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Abstract

We discuss the applicability of the Microsoft cloud computing platform, Azure, for bioinformatics. We focus on the usability
of the resource rather than its performance. We provide an example of how R can be used on Azure to analyse a large
amount of microarray expression data deposited at the public database ArrayExpress. We provide a walk through to
demonstrate explicitly how Azure can be used to perform these analyses in Appendix S1 and we offer a comparison with a
local computation. We note that the use of the Platform as a Service (PaaS) offering of Azure can represent a steep learning
curve for bioinformatics developers who will usually have a Linux and scripting language background. On the other hand,
the presence of an additional set of libraries makes it easier to deploy software in a parallel (scalable) fashion and explicitly
manage such a production run with only a few hundred lines of code, most of which can be incorporated from a template.
We propose that this environment is best suited for running stable bioinformatics software by users not involved with its
development.
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Introduction

There has been a rapid increase in the number of cloud

computing solutions across the computational biology community.

For example, cloud computing has already been utilised for

bioinformatics workflows [1], comparative genomics [2], gene set

analysis for biomarkers [3], identifying epistatic interactions

between single-nucleotide polymorphisms [4], microbial sequence

analysis [5], multiple sequence alignment algorithms [6], pan-

demic simulations [7], personal genome variant annotation [8],

protein annotation [9], proteomics analysis [10] and systems

biology [11].

The community has explored different cloud solutions, such as

hybrid clouds [12,13], Hadoop-like architectures [14], and the

Google App Engine [15]. However, despite the wide variety of

different cloud computing platforms available, most of the existing

work in computational biology has focussed on Amazon Web

Services (AWS) as provided by Amazon, in particular their Elastic

Cloud Computing (EC2) service [16].

In this paper we will consider an alternative type of cloud

computing platform: namely Azure the cloud computing platform

provided by Microsoft. The rest of this paper will be organised as

follows. We shall briefly explain the qualitative difference between

this platform and the more traditional platforms such as Amazon

EC2. We will explain the importance of coordinating large

numbers of Virtual Machines (VM’s) using Job Management

software for researchers. We will explain the features of Azure and

contrast them with those of other cloud computing platforms,

pointing out strengths and weaknesses. We will present results

based on a typical bioinformatics workflow using R to analyse

microarray data computed on Azure, initially to determine if it

reproduces locally computed results and then to determine if its

performance is comparable to running the same task locally.

Finally we draw conclusions about the applicability of Azure and

draw some general lessons on how cloud computing would ideally

evolve for bioinformatics.

Cloud computing fundamentals
There exists an extensive literature providing definitions of

cloud computing [17]. We refer the reader to table 1 with cloud

computing related definitions. In essence clouds are large server

farms which make extensive use of virtualisation to provide outside

users with effectively arbitrarily large numbers of Virtual Machines

(VM’s) and in some respects they can be seen as an extension of

the idea of utility computing that was carried forward by Grid

Computing in the 1990’s [18].

The most commonly used cloud computing infrastructures in

bioinformatics, such as Amazon EC2, are referred to as

Infrastructure as a Service (IaaS), where each VM can be accessed

directly via a command line interface. Others, such as Azure,

Google AppEngine and Heroku [19] are referred to as Platform as

a Service (PaaS) as they supply additional services and program-

matic access to each VM. It should be noted that the divisions

between these different types of platforms are becoming increas-

ingly blurred - Azure also provides an IaaS and Amazon provides

a PaaS built on EC2 called Elastic Beanstalk [20].

Nevertheless there is a substantial difference between using

Azure and using IaaS infrastructures which translates into a steep

learning curve particularly for bioinformatics developers who

typically have a background in writing software for Linux systems.
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The above are consistent with formal definitions that are

provided by, for example, NIST [21]. It should be noted that these

definitions do not necessarily imply that a PaaS is built upon an

IaaS. The functional construction of these clouds is complex and

beyond the scope of this article.

The basic issues for cloud computing and its application in

bioinformatics have already been discussed in detail elsewhere

[16,22]. In brief, the key advantage of cloud computing for

bioinformatics researchers is the ability to scale an analysis up and

complete the task in as short a period of time as possible. Many

bioinformatics researchers do not use high-throughput computing

resources to carry out this phase on a frequent basis and hence it is

efficient to lease time on a cloud computing platform for a

comparatively small sum of money (e.g. hundreds of U.S. dollars)

that can be readily absorbed into the day to day costs of a project.

Batch mode submission
While it is often possible to consider problems which require a

high level of parallelisation (using message passing or threading)

[23,24], the prohibitive amount of development time and resource

required to do this tends to direct researchers into pursuing the

‘‘low lying fruit’’ and doing analysis which can be trivially

decomposed into a set of jobs that run in parallel with each other

[25]. Schematically (using the example of an R script analysing a

set of differently-sized data sets) such a batch mode of operation is

shown in Figure 1.

For many calculations the number of cores required is much

larger than can be allocated onto a single computer. Hence, apart

from access to the cloud platform itself, job management software

is essential. Job managers will do a variety of tasks to aid the above,

in particular submitting the tasks to the allocated VMs, creating

appropriately named log files and managing failures of individual

VMs during the running of the job. This is not trivial to carry out

on Amazon EC2. Software such as StarCluster http://star.mit.

edu/cluster/ can do this on EC2 but the configuration of

StarCluster is a not an easy task and requires a level of familiarity

with shell scripts. As a result the full power of these resources can

only be employed by computational biologists with extensive

experience of shell-scripting as well as expertise in the software

they wish to use. This excludes the large number of individuals

without those skills whose research could benefit from access to

such resources. Cloud computing platforms represent very large

software stacks but surprisingly do not by default include this type

of job management software.

Azure provides a set of C# libraries referred to as the Generic

Worker (GW) to perform a similar set of tasks as a Job Manager.

This provides a framework to write C# software to perform the

tasks that a Job Manager can do for tailored set of software. Hence

it is possible to develop a bespoke interface for users to manage

batch jobs for a particular set of software.

Azure features and comparison
In this section we will provide a more detailed explanation of

the Azure infrastructure with comparisons where possible with the

Amazon EC2 service. The reader is referred to Table 2 for

comparisons of features at a glance. In particular, we will discuss

the computational services they provide, disk space, and their ease

of use from the perspective of a typical bioinformatics developer

with extensive experience of developing software on a Linux

architecture and of a biologist with little or no scripting experience.

We will also make comparisons from the perspective of costing.

Computational Services
As noted previously, Azure provides an IaaS and PaaS - which

Microsoft refer to, respectively, as Virtual Machines and Cloud

services. The IaaS offering allows one to deploy VM’s which run

either pre-built Windows Server 2008 or Linux images, or to

upload one’s own customized image. This service is similar to the

one offered by other IaaS providers but does not make use of the

GW libraries discussed above for job management and hence we

will not focus further on it here.

The Azure PaaS provides programmatic access from .NET

(including C#), Java, node.js, PHP, Ruby and Python though at

present the GW libraries are only available for C# and hence the

other languages are largely for data transfer. It is comprised of two

‘‘roles’’: the Web Role designed for setting up a web-based service

and the Worker Role which is designed to run applications in a

batch production mode. Frequently these can be in parallel with

Table 1. Definitions of Cloud Computing Terms.

Term Explanation Example

VM Virtual Machine - a piece of software that emulates the behaviour of a separate computer running an
Operating System.

IaaS Infrastructure as a Service - VM’s can be accessed directly via a command line interface. EC2, RackSpace, OpenStack

PaaS Platform as a Service - VM’s can only be accessed programmatically Azure, AppEngine, Elastic BeanStalk,
Heroku

Job manager Software which manages the submission of an arbitrary number of executables (jobs) over a large
number of computers which typically vary in their parameters. Job Management software will typically
include the creation of log files for each run in a systematic fashion and deal with failures in an orderly way.

StarCluster, Generic Worker, Condor,
Oracle Grid Engine

Software stack A set of software that communicate with each other in a hierarchical fashion. In the context of cloud computing,
this allows the decoupling of issues that are relevant to each local computer with global issues such as their
overall management.

Image Bit-for-bit copy of the state of a particular VM which can then be deployed elsewhere. As a result, one can
use a VM which runs locally or on a cloud which is configured precisely with the software and data the
user requires.

MapReduce A protocol for distributed systems that notes that in the analysis of large data sets distributed over
many VM’s require one (Map) step that has to be executed by all the VM’s on the data it has,
followed by another (Reduce) step where the results of the Map step are then collated in some
fashion to one VM.

Hadoop, HDInsight, Greenplum

doi:10.1371/journal.pone.0102642.t001
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Figure 1. Batch mode operation schematic.
doi:10.1371/journal.pone.0102642.g001

Table 2. Comparison of Cloud Computing Features.

Feature Microsoft Azure Amazon EC2

Infrastructure provision PaaS (Cloud Service) and IaaS (Virtual Machines) IaaS, also PaaS via Elastic Beanstalk

Job Manager? Via Generic Worker libraries Yes.

Operating Systems available Windows Server 2008 on PaaS Windows and Linux on IaaS Linux and Windows

Data Storage Mass store S3 Storage

MapReduce available? Yes Yes

SQL available? Yes Yes

Ease of use for Linux developer Learning curve to get familiar with C#; authentication
methods not yet trivial

Provision of excellent tutorials plus extensive community
support.

Ease of use for user GW allows development of tailored tools Requires experience of scripting or workflow software such as
Galaxy or Taverna.

doi:10.1371/journal.pone.0102642.t002
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each other, with a web role passing on tasks to a worker role. Both

roles use fixed-configuration VMs that are based on a Windows

Server Operating System. The major difference between the roles

is that the web role has IIS (Microsoft’s web server software)

installed on it. VMs (and the roles) can vary from the equivalent of

1 CPU with 760 Mbyte memory and 20 Gbyte disk space running

nominally on 1 GHz CPU to 8 CPU with 56 Gbyte memory and

2 Tbyte storage running nominally on a 1.6 GHz CPU.

We note that a MapReduce service is also available on Azure

called HDInsight.

Worker Role
The worker role is designed for running large numbers of jobs.

Efficient use of this type of role has been improved significantly by

the provision of an additional set of libraries from Microsoft called

the Generic Worker (GW) which can be accessed from http://

resources.venus-c.eu. In particular these libraries can be used

within a C# program to submit and efficiently manage jobs

submitted to a set of worker roles, as illustrated in Figure 2. In this

framework the software runs in two modes. In the first mode an

application (which can be a simple executable or a more complex

workflow of executables) is uploaded to Azure storage along with a

description of the application (in particular the expected list of

parameters that will be used in the application). In the second

mode the application is transferred from storage and called with a

specific set of parameters. The GW provides efficient job

management and hence allows a straightforward means to scaling

a task. Activation or deactivating of instances of the worker roles

can be called within a Windows power shell script or via the code.

Additional software can be installed silently at the start of each

run. It is possible to construct a workflow where the output from

one worker role running one type of executable passes the data

onto another worker running another executable and so on,

though we have not explored this option. In addition to the demos

provided by Microsoft we have developed code that uses the GW

to run an R script which can access data that is on Azure storage.

The source code for this can be downloaded from http://gene.cs.

rhul.ac.uk/RAzure/GWydiR.zip. Details for setting up and using

the GW for a sample R script are given in Appendix S1.

Web Role
As the name suggests the Web Role is designed for setting up

web services on Azure. These services can be set up using

ASP.NET and C# to create web pages through which a user can

interact with programs and data. Web Roles are not designed to

run large production runs but can act as a front end by passing

data onto worker roles. Obviously this is not optimal for a standard

production run where individual failures should be detected and

rerun on an as-required rather than as-expected basis. Nonethe-

less, they can be used to implement tasks such as large uploads of

data to the Azure mass storage facilities.

Data storage and Transfer
Long term storage of data is provided via a mechanism that is

similar to Amazon’s S3 system. Data is stored in containers which

are effectively a single layer of a directory. Individual files are

referred to as blobs. It is possible to recreate a pseudo-directory

hierarchy by appropriate naming of the blobs with slash characters

as in a data path. Microsoft also provides the Azure Marketplace

(http://datamarket.azure.com/) where data sets and applications

for Azure can be made available.

It is possible to set up a SQL database within Azure for both

IaaS and PaaS. The Azure Storage Explorer from Neudesic

(http://azurestorageexplorer.codeplex.com) allows data to be

browsed or transferred to or from Azure storage. We have

provided a set of simple Java executables and an R script that

enable data transfer to Azure storage within a VM in Azure or on

a local machine based on examples provided with Microsoft’s

documentation. This can be found at https://github.com/

hughshanahan/RAzureEssentials.

Figure 2. Using Azure with the Generic Worker. Shows that a number of Virtual Machines (VMs) created for the worker roles can be scaled up
and down as needed.
doi:10.1371/journal.pone.0102642.g002

Bioinformatics on Azure

PLOS ONE | www.plosone.org 4 July 2014 | Volume 9 | Issue 7 | e102642

http://resources.venus-c.eu
http://resources.venus-c.eu
http://gene.cs.rhul.ac.uk/RAzure/GWydiR.zip
http://gene.cs.rhul.ac.uk/RAzure/GWydiR.zip
http://datamarket.azure.com/
http://azurestorageexplorer.codeplex.com
https://github.com/hughshanahan/RAzureEssentials
https://github.com/hughshanahan/RAzureEssentials


Ease of use for Developers
As noted previously, for a developer who is experienced in using

Linux systems and is not familiar with a .NET software

architecture, designing software using the GW libraries can

represent a steep learning curve. On the other hand for a batch

mode submission there are templates that can make this

substantially easier. The source code for the package corresponds

to roughly 400 lines of code, much of which can be taken from the

templates available from http://resources.venus-c.eu and the

GWydiR github site. As one can see from the walk through for

installing the software in Appendix S1, getting initially configured

is still not trivial though there is no technical impediment to this

being made substantially easier.

Ease of use for users
From the perspective of the user the same issue of initial

configuration is a stumbling block. On the other hand the web

resources for managing the VM’s and data storage being used are

excellent and the user is able to inspect results from the runs via a

web interface. Because of the bespoke nature of this it is possible to

create an interface that is highly tailored to a specific task and

could be substantially easier to use than generic workflow software

such as Galaxy and Taverna [26].

Cost
In Table 3 we provide a comparison of costings between Azure

and Amazon EC2. We are not quite comparing like with like in

that the pricing for Amazon is using the Linux OS while Azure is

using Windows Server 2008 but we are focussing on the cheapest

possible option in all cases. We note that pricing can be highly

dynamic - for example earlier on in 2013 prices for CPU time on

the Azure PaaS were twice that of Amazon EC2. Despite this we

can see that market forces influence prices to be roughly

comparable (i.e. within the same order of magnitude).

Materials and Methods

In this work we focus on a real world example to demonstrate

the use of R in Azure, namely how G-stacks (probes with runs of 4

or more guanine bases) bias the experiment data for the

Affymetrix Human GeneChip called HG_U133A. This GeneChip

was studied with a wide scale analysis both because much data is

publicly available and because it has the highest ratio of G-stack

probes among the Affymetrix Human GeneChips available. It is

more beneficial to bioinformaticians to use real data and a useful

study than to use an artificial example to evaluate the use of R for

bioinformatics in Azure.

The data for many microarray experiments that utilise the

HG_U133A GeneChip are available at public repositories such as

NCBI Gene Expression Omnibus (GEO) [27], and the EBI

ArrayExpress [28]. Each experiment or data set consists of a set of

measurements that are stored in CEL files, which can be either

binary or character text, depending on the choices of the

researcher. We used the data from 576 HG_U133A experiments

that were deposited before May, 2012.

The HG_U133A GeneChip contains 22,283 annotated probe

sets and about one third of these contain one or more probes with

a G-stack in them. Our analysis compared normalised expression

values of all probe sets with normalised expression values of probe

sets with G-stacks removed. We previously predicted that because

probes containing runs of guanine are systematically correlated

with each other [29], due to the coherent formation of G-stacks

[30], then the difference in normalised expression data between

the two sets of results will show a bias. Our analysis also compared

correlations of each probe set of the two groups with every other

probe set.

The analysis that was carried out on six data sets in GEO [29]

on a locally-based computer was repeated on the Azure cloud. The

results computed on Azure were the same as those computed

locally, hence we are confident of reproducibility. The full analysis

on the 576 experiments was performed on Azure. In this paper we

will focus on timings, scale and load. Date and time stamp output

was written to a log at the beginning and end of loading each set of

CEL files, i.e. transferring the files from Azure storage to R

working storage. Similar date and time stamp output was also

written to the log at the beginning and end of performing the main

normalisation and G-stack comparison analyses.

Results

It is important to understand how the run times on Azure

compare with a locally-run calculation. In addition to the time

taken to run the script on Azure there is the additional issue of

loading the data from the mass storage to the VM. We consider

each of these elements in turn.

Load time
The uploading of the publicly available experiment datasets to

Azure mass storage was achieved in two ways. The first method

was to use a customised webpage that was initiated and processed

by an Azure Webrole (discussed previously). With this method a

list of datasets could be passed to the uploading routine. The

second method used to upload a few individual experiments was

the Azure Storage Explorer from Neudesic (mentioned above).

This provides a direct link between Azure mass storage accounts

and the user’s local machine. It can be used to examine files and

data in Azure storage and to upload or download individual files.

It was less useful when long lists of datasets needed to be uploaded.

The timings for loading data files from Azure mass storage to R

working storage are shown for all 576 HG_U133A experiments in

Table 3. Cost of some features of Azure and Amazon Cloud Computing.

Feature Microsoft Azure Amazon EC2

VM (Small Instance) $ 0:08 hr{1 PaaS – Windows $ 0:06 hr{1 U.S. East - Linux

$ 0:06 hr{1 IaaS - Linux

Ingress Nothing Nothing (from Internet)

Egress $ 119:40 Tbyte{1 $ 122:88 Tbyte{1

Storage $ 95 Tbyte{1Month{1 (Mass storage - Globally redundant) $ 97:28 Tbyte{1Month{1 (S3 Standard)

doi:10.1371/journal.pone.0102642.t003
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Figure 3. The elapsed time for loading an experiment comprising

2 CEL files (about 23 KBytes for text CEL files) was typically

about 2 seconds, and for an experiment comprising 200 CEL files

(about 2.25 MBytes for text CEL files) was around 45 seconds.

CEL files can be stored in either a text-based or binary format

with the text-based format clearly requiring more space. The size

of particular CEL files also varies on other factors; for example,

how many masks and/or biological outliers the researcher has

chosen to record after the intensity data for the array. The outlier

experiments in Figure 3 depend on whether the CEL files were

stored in binary (shorter load times than the trend) or text-based

(longer run times than the trend). The largest outlier had a

combination of these formats.

Run time
The timings of the 576 analysis runs (i.e. how long the R scripts

ran on an individual VM once the data was loaded) are shown in

Figure 4. The outliers below the trend of the data are experiments

with binary format CEL files, which are a little quicker to process

than the text-format ones.

Once the GW software had been set up and tested, it was a

simple matter to scale up the number of VMs to run these analysis

jobs. Each experiment was submitted as a separate job. Earlier in

our use of Azure we had submitted lists of experiments for analysis

runs. It was found that the list approach was less easy to control

and scale because sometimes an experiment within the list would

fail through a shortage of disk space. By starting each experiment

as a new job with fresh disk space this problem was minimised.

Comparison with using R in a local machine
A set of experiments was chosen to repeat the analyses, which

had been done on the Azure cloud, on local machines. The

experiments had a range of numbers of CEL files to ensure they

were representative of different lengths of jobs. In particular, they

had 4, 8, 16, 32, 64 and 128 CEL files.

As it is difficult to reproduce exactly the configuration of an

Azure VM, a variety of different local computers were used: -

N Local1 has a 2.13 GHz processor.

Figure 3. Time taken to load microarray data from Azure mass storage to R working storage. Plot showing the time in seconds taken to
load each of 576 datasets from Azure blob storage to local VM disk space, in terms of the number of CEL files in each GSE experiment.
doi:10.1371/journal.pone.0102642.g003
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N Local2 has a 2.24 GHz processor that runs Windows as a

virtual machine.

N As Local2 is run as a virtual machine it is also run with a 70%

execution cap to crudely reproduce the nominal VM processor

frequency.

The results are shown in Figure 5. In all cases the Azure VM

runs more slowly than the local machines, taking roughly a factor

of two times as long as the slowest local case.

Discussion

The wide-spread adoption of cloud computing platforms within

bioinformatics has made a major impact on the capability of

researchers whose work intermittently requires large amounts of

CPU time (or simply large memory) for tasks which can be carried

out in a trivially parallel way. The cloud computing paradigm will

be of increasing importance for users, particularly as data sets

continue to expand in size and hence the analysis will have to

come to the data and not the other way around. Up to this point,

the majority of bioinformaticians who use cloud computing have

made use of Amazon’s EC2. It provides a stable software stack

with an associated large community of users who can provide

support and solutions specific to a researcher’s domain. Nonethe-

less, it is clear that Amazon is no longer the only possible provider

of cloud-based solutions and that other approaches should be

explored.

In this paper we have specifically examined Microsoft’s Azure

platform, but we note that many other alternatives exist. The

utility of all of these approaches should be considered, if only to

ensure that each of the commercial providers remain under

pressure to provide as economical a solution as possible.

We have noted that the PaaS infrastructure provided by Azure

allows one to develop bespoke interfaces for specific executables

that run in a batch mode. Despite the learning curve for

developers who do not have a background in writing C# code,

these can be put together with a little effort requiring approx-

imately 400 lines of code, much of which can be appropriated

from templates. The initial configuration is complex but this could

be fixed at first by those developing the bioinformatics pipelines

Figure 4. Time taken to analyse data with R script. Shows the time in seconds taken to analyse each of 576 datasets, in terms of the number of
CEL files in each GSE experiment.
doi:10.1371/journal.pone.0102642.g004
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though it is clear that the process could be streamlined further by

Azure developers in later releases. In this light, and given the fact

that the Worker roles can only run the Windows Server OS it is

apparent that the present offering is not a viable solution for

bioinformatics software with analyses which are still being

developed. On the other hand a substantial set of stable

bioinformatics software such as that available via EMBOSS or

BioLinux could be deployed very successfully using Azure and its

PaaS.

We have shown that the pricing of Azure is comparable with

other clouds (at least to within an order of magnitude) though this

is highly dynamic. We have also shown that results generated

locally are reproduced by equivalent Azure runs and that

performance is not substantially affected. Run times suggest that

Azure is slower by roughly a factor of 2–3 than local PCs though

one has to be careful since we were not able to make a like-for-like

comparison using precisely the same CPU-type, memory and

exact version of the Windows Operating System.

We have not discussed the general upload of public data as this

is a global issue for any public cloud. In tests on a University

network we estimated that uploading 1 Tbyte would take

approximately 26 hours. This is a rough estimate and is highly

dependent on the network connection. However, it is clear that at

the very least the large amounts of publicly available data should

not be uploaded on an individual basis. The cloud providers that

can support this will have a substantial advantage over their

competitors. We note that Amazon have made steps in this

direction by providing a number of relevant datasets available free

of charge such as the data from the modENCODE project [31].

Looking forward the continued blurring between IaaS and PaaS

will enable developers and users to make use of the best features of

both. Developers can port images created locally to a cloud with

precisely the configuration they require, while still being able to

run them programmatically so that scaling can be achieved easily

with an intuitive interface. If we draw an analogy with web-

development, it is possible to imagine an equivalent of Ruby-on-

Figure 5. Comparison of Analysis Times between Cloud and 2 Local machines. Shows the time in seconds taken to analyse each of 6
particular experiments, in terms of the number of CEL files in each experiment. The particular experiments were chosen because they had 4, 8, 16, 32,
64 and 128 CEL files, to give a range of experiment data amounts. The machine labelled Local1 had a CPU clock speed of 2.13 GHz, and the machine
labelled Local2 had a CPU clock speed of 2.24 GHz. The 70% CPU cap was added to the Local2 machine to crudely estimate the slower 1.60 GHz
stated clock speed of the Azure VM.
doi:10.1371/journal.pone.0102642.g005
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Rails [32] and Django [33]. Both of these enable the easy

development of dynamic web sites to be started, that can run using

different web server technologies and the underlying scripting

languages of Ruby and Python. In the same way one can envisage

a similar framework allowing specific executables to be deployed

on a cloud (not fixed to any one vendor) and which are run in a

batch mode and have an easy interface.

Supporting Information

Appendix S1 Scaling an R script on Azure using the
Generic Worker.
(PDF)
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