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Abstract

Recent evidence suggested that muscle degeneration might lead and/or contribute to neurodegeneration, thus it possibly
play a key role in the etiopathogenesis and progression of amyotrophic lateral sclerosis (ALS). To test this hypothesis, this
study attempted to categorize functionally relevant genes within the genome-wide expression profile of human ALS
skeletal muscle, using microarray technology and gene regulatory network analysis. The correlation network structures
significantly change between patients and controls, indicating an increased inter-gene connection in patients compared to
controls. The gene network observed in the ALS group seems to reflect the perturbation of muscle homeostasis and
metabolic balance occurring in affected individuals. In particular, the network observed in the ALS muscles includes genes
(PRKR1A, FOXO1, TRIM32, ACTN3, among others), whose functions connect the sarcomere integrity to mitochondrial
oxidative metabolism. Overall, the analytical approach used in this study offer the possibility to observe higher levels of
correlation (i.e. common expression trends) among genes, whose function seems to be aberrantly activated during the
progression of muscle atrophy.
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Introduction

Amyotrophic lateral sclerosis (ALS) is classically defined as a

motor neuron disorder, characterized by the progressive degen-

eration of upper and lower motor neurons, leading to muscle

atrophy and corresponding loss of muscle strength. ALS is

eventually lethal within 3-to-5 years after the symptom onset,

due to the involvement of respiratory muscles. Although muscle

atrophy has been originally considered a secondary direct

consequence of neurodegeneration, new pathogenetic hypotheses,

during the last decade, have been suggesting a primary role for the

events occurring at the post-synaptic site, i.e. in the skeletal muscle.

Damage of the neuromuscular junction (NMJ), along with skeletal

muscle degeneration and atrophy, indeed precede neuronal

degeneration in the ALS SOD1 mouse model [1,2]. This supports

the notion that muscle degeneration may lead and/or contribute

to neurodegeneration and play a key role in the cause and/or

progression of ALS [3,4].

Skeletal muscle of ALS patients and ALS mice presents severe

atrophy [5] and has considerable mitochondrial disruption and

dysfunction, indicated by the deficiency of key respiratory chain

enzymes [6–8]. It was recently demonstrated that the disruption of

the mitochondrial network genes enhances skeletal muscle atrophy

programs [9,10]. This evidence indicates that a perturbation in the

homeostasis of the molecular network involved in the maintenance

of skeletal muscle mitochondrial biogenesis should occur during

the pathogenesis and progression of ALS [10].

Though, the hypothesis of the skeletal muscle as the primary

damaged site in ALS pathogenesis is still pending, due to the

dearth of evidences obtained in human tissues, which represent the

unique clinically-relevant model to study sporadic ALS.

As a tool to investigate the molecular scenario occurring at the

post-synaptic site in ALS injured muscles, we used microarray-

based genome-wide expression profiling. In order to obtain

original hints toward the functional interpretation of the wide

resulting dataset we used a system biology approach, based on

gene regulatory networks, to analyze the changes in between gene

expression correlation structure occurring in the affected tissue

[11].

Microarray data analysis has been classically based on

supervised statistical methods, enabling to compare gene-by-gene

differential expression. This approach tends to consider genes as

independent functional units, regardless of the multifactorial

regulation of gene expression acting in biological systems [12–

14]. In addition, given the high dimensionality of the microarray

experiments compared to the number of tested samples/individ-

uals, it can be severely biased by chance correlation effect [15]. On

this regard, gene networks describe the connections existing

between genes that are involved in the same biological process and

are used to identify functional modules (i.e. subsets of genes that
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regulate each other with multiple interactions, but have few

interactions with other genes outside the subset).

Therefore, the analytical strategy proposed in this study, allows

identifying the expression signature of the atrophic skeletal muscle,

based both on differential gene expression and on gene correlation

networks.

Materials and Methods

Samples Collection
Ethics statement. The Ethics Committee of the Università

Cattolica del Sacro Cuore, School of Medicine (Rome, Italy)

approved this study. Written informed consent was obtained from

all patients.

Patients and specimens. A case-control study was per-

formed comparing 7 ALS patients with 7 age- and sex-matched

healthy controls (table 1). The ALS sample was represented by 4

males and 3 females, aged 55-to-73; mean and median age was 64

in both the patients and the control group. ALS diagnosis was

performed according to the revised El Escorial criteria. The

control sample was selected among patients undergoing orthope-

dic surgery for traumatic injury and without positive history for

muscle weakness, nor any neurological disorder. All patients were

of Caucasian origin. Detailed clinical information of the individ-

uals enrolled in the study is provided in table 1. A skeletal muscle

specimen was collected through an open biopsy performed either

in the deltoid muscle (4 ALS patients and all controls) or in the

quadriceps (3 ALS patients).

The tissue specimens were stored in liquid nitrogen upon

collection and subsequently used for RNA isolation.

RNA isolation and microarray analysis. Total RNA was

isolated from frozen tissue specimens using pestel homogenization,

TRIzol protocol (Invitrogen, Carlsbad, CA, USA), and further on-

column purification as previously described [16]. The yield,

quality and integrity of RNA were determined using the Agilent

2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) as

previously described [17]. The resulting total RNA was then used

to create the biotin-labeled library to be hybridized on GeneChip

Human Genome Focus Array (Affymetrix, Santa Clara, CA,

USA), as already described elsewhere [18].

Microarray Data Analysis
The overall data analysis process involved to distinct level of

analysis, according to the flowchart depicted in figure 1.

Gene expression data analysis – differentially expressed

gene list. The CEL files resulting from the hybridization were

analyzed using the oneChannelGUI 1.6.5 bioinformatics tool [19].

Gene-level calculation was performed by Robust Multichip

Average [20] and normalization by quantile sketch [21,22]. A

data table (rma), together with the relative cel files and relevant

information about the experiment, is available at http://www.

ncbi.nlm.nih.gov/geo/under accession #GSE 41414.

Quality control of samples was assessed by unsupervised

multidimensional scaling (MDS) analysis on all probeset intensity

values, in order to assess the segregation efficiency of samples. In

the MDS analysis samples are positioned in a tridimensional space

on the basis of first three principal components of variability [17].

To assess differential gene expression levels, an empirical Bayes

method was employed [23]. The intensity values were filtered

using an inter quantile range (IQR) = 0,25, to remove invariant

probe-set on the basis of their distribution in the array under

analysis.

A hierarchical linear modeling approach was then used to

identify differentially expressed genes. This method is based on

fitting a linear model to estimate the variability of the studied data.

A Benjamini & Hochberg (BH)-adjusted p-value was calculated

and a p#0.05 cut-off was set. The resulting gene list was then

annotated according to the Gene Ontology (GO) database (www.

geneontology.org). This allowed assigning a category to each gene

in the list, according to three defined ‘‘ontologies’’ (i.e. terms

representing gene product properties): cellular component,

biological process and molecular function.

The expression of selected genes was quantified in real time

PCR to obtain an independent validation of microarray data. Real

time PCR was carried out as previously described elsewhere [24].

Table 1. Differentially expressed genes list.

Case ID Group Site of onset Gender Age (years)1 Duration2 ALSFRS-R Biopsied muscle

1 control 2 Male 59 2 2 deltoid

2 control 2 Female 62 2 2 deltoid

3 control 2 Male 66 2 2 deltoid

4 control 2 Female 60 2 2 deltoid

5 control 2 Female 64 2 2 deltoid

6 control 2 Female 70 2 2 deltoid

7 control 2 Male 65 2 2 deltoid

8 ALS Spinal Male 73 na 34 quadriceps

9 ALS Spinal Female 72 11 33 quadriceps

10 ALS Spinal Female 59 13 35 deltoid

11 ALS Bulbar Male 54 8 38 deltoid

12 ALS Spinal Male 72 18 35 deltoid

13 ALS Spinal Female 55 9 32 deltoid

14 ALS Bulbar Male 64 na 36 quadriceps

1Ages of patients and controls are not significantly different (p: 0.2648).
2Time from symptom onset to muscle biopsy.
doi:10.1371/journal.pone.0057739.t001
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Principal component analysis – discriminant gene

list. The discrimination has been performed using an a posteriori

unsupervised approach relying on the application of principal

component analysis (PCA) of the gene expression profiles, where

the genes represent the statistical units and the patients are used as

variables. This inversion leads to a better statistically conditioned

approach, since genes largely outnumber patients [25]. Moreover

this approach minimizes the variability in gene expression profiles

due to tissue type.

The PCA has been used to extract a list of genes that best

discriminate the two groups (patients and controls), adopting a

correlation-based approach, devoid of any overfitting/chance

significance risk. Indeed PCA is an unsupervised method, which

analyses the differences in gene expression profiles between

patients and controls, related to the very small part of the data

variability [13,25,26]. To this aim, the principal components were

extracted from a matrix having genes as statistical units and

patients as variables. Raw data from the entire gene set were used

without any a priori selection. PCA projects the initial space

spanned by the different samples into a new derived space whose

axes (principal components, PCs) are each other orthogonal. This

allows for a direct, unbiased normalization of the data field, where

the ‘shared variance’ is accounted for by the first principal

component. The minor components (from second component

onward) keep trace of the relevant differences among samples.

Figure 1. Experimental design. The flowchart schematizes the experimental steps of the statistical analysis of microarray data.
doi:10.1371/journal.pone.0057739.g001
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The analysis of such a small difference was performed in terms

of factor loadings (FL, correlation coefficients between original

variables and components) and scores.

The space of component loadings represents different individ-

uals in terms of similarities in the gene expression space. Fls are the

correlation coefficients between original variables and compo-

nents; given in our analysis the variables correspond to the

individuals, FLs allow for a quantification of the weight of each

patient and healthy sample on each principal component.

The FLs were then analyzed by a linear discriminant analysis to

find out whether and which FL allows for a separation of the data

set into patients and controls.

The component scores represent the contribution of the

observations (statistical units, that are the gene expression values

in this case) to the principal component. Thus for each gene

expression value we calculated a score, with the component having

a relevant discriminant power. This procedure allowed for a

biological association of components to groups of genes and thus

permitted a biological interpretation of the obtained discrimina-

tion.

In the space of component scores each gene is defined, and it is

possible to order genes on the basis of their scores with

components endowed with a relevant discriminant power.

Correlation analysis. The correlation existing between two

genes in the population, based on their expression trends, was

calculated using the Pearson correlation coefficient.

The quantification of the correlation between genes can be used

to analyze the link between any pair of genes. In this work we use

this information both to construct the gene network and to analyze

the link between selected genes.

Network analysis. The 100 genes that best discriminate

patients from controls, sorted according to the principal compo-

nent scores, were then analyzed in terms of gene correlation

network.

To this aim, the intergenic correlation structure was represented

as a network, where the nodes were genes connected by edges.

The genes were connected if the correlation coefficient between

their expression values in the population was higher than a given

threshold (i.e. the trend of expression values over the population is

similar) [27].

The choice of the threshold is not trivial. Many biologically

relevant connections could not be included in such network if the

threshold is too high, while lowering the correlation threshold will

significantly increase the number of potential links, including

many random ones. The choice of the threshold has been made

according to the results obtained from surrogate data analysis,

which allows quantifying the connections detected by chance or

due to noise [27]. Surrogate data effectively destroy any

correlation between pair of gene expression values across the

population, by randomly shuffling the gene expression values, i.e.,

by reassigning each gene expression value to a different individual.

On the other hand, if there are no correlation, randomly shuffling

the expression values across individuals will not alter the

correlation value: any associations should still be small and

attributable to chance. To this aim, individuals in the population

are indexed from 1 to n. The data are shuffled by computing a

random permutation of the indices 1,..., n and assigning the ith

gene expression value to the individual whose index is given by the

ith element of the permutation. The shuffled data were then

analyzed in terms of number of connections, given a certain value

of correlation threshold. To increase the robustness of the method,

1000 realizations of surrogate data have been generated. The

threshold was set by computing the average number of resulting

connections for the surrogate data. Particularly, given N genes, the

number of potential connections is N*(N21)/2 (for 100 genes it

results in 4950 potential connections). Based on these consider-

ations, the threshold for the correlation coefficient was set so that

the number of connection for surrogate data was at least 10%

lower than that obtained for original data, in this case 0.95. The

wiring pattern of the networks was set on the basis of their actual

correlation coefficient, as computed over the entire population.

The global topological structure of the networks was analyzed

by using the Network Workbench, a large-scale network analysis,

modeling and visualization toolkit for biomedical, social science,

and physics research (freely downloadable at http://nwb.cns.iu.

edu).

Besides the visual inspection of the networks, the functional

connection of the genes was quantified by computing the average

degree (AD) of the gene network. The AD denotes the number of

links that connect a node to the rest of the network and is

calculated as AD = 2*C/N, where C is the number of connections

and N is the number of genes [28].

Functional categorization. Both the gene expression list

and the network-based gene list have been functionally categorized

using the Database for Annotation, Visualization, and Integrated

Discovery (DAVID; http://david.abcc.ncifcrf.gov/) [29]. The

algorithms implemented in this software allow identifying over-

represented gene ontology (GO) terms with respect to the total

number of genes assayed and annotated. To this aim, DAVID

applies a modified Fisher exact test, to establish if the proportion of

genes falling into an annotation category significantly differs from

the background group of genes. In addition, this tool enables the

fine mapping of genes within well-defined signaling and/or

metabolic pathways, classified in the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database (www.genome.jp/kegg/).

The KEGG mapping tool was employed for the functional

categorization of the gene regulatory networks.

For this purpose, AffyGene IDs, corresponding to the genes in

the selected list, were used as queries and the whole set of genes

represented on the array was used as the background group. A

false discovery rate (FDR) #0.05 was set.

Results

Differentially Expressed Gene List
The MDS analysis based on the expression level of all the 8793

probesets spotted on the array was performed in order to evaluate

the segregation of the sample groups. As illustrated in figure 2, the

analysis showed the efficient segregation of ALS samples from

control samples.

To identify differentially expressed genes, the dataset was

filtered by IQR, which allowed obtaining 2478 transcript clusters

out of 8793. Thereafter, an absolute log2-fold change $1 and a

BH-corrected P-value #0.05 were used as cutoffs (figure 3). This

allowed identifying 96 differentially expressed transcripts (table 1),

including 16 downregulated and 80 upregulated genes in the ALS

patient samples compared to controls.

According to the GO annotations, the gene list included

functional categories related to the skeletal muscle structure and

metabolism (table 2). In particular, three downregulated genes

(namely PGAM2, FBP2 and ENO3, all muscle-specific) and an

upregulated one (PFKP), encode enzymes involved in glycolysis

and gluconeogenesis. Also, nine transcripts included in the gene

list are active during skeletal muscle contraction and skeletal

system development. These latter included: four distinct myosin

chains (MYH3, MYH8, MYL3, MYL5), myogenin (MYOG), the

myogenic factor 6 (MYF6) and collagens (COL1A1, COL1A2,

COL3A1). In addition, the forkhead box O1 (FOXO1) gene,

Mitochondrial Network Genes in ALS Skeletal Muscle
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belonging to the FoxO family members present in skeletal muscle,

and the cAMP-dependent protein kinase regulatory subunit RI1

alpha (PRKAR1A) were significantly up-regulated (table 2).

To further investigate the possible transcriptional interplay for

FOXO1 and PRKAR1A the correlation existing between each of

the two genes and all the other genes in the dataset was analyzed.

The correlation coefficient between FOXO1 and PRKAR1A

resulted statistically significant (0.89), suggesting that the expres-

sion trends of these two genes were closely correlated in the ALS

group. In addition, the gene showing the highest degree of

correlation with PRKAR1A in the ALS group was the Tripartite

motif containing 32 (TRIM32) (correlation coefficient = 0.97). The

same gene showed a lower but still significant correlation with

FOXO1 (correlation coefficient = 0.85).

The results of quantitative real time PCR, performed to amplify

selected genes from the gene list, confirmed the trends of gene

expression obtained with microarray analysis (figure S1).

Biological Interpretation of the Differentially Expressed
Gene List

The functional analysis of the gene list was accomplished using

DAVID annotation tool, which allowed identifying the most

significant biological functions in the data set (FDR #0.05). In

particular, the biological processes were linked to: skeletal muscle

development/contraction and response to organic substance,

consistently with previous data [30]. The most significant cellular

component and molecular function categories involved in this

analysis were correlated to ‘‘actin cytoskeleton’’ and ‘‘cytoskeletal

protein binding’’, respectively. The most represented ‘biological

pathway’ categories were represented by focal adhesion, regulation

of actin cytoskeleton and glycolysis/gluconeogenesis. Complete

results are reported in table S1.

Discriminant Gene List
The PCA performed on the microarray dataset allowed

categorizing the principal components (PCs) of data variability.

Usually, the first PC (PC1) accounts for more than 97% of the total

variability and represents the ‘tissue type attractor’ [14], i.e. the

typical profile of the analyzed tissue. The vast part of variance

explained by PC1 in this study confirmed the samples homoge-

neity, as a result of the careful sample selection carried out based

on patients’ clinical features (Table 1).

The FL that further best discriminated between ALS patients

and controls, corresponded to the second PC. Hence, the scores

related to the PC2 were used to generate the list of most

discriminant genes. The 100 genes with the highest FL scores (in

absolute value) for the PC2 are showed in table 3, sorted in

descending order. Common genes featured in both the differen-

Figure 2. Multidimensional scaling of expression data. MDS of the expression profiles of ALS and controls shows the correct segregation of
samples (see text for details). ALS samples are represented by spheres and controls by cubes.
doi:10.1371/journal.pone.0057739.g002
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tially expressed gene list (table 2) and the discriminant gene list

(table 3) were 59 and are reported in bold in table 3.

Network Analysis of the Discriminant Genes
In order to go in depth into the mutual relations between the

selected genes, the correlation structure connecting the 100 best

discriminant genes was represented as a network, in which the

nodes are genes connected by edges.

The graphical representation of the gene networks observed in

the two experimental groups (figure 4), clearly showed that genes

that were isolated in controls, formed a highly inter-connected

sub-network in the ALS group. The correspondence between the

numerical labels and the gene ontology annotation is displayed in

table 3. For ALS patients, the AD of the network resulted to be

1.16. The network obtained from the normal group had many

isolate nodes (83) and an AD as low as 0.2. The widest disease-

related sub-network (formed by 22 genes) was mainly formed by

mitochondrial genes, while the small sub-networks corresponded

to ACTN3- and CHRNA1-correlated genes (figure 4, table 3).

Biological Interpretation of the Networks
The DAVID-based functional analysis of genes connected in the

ALS network, allowed identifying the over-represented functional

categories in the list. Table 4 shows the categorization of the genes

according to the GO terms. The top biological processes

represented in the network (generation of precursor metabolites

and energy; striated muscle contraction) were clearly connected to

the muscle metabolic activity due to the contractile function

(table 4). The molecular function categories indicated that genes

interconnected in the ALS network shared a role in oxidative

metabolism and in muscle structure definition. Finally, according

to the cellular component ontology annotation of the network, a

large number of networking genes in the ALS group encoded

protein located in the intracellular compartment, either in the

mitochondrion or in the myosin complex (table 4).

Consistently, Kegg pathway mapping indicated that the most

represented pathway was the ‘‘Oxidative phosphorylation’’, with a

FDR = 3.5610207, and fifteen included genes (namely NDUFA4,

NDUFB3, NDUFB4, NDUFA3, COX7A1, NDUFA6, COX8A,

NDUFAB1, COX7C, ATP5G1, COX5B, COX6C, COX6B1,

COX6A2, ATP5J). These data further indicated that mitochon-

drial activity is significantly affected in the ALS muscle.

Discussion

This study attempted to provide a systemic view of the human

ALS muscle expression profile, in terms of networks based on

mutual correlations between intervening genes. A homogeneous

patient group was recruited in this study, which comprised ALS

patients with a comparable clinical background and disease stage.

This homogeneity was reflected by the clear-cut segregation of

patients and controls into two groups, based on MDS and PCA.

This segregation also suggested that the gene expression profiles

observed in the ALS group reflected the extent of skeletal muscle

damage, rather than the site of muscle biopsy (either deltoid or

quadriceps muscle). Pradat and colleagues previously analyzed the

gene expression changes occurring in skeletal muscle from ALS

patients in different stages of the disease [30]. Actually, 11 out of

the 38 most significant transcripts described in that study were also

present in our gene list. In particular we noted the upregulation of

the myogenic factor 4 (MYOG) and the concomitant increase in

the expression of the acetylcholine receptor subunits (CHRNA1),

known to be under the transcriptional control of MYOG [31].

These genes were coherently upregulated in ALS muscles of both

human patients and mice, reflecting the response of muscle to the

increasing loss of innervation [30]. It is noteworthy that

acetylcholine receptor expression has already been used for

monitoring the effects of therapy on disease progression in the

ALS mice [32].

Also, the small GTP-binding protein RRAD, involved in the

modulation of cytoskeleton remodeling and inhibition of voltage-

gated calcium channel activity, and GADD45A, a cell cycle

inhibitor involved in the apoptosis of atrophying muscle fibers,

were upregulated in both the datasets presented in this study and

in that by Pradat and colleagues. Moreover, ACTN3, HDAC4,

PFKP, whose expression correlated with deltoid muscle injury in

ALS patients [30], resulted significantly modulated in our data. In

particular, ACTN3 is both the top down-regulated gene and the

top-discriminating gene (i.e. the gene that best discriminates

between ALS group and controls in the network analysis). On the

whole, this independent reproduction of data on an additional

sample set, indicates the robustness of the experimental design,

along with a confirmation of the key features of the human ALS

muscle gene expression profile.

In addition, this study provided original insights into the

coordinated regulation of gene expression and its perturbation

occurring in the human skeletal muscle of ALS patients, as a result

Figure 3. Volcano plot. This representation of data resulting from
microarray analysis compares the size of the fold change with the
statistical significance level. x-axis: log2 of FC (fold change of differential
gene expression between the ALS patients and controls); y-axis:
corresponding p-value resulting from t-test used to measure the
significance of the difference between samples in groups.
doi:10.1371/journal.pone.0057739.g003
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Table 2. Differentially expressed genes list.

Probe Set ID Gene Title Gene Symbol P.Value FCa

206633_at cholinergic receptor, nicotinic, alpha 1 (muscle) CHRNA1 ,0,0001 18,96

203725_at growth arrest and DNA-damage-inducible, alpha GADD45A ,0,0001 9,47

208623_s_at ezrin EZR ,0,0001 3,83

201012_at annexin A1 ANXA1 ,0,0001 4,16

206559_x_at eukaryotic translation elongation factor 1 alpha 1 EEF1A1 ,0,0001 4,19

201037_at phosphofructokinase, platelet PFKP ,0,0001 2,59

202237_at nicotinamide N-methyltransferase NNMT ,0,0001 8,11

37996_s_at dystrophia myotonica-protein kinase DMPK ,0,0001 3,46

204892_x_at eukaryotic translation elongation factor 1 alpha 1 EEF1A1 ,0,0001 4,35

217755_at hematological and neurological expressed 1 HN1 ,0,0001 2,25

209288_s_at CDC42 effector protein (Rho GTPase binding) 3 CDC42EP3 ,0,0001 6,83

204802_at Ras-related associated with diabetes RRAD ,0,0001 3,71

204225_at histone deacetylase 4 HDAC4 ,0,0001 3,25

207024_at cholinergic receptor, nicotinic, delta CHRND ,0,0001 2,19

211340_s_at melanoma cell adhesion molecule MCAM ,0,0001 2,09

201289_at cysteine-rich, angiogenic inducer, 61 CYR61 ,0,0001 3,98

203571_s_at chromosome 10 open reading frame 116 C10orf116 ,0,0001 3,84

209014_at melanoma antigen family D, 1 MAGED1 ,0,0001 2,50

202769_at cyclin G2 CCNG2 ,0,0001 2,97

202284_s_at cyclin-dependent kinase inhibitor 1A (p21, Cip1) CDKN1A ,0,0001 5,62

202310_s_at collagen, type I, alpha 1 COL1A1 ,0,0001 4,05

218718_at platelet derived growth factor C PDGFC ,0,0001 2,96

202403_s_at collagen, type I, alpha 2 COL1A2 ,0,0001 2,90

205145_s_at myosin, light chain 5, regulatory MYL5 ,0,0001 4,17

208682_s_at melanoma antigen family D, 2 MAGED2 ,0,0001 2,42

220359_s_at cAMP-regulated phosphoprotein, 21 kDa ARPP21 ,0,0001 3,52

222162_s_at ADAM metallopeptidase with thrombospondin type 1 motif, 1 ADAMTS1 ,0,0001 3,46

207282_s_at myogenin (myogenic factor 4) MYOG ,0,0001 2,27

200782_at annexin A5 ANXA5 ,0,0001 2,04

205132_at actin, alpha, cardiac muscle 1 ACTC1 ,0,0001 4,72

201666_at TIMP metallopeptidase inhibitor 1 TIMP1 0,00011 2,11

203186_s_at S100 calcium binding protein A4 S100A4 0,00011 2,05

204257_at fatty acid desaturase 3 FADS3 0,00011 2,03

209785_s_at phospholipase A2, group IVC PLA2G4C 0,00011 2,13

202157_s_at CUGBP, Elav-like family member 2 CELF2 0,00012 2,05

203579_s_at solute carrier family 7, member 6 SLC7A6 0,00014 3,33

206703_at cholinergic receptor, nicotinic, beta 1 (muscle) CHRNB1 0,00014 2,65

200665_s_at secreted protein, acidic, cysteine-rich (osteonectin) SPARC 0,00014 2,59

201368_at zinc finger protein 36, C3H type-like 2 ZFP36L2 0,00017 2,58

202724_s_at forkhead box O1 FOXO1 0,00018 2,14

217728_at S100 calcium binding protein A6 S100A6 0,00018 2,50

202854_at hypoxanthine phosphoribosyltransferase 1 HPRT1 0,00020 2,34

201300_s_at prion protein PRNP 0,00021 2,82

34471_at myosin, heavy chain 8, skeletal muscle, perinatal MYH8 0,00033 5,52

203232_s_at ataxin 1 ATXN1 0,00033 2,35

202133_at WW domain containing transcription regulator 1 WWTR1 0,00033 2,07

203156_at A kinase (PRKA) anchor protein 11 AKAP11 0,00033 2,06

201141_at glycoprotein (transmembrane) nmb GPNMB 0,00034 2,16

208683_at calpain 2, (m/II) large subunit CAPN2 0,00041 2,16
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Table 2. Cont.

Probe Set ID Gene Title Gene Symbol P.Value FCa

205940_at myosin, heavy chain 3, skeletal muscle, embryonic MYH3 0,00042 4,09

212271_at mitogen-activated protein kinase 1 MAPK1 0,00042 2,14

204039_at CCAAT/enhancer binding protein (C/EBP), alpha CEBPA 0,00047 2,40

200603_at protein kinase, cAMP-dependent, regulatory, type I, alpha PRKAR1A 0,00047 2,02

219825_at cytochrome P450, family 26, subfamily B, polypeptide 1 CYP26B1 0,00058 2,73

211962_s_at zinc finger protein 36, C3H type-like 1 ZFP36L1 0,00058 2,49

211161_s_at collagen, type III, alpha 1 COL3A1 0,00059 3,07

201417_at SRY (sex determining region Y)-box 4 SOX4 0,00060 2,36

209118_s_at tubulin, alpha 1a TUBA1A 0,00073 2,11

201530_x_at eukaryotic translation initiation factor 4A1 EIF4A1 0,00076 2,22

206717_at myosin, heavy chain 8, skeletal muscle, perinatal MYH8 0,00080 5,91

201761_at methylenetetrahydofolate dehydrogenase 2 MTHFD2 0,00099 2,74

202995_s_at fibulin 1 FBLN1 0,00099 2,49

201744_s_at lumican LUM 0,00100 2,31

202598_at S100 calcium binding protein A13 S100A13 0,00102 2,18

200059_s_at ras homolog gene family, member A RHOA 0,00102 2,09

206306_at ryanodine receptor 3 RYR3 0,00108 3,46

206059_at zinc finger protein 91 ZNF91 0,00139 2,14

211985_s_at calmodulin 1 (phosphorylase kinase, delta) CALM1 0,00162 2,51

212670_at elastin ELN 0,00170 2,50

200696_s_at gelsolin GSN 0,00175 2,05

212099_at ras homolog gene family, member B RHOB 0,00287 3,05

201329_s_at v-ets erythroblastosis virus E26 oncogene homolog 2 ETS2 0,00334 2,74

200866_s_at prosaposin PSAP 0,00376 2,27

201426_s_at vimentin VIM 0,00430 2,62

204719_at ATP-binding cassette, sub-family A (ABC1), member 8 ABCA8 0,00447 2,08

206372_at myogenic factor 6 (herculin) MYF6 0,00461 2,13

202838_at fucosidase, alpha-L- 1, tissue FUCA1 0,00493 2,20

207992_s_at adenosine monophosphate deaminase 3 AMPD3 0,00529 2,06

201946_s_at chaperonin containing TCP1, subunit 2 (beta) CCT2 0,00578 2,32

208607_s_at serum amyloid A1/serum amyloid A2 SAA1/SAA2 0,01840 2,10

205589_at myosin, light chain 3, alkali; ventricular, skeletal, slow MYL3 0,00017 22,66

203766_s_at leiomodin 1 (smooth muscle) LMOD1 0,00062 22,28

205738_s_at fatty acid binding protein 3, muscle and heart FABP3 0,00151 22,99

202428_x_at diazepam binding inhibitor DBI 0,00176 22,27

205736_at phosphoglycerate mutase 2 (muscle) PGAM2 0,00185 23,14

218818_at four and a half LIM domains 3 FHL3 0,00384 22,39

205330_at meningioma (disrupted in balanced translocation) 1 MN1 0,00397 22,55

219983_at HRAS-like suppressor HRASLS 0,00397 22,11

205478_at protein phosphatase 1, regulatory (inhibitor) subunit 1A PPP1R1A 0,00421 22,45

204483_at enolase 3 (beta, muscle) ENO3 0,00924 22,17

216733_s_at glycine amidinotransferase GATM 0,00981 22,01

206891_at actinin, alpha 3 ACTN3 0,01094 24,82

206844_at fructose-1,6-bisphosphatase 2 FBP2 0,01511 22,97

203824_at tetraspanin 8 TSPAN8 0,01882 22,10

204783_at myeloid leukemia factor 1 MLF1 0,02132 22,53

208691_at transferrin receptor (p90, CD71) TFRC 0,02744 22,28

aFC: Fold Change.
doi:10.1371/journal.pone.0057739.t002
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of the systems biology approach employed in the analysis of gene

regulatory networks. This allowed hypothesizing previously

unknown links between genes showing similar expression trends

in ALS muscles compared to controls. In particular, the increased

inter-gene connections, observed in the ALS group, should reflect

the predicted universal effect of stress condition on biological

systems, described by Gorban and colleagues [33]. The gene

regulatory network, correlating genes that share common regula-

tion within a biological system, tends to be constrained by the

stressful event into a much more correlated model. Looking at the

biological functions of the strongly connected genes of the ALS

patients, a large number of mitochondrial genes belonging to the

oxidative phosphorylation pathway were represented, along with

two smaller networks including ACTN3 and CHRNA1. Distinct

evidence has recently indicated that mitochondrial content, shape

and function correlate with muscle wasting [9,34,35]. The gene

networks observed in this study could confirm a sort of recognition

of a ‘crisis area’ correspondent to mitochondrial activity, Z-line

organization and CHRNA1 related cluster.Mitochondrial func-

tion, shape and number are closely related to muscle size and

integrity. In particular, after denervation of the tibialis anterior

muscle, genes typical of fast fibers were downregulated, whereas

those typical of slow fibers were upregulated. These changes in

gene expression appear to be coordinated in the direction of a fast-

to-slow transformation [36]. Consistently, the expression profiles

of denervated muscles revealed the molecular signature of a

reduced metabolic activity [37].

On this regard, Romanello and colleagues demonstrated that

impaired mitochondrial function might activate signals that trigger

muscle atrophy in mice, inducing a condition of energy unbalance

through the AMP -activated protein kinase (AMPK) signaling [9].

Moreover, the connection between PRKAR1A and FOXO1,

observed in this study, may provide some hints towards the

delineation of the molecular events associated to human muscle

atrophy. PRKAR1A encodes a regulatory subunit of the cAMP-

dependent protein kinase, which has been previously demonstrat-

ed to accumulate in the NMJ [38]. FOXO1 belongs to the

forkhead family of transcription factors, playing a key role in the

regulation of skeletal muscle mass. In particular, muscle-specific

overexpression of FoxO1 is sufficient to cause skeletal muscle

atrophy in vivo [39].

Also, TRIM32, a ubiquitin ligase, was highly correlated with

both PRKAR1A and FOXO1 in this study. Recently Cohen and

colleagues demonstrated that Trim32 ubiquitynates thin filaments

(actin, tropomyosin, troponins) and Z-band components (a-

actinin), promoting their degradation, during fasting-induced

atrophy in mice [40]. It is worth noticing that TRIM32 is not

differentially expressed between ALS patients and controls,

although being significantly connected with PRKAR1A and

FOXO1 in this study. It has been previously shown that, despite

its role, Trim32 expression does not increase in fasting-induced

atrophy [41].

The gene regulatory network observed in the ALS group,

included also a small subnetwork of downregulated genes:

ACTN3, ENO3 and FBP2. ACTN3 is one of the four human

Figure 4. Gene regulation networks. Graphical representation of the inter-gene connection existing in the ALS group (a) and controls (b). The
correspondence between the numerical labels and the gene ontology annotation is displayed in table 3.
doi:10.1371/journal.pone.0057739.g004
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alpha-actinin isoforms, whose expression was directly associated to

the disease progression in human ALS muscles [30]. ENO3 is a

muscle-specific enolase, catalyzing the conversion of 2- phospho-

glycerate into 2-phosphoenolpyruvate, whose deficiency has been

associated to a metabolic myopathy [42]. FBP2 is a muscle-specific

regulatory enzyme of glyconeogenesis; biphosphatases (FBPase)

are located on both sides of the Z line, in the isotropic regions of

myocytes, where they bind strongly to a-actinin, as demonstrated

through co-sedimentation experiments [43].

Table 4. DAVID functional analysis.

BIOLOGICAL PROCESS

Term Count FDR

GO:0006936,muscle contraction 11 ,0,001

GO:0006941,striated muscle contraction 7 ,0,001

GO:0003012,muscle system process 12 ,0,001

GO:0006091,generation of precursor metabolites and energy 18 ,0,001

GO:0006119,oxidative phosphorylation 8 0.0035

GO:0006120,mitochondrial electron transport, NADH to ubiquinone 6 0.0086

GO:0042773,ATP synthesis coupled electron transport 6 0.0361

GO:0042775,mitochondrial ATP synthesis coupled electron transport 6 0.0361

GO:0015980,energy derivation by oxidation of organic compounds 8 0.0444

CELLULAR COMPONENT Count FDR

Term

GO:0044429,mitochondrial part 16 0.0019

GO:0005739,mitochondrion 21 0.0035

GO:0030016,myofibril 8 0.0047

GO:0005747,mitochondrial respiratory chain complex I 6 0.0054

GO:0045271,respiratory chain complex I 6 0.0054

GO:0030964,NADH dehydrogenase complex 6 0.0054

GO:0005859,muscle myosin complex 5 0.0061

GO:0016460,myosin II complex 5 0.0092

GO:0031090,organelle membrane 20 0.0158

GO:0030017,sarcomere 7 0.0285

GO:0016459,myosin complex 6 0.0474

MOLECULAR FUNCTION

Term

Category Count FDR

GO:0015078,hydrogen ion transmembrane transporter activity 9 ,0,001

GO:0008307,structural constituent of muscle 7 ,0,001

GO:0015077,monovalent inorganic cation transmembrane transporter activity 9 ,0,001

GO:0015002,heme-copper terminal oxidase activity 7 ,0,001

GO:0016675,oxidoreductase activity, acting on heme group of donors 7 ,0,001

GO:0004129,cytochrome-c oxidase activity 7 ,0,001

GO:0016676,oxidoreductase activity, acting on heme group of donors, oxygen as acceptor 7 ,0,001

GO:0008092,cytoskeletal protein binding 15 0.0058

GO:0022890,inorganic cation transmembrane transporter activity 9 0.0082

GO:0050136,NADH dehydrogenase (quinone) activity 6 0.0111

GO:0008137,NADH dehydrogenase (ubiquinone) activity 6 0.0111

GO:0003954,NADH dehydrogenase activity 6 0.0111

GO:0016655,oxidoreductase activity, acting on NADH or NADPH, quinone or similar compound as acceptor6 0.0212

GO:0016651,oxidoreductase activity, acting on NADH or NADPH 7 0.0217

doi:10.1371/journal.pone.0057739.t004
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This evidence supports the hypothesis that glyconeogenic

enzymes in striated muscle form a metabolic complex on both

sides of Z line.

On the whole, the results obtained in this study, supported by

some of the most recent literature data, could pave the way to

future targeted studies focusing on the functional link between

genes involved in metabolic pathways and muscle contractility.

Supporting Information

Figure S1 qPCR validation. Real-time PCR validation.

Results of real-time PCR on selected genes. Relative quantity

values (RQ) obtained in qPCR are compared to fold changes

obtained with microarray analysis (mA). Results for all genes are

statistically significant (p,0.01).

(TIF)

Table S1

(TXT)
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