)  

34 Sargassum wightii and 
Artemia franciscana 

white spot syndrome virus (WSSV) Penaeus monodon has been found to be effective against with 
reported mortality of 61.65% 

(Sivagnanavelmurugan 
et al., 2012)  
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prolonged survival time of virus-infected mice (Leibbrandt et al., 2010). 
Furthermore, fucoidan from Undaria pinnatifida has been demonstrated 
to inhibit influenza A virus in vivo replication in mice infected models by 
lowering viral replication and enhancing humoral immunity (neutral-
izing antibodies) (Kyoko Hayashi et al., 2013; Synytsya et al., 2014). 
Orally administration of fucoidan (7.04 mg/day) from Undaria pinnati-
fida significantly reduced gross lung pathology (consolidation) in a 
BALB/c mouse model of severe H1N1 (PR8) influenza, when adminis-
tered at the same time as the viral infection (Richards et al., 2020). Sun 
et al. isolated two LMWF fractions from L. japonica. In vivo data showed 
that LF1 and LF2 were able to extend the survival duration of virus- 
infected mice (Sun et al., 2018). From the above preclinical status 
fucoidan as well as LMWF (low molecular weight fucoidan) may be 
further developed to be used for clinical purposes. Although the afore-
mentioned findings suggest that fucoidan could be a promising anti-viral 
medication, more in vivo research is still needed before clinical trials can 
begin (see Table 2). 

7. Immunomodulatory activity of fucoidan against SARS-CoV-2 
via microbiota-based therapy 

Immunity is the primary concern in COVID-19 suffering individuals 
(Sen et al., 2021). After treating with drugs, the patients gradually 
become immune-compromised (De Mello et al., 2020)]. SARS-CoV-2 
causes gastrointestinal disorders in almost 20% of patients suffering 
from it (Heo et al., 2017). Effenberger et al. (2020) reported that 61% of 
the patients suffer from the gastrointestinal disorder, diarrhea and 
nausea. Therefore, natural immunomodulators from algae seem to be 
promising as a drug aspect against SARS-CoV-2 with minimal drug- 
related toxicity (Zuo et al., 2020). A recent pilot study on microbiome 
composition of stool samples from 15 hospitalized patients who suffered 
from COVID-19 with healthy individuals revealed poor gut health in 
SARS-CoV-2 suffering individuals (Zuo et al., 2020). 

On the other hand, a healthy gut microbiome is essential for modu-
lating antiviral immunity via improving gut flora (Zuo et al., 2020). In 
such circumstances, algae-based sulfated polysaccharides can be used as 
food supplements to enhance gut microbiota and reduce the infection of 
novel SARS-CoV-2. Gut microbiota symbiosis associated with ACE2 
plays a pivotal role in improving antiviral immunity by stimulating 
interferon production, decreasing immunopathology, increasing natural 
killer (NK) and cytotoxicity in COVID-19 suffering patients (He et al., 
2020). Marine sulfated polysaccharides such as fucoidans trigger human 
gut microbiota and maintain the host health via controlling proper 
metabolism, the epithelial barrier integrity and immune system as pre-
biotics and nutritional food supplements (Tamama, 2021). Seaweeds are 
rich in vitamins and minerals and rich in sulfated polysaccharides that 
can be used as dietary supplements to COVID-19 patients. Previously, it 
was found that algal peptides exhibited a anti-Spike protein of COVID19 
through in silico study (MubarakAli et al., 2021). 

Moreover, fucoidan isolated from different macroalgal species 
display promising immunomodulation activity (Pradhan, Patra, Behera, 
et al., 2021). Fucoidan from Cladosiphon okamuranus consumption 
modulates human gastrointestinal disorders such as diarrhea, gas and 
bloating. It also triggered microbiota composition (Fields et al., 2020). 
Fucoidan from Sargassum mcclurei modulates immune systems via 
modulating gut microbiota and upregulating toll-like receptors 2 and 4 
(TLR2 and TLR4) (Neyrinck et al., 2017). Fucoidan isolated from 
Sargassum polycystum modulates the gut microbiota and triggers im-
munity. Sulfated polysaccharides isolated from Ascophyllum nodosum 
activate the abundance of beneficial firmicutes and bacteroidetes (Chen 
et al., 2018). Moreover, Other Algae-based polysaccharides also exhibit 
beneficial effects to human gut microbiota (Pereira & Critchley, 2020). 
Sargassum muticum and Osmundea pinnatifida extracts have been used as 
novel functional foods and positively influence human gut microbiota 
(Rodrigues et al., 2016). The immunomodulatory properties of fucoidan 
isolated from Brown algae is promising (Wu et al., 2016). LMW 

Table 2 
Role of fucoidan as an anti-viral agent against in light of SARS-CoV-2 virus and 
their mode of action.  

Sl. 
no 

Sources of 
fucoidan 

Viruses 
involved 

Mode of action References  

1 F. vesiculosus in vitro 
infection 
model 
(SARS-CoV- 
2) 

Inhibitory antiviral 
effect on viral spike 
protein binding to S 
glycoprotein against 
SARS-CoV-2 

(Fitton et al., 
2021)  

2 U. pinnatifida in vitro 
infection 
model 
(SARS-CoV- 
2) 

Inhibitory Antiviral 
effect on viral spike 
protein binding to S 
glycoprotein against 
SARS-CoV-2 

(Fitton et al., 
2021)  

3 Saccharina 
japonica 
(LMW) 

SARS-CoV-2 Displayed in vitro 
anti-viral properties 
against SARS-CoV-2 
via binding to S- 
proteins of SARS- 
CoV-2 

(Kwon et al., 
2020)  

4 Saccharina 
japonica 
(HMW) 

SARS-CoV-2 Displayed in vitro 
anti-viral properties 
against SARS-CoV-2 
via binding to S- 
proteins of SARS- 
CoV-2 

(Kwon et al., 
2020)  

5 Lytechinus 
variegatus 

SARS-CoV-2 Demonstrated a SGP 
binding efficiency 
and transduction 
efficiency of a third 
generation lentiviral 
(pLV) vector and 
modulated pLV-S 
particles even with an 
IC50 of low ng to high 
μg/L 

(Tandon et al., 
2021)  

6 Botryocladia 
occidentalis 

SARS-CoV-2 Demonstrated a SGP 
binding efficiency 
and transduction 
efficiency of a third 
generation lentiviral 
(pLV) vector and 
modulated pLV-S 
particles even with an 
IC50 of low ng to high 
μg/L 

(Tandon et al., 
2021)  

7 Saccharina 
japonica 

SARS-CoV-2 Inhibited interaction 
between SARS-CoV-2 
SGPs and heparin, but 
not ACE2 

(Jin, Zhang, 
et al., 2020a, 
2020b)  

8 Undaria 
pinnatifida 

SARS-CoV-2 
pseudo virus 
in HEK293/ 
ACE2 

Inhibited viral 
infection with an IC50 

value of 12–289 μg/ 
mL 

(Yim et al., 
2021b, a)  

9 Laminaria 
japonica 

SARS-CoV-2 
pseudo virus 
in HEK293/ 
ACE2 

Inhibited viral 
infection with an IC50 

value of 12–289 μg/ 
mL 

(Yim et al., 
2021b, a)  

10 Hizikia 
fusiforme 

SARS-CoV-2 
pseudo virus 
in HEK293/ 
ACE2 

Inhibited viral 
infection with an IC50 

value of 47 μg/mL 

(Yim et al., 
2021b, a)  

11 Sargassum 
horneri 

SARS-CoV-2 
pseudo virus 
in HEK293/ 
ACE2 

Inhibited viral 
infection with an IC50 

value of 12 μg/mL 

(Yim et al., 
2021b, a)  

12 Codium fragile SARS-CoV-2 
pseudo virus 
in HEK293/ 
ACE2 

Inhibited viral 
infection with an IC50 

value of 12–289 μg/ 
mL 

(Yim et al., 
2021b, a)  

13 Porphyra 
tenera 

SARS-CoV-2 
pseudo virus 
in HEK293/ 
ACE2 

Inhibited viral 
infection with an IC50 

value of 12–289 μg/ 
mL 

(Yim et al., 
2021b, a)  

14 SARS-CoV-2 Prevent the entry of 
virus into the cell via 

(Song et al., 
2020a, b) 

(continued on next page) 
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fucoidans such as LF1 and LF2 could enhance the spleen index, thymus 
index, phagocytic index, half hemolysin and phagocytosis coefficient 
value even at doses of 2.5, 5, 10, 15 mg/kg. The aforementioned results 
indicated that LMW fucoidans can recover the eminence of immune 
organs, enlightening immune cell phagocytosis and humoral immunity 
of virus-infected cells (Sun et al., 2018). Nanoparticular CpG-adjuvanted 
SARS-CoV-2 S1 protein triggers broadly neutralizing and Th1-biased 
immunoreactivity in mice (Lin et al., 2021). The viral immune re-
sponses against COVID-19 and dermatologic immunomodulator targets 
are shown in Fig. 5. 

8. Fucoidan in immunocompromised patients as well as patients 
with comorbidities 

Immunocompromised people have a diminished the ability to fight 
aganist infections and other disorders. The immune system has been 
weakened in primary immunocompromised people. Many types of pri-
mary immunodeficiency illnesses can benefit from treatments that 
enhance the immune system (Sobh & Bonilla, 2016). The signs and 
symptoms of primary immunodeficiency disorders fluctuate based on 
the type, and also vary from person to person. Inflammation and 
infection of internal organs, blood disorders (low platelet count or 
anaemia), digestive problems (cramping, loss of appetite, nausea and 
diarrhea), and symptoms of immunocompromised disorders such as 
frequent and recurrent pneumonia, bronchitis, sinus infections, ear 

infections, meningitis, or skin infections, inflammation and infection of 
internal organs (Sobh & Bonilla, 2016). People with the illness will 
benefit from new therapies and a higher quality of life as a result of 
ongoing research (Oguntibeju, 2012). Immunomodulatory properties of 
fucoidan have interesting applications, such as vaccine adjuvants 
(Kyoko Hayashi et al., 2013). Fucoidan from Undaria pinnatifida (9 kDa) 
tested in H1N1 (A/NWS/33) virus yield in the mucosa of immuno-
competent and compromised mice was reduced and stimulated mucosal 
immunoresponse with IC50 value 15 μg/mL 5 mg/day post infection 
(Kyoko Hayashi et al., 2013). Furthermore, fucoidan from Undaria pin-
natifida has been shown to inhibit influenza A virus in vivo replication in 
infected mice and improve innate immunity (natural killer and macro-
phage activity) via immunity pathways (Kyoko Hayashi et al., 2013; 
Synytsya et al., 2014). Hayashi et al. discovered that a fucoidan isolated 
from Undaria pinnatifida had anti-IAV activity enhancing immune sys-
tem in mice, in mice with normal and reduced immunity (Kyoko Hayashi 
et al., 2013). Fucoidans could also be employed as vaccine adjuvants in 
mice, activating spleen cells and increasing antigen-specific antibody 
production (Kim & Joo, 2015). Intranasal administration of fucoidan 
from Kjellmaniella crassifolia (10 and 20 μg/day) treatment significantly 
increases the survival of IAV-infected mice and improved the immunity 
(Fukushi et al., 2011). Fucoidan could be a promising candidate in 
immunocompromised patients. 

8.1. Summary and future prospective 

Algal sulfated polysaccharides could be used as antiviral drugs as 
individual entities or in combination with clinically approved antiviral 
drugs, which can combat COVID-19. Although the vaccination program 
has started, sulfated polysaccharides like fucoidan can still exert po-
tential immunomodulatory efficacy against COVID-19 infection. More-
over, it can also modulate severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) and lesser the risk of viral contaminations 
in the post-COVID era. Furthermore, fucoidan can act as food supple-
ments that can limit the injury of the respiratory system post-viral 

Table 2 (continued ) 

Sl. 
no 

Sources of 
fucoidan 

Viruses 
involved 

Mode of action References 

Fucoidan from 
Porphyra 
tenera 

binding to the S 
glycoprotein  

15 Fucoidan from 
Porphyra 
tenera 

SARS-CoV-2 Prevented the 
respiratory tract 
infections 

(Flaviviridae 
et al., 2020)  

Fig. 5. Fucoidan inhibit the attachment and viral entry. Moreover, fucoidan activate immune responses against COVID-19 patients via activation of T-cell.  
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infections via restoring innate immune function and preventing 
inflammation. Study of the chemical composition, antiviral potency, and 
mechanisms associated with SARS-CoV-2 of sulfated polysaccharides 
with the special notation to fucoidan is urgently needed to be established 
as an antiviral agent as well as an immunomodulator in pharmaceutical 
sectors. 
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