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    Upon antigen stimulation, naive CD4 T cells 
can diff erentiate into Th1, Th2, or the newly 
characterized Th17 eff ector cells, which rapidly 
produce IFN- � , IL-4, or IL-17, respectively 
( 1 – 4 ). The hallmark cytokine of Th1 cells is 
IFN- � , which is instrumental for cell-mediated 
immunity. Th2 cells produce the prototypical 
cytokine IL-4, as well as IL-5 and IL-13, in 
controlling humoral immune responses. IL-17, 
collectively with other cytokines and chemo-
kines released by activated Th17 cells, plays an 
important role in several infl ammatory autoim-
mune diseases ( 5 – 10 ). Thus, proper regulation 
of Th diff erentiation is critical for controlling 
both cellular and humoral immune responses 
and for maintaining immune homeostasis. 

 The cytokines made by pathogen-activated 
cells of the innate immune system during T cell 
priming are key factors in promoting Th diff er-
entiation. It is known that type I or type II IFNs 

from activated NK cells or plasmacytoid DCs, 
collectively with IL-12 produced by APCs, di-
rect CD4 T cells into the Th1 cell lineage. IL-4 
present in the priming environment preferen-
tially induces Th2 cell diff erentiation. TGF- �  
and IL-6 promote the development of Th17 
cells that expand in response to IL-23 ( 11 – 13 ). 
The Th1 and Th2 cytokines IFN- �  and IL-4, 
respectively, can inhibit the production of the 
opposing types of cytokines by CD4 T cells and 
antagonize Th17 cell diff erentiation. Th cell fate 
has also been shown to be infl uenced by several 
other factors including TCR affi  nity, antigen 
dosage, co-stimulatory molecules, and the type 
of APC ( 14 – 17 ). However, it is not known 
whether T cell selection in the thymus aff ects 
Th cell fate in the periphery. 

 Recently, we and others have demonstrated 
that MHC class II – expressing thymocytes can 
effi  ciently mediate the positive selection of CD4 
T cells in mice ( 18, 19 ). Human thymocytes ex-
press MHC class II, and thymocyte-mediated CD4 
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 Recently, a new developmental pathway for CD4 T cells that is mediated by major histo-

compatibility complex class II – positive thymocytes was identifi ed (Choi, E.Y., K.C. Jung, H.J. Park, 

D.H. Chung, J.S. Song, S.D. Yang, E. Simpson, and S.H. Park. 2005.  Immunity . 23:387 – 396; 

Li, W., M.G. Kim, T.S. Gourley, B.P. McCarthy, D.B. Sant ’ angelo, and C.H. Chang. 2005. 

 Immunity . 23:375 – 386). We demonstrate that thymocyte-selected CD4 (T-CD4) T cells can 

rapidly produce interferon  �  and interleukin (IL) 4 upon in vivo and in vitro T cell receptor 

stimulation. These T-CD4 T cells appear to be effector cells producing both T helper type 1 

(Th1) and Th2 cytokines, and they maintain a potential to produce Th2 cytokines under 

Th1-skewing conditions in a signal transducer and activator of transcription 6 – independent 

manner. The IL-4 mRNA level is high in CD4 single-positive thymocytes if they are selected 

on thymocytes, which is at least partly caused by enhanced histone acetylation of the IL-4 

locus. However, mice that can generate T-CD4 T cells showed attenuated immune responses 

in an allergen-induced airway infl ammation model, suggesting a protective role for T-CD4 

T cells during an airway challenge. Our results imply that this thymic selection pathway 

plays an important role in determining the effector function of the resulting CD4 cells and 

in regulating immune response. 
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ously demonstrated that CD4 T cells can be positively selected 
via both cortical TECs (cTECs) and thymocytes ( 19 ). There-
fore, CIITA Tg  mice generate a mixed population of CD4 T 
cells that are selected on TECs or thymocytes, whereas the 
control (WT) mice have only TEC-selected CD4 T cells ( 19 ). 
To distinguish between the two CD4 T cell populations pre-
sent in CIITA Tg  mice, we named them E- and T-CD4 T cells 
to refl ect the cell type mediating selection (epithelial cell –  and 
thymocyte-selected CD4 T cells, respectively). 

 To study whether CD4 T cell function is diff erent depend-
ing on their selection pathway, we initially examined the cyto-
kine production potential of T-CD4 T cells upon in vivo 
stimulation. Although we have reported that CD4 T cells pre-
pared from CIITA Tg  mice produced elevated IL-4, the cyto-
kine production upon in vivo stimulation was not studied ( 29 ). 
WT and CIITA Tg  mice were injected with an anti-CD3 anti-
body i.v., and the levels of serum IL-4 and IFN- �  were mea-
sured 2 h later. CIITA Tg  mice that have T-CD4 T cells showed 
a dramatic increase in both cytokines, suggesting an eff ector 
phenotype of T-CD4 cells ( Fig. 1 A ).  Consistent with the in 
vivo induction of IL-4 and IFN- �  production, splenic CD4 T 
cells from CIITA Tg  mice expressed more IFN- �  and IL-4 than 
WT mice 5 h after stimulation in vitro ( Fig. 1 B ) ( 29 ). More-
over, splenic CD4 T cells from CIITA Tg  mice had a greater 
potential to produce IL-4 and IFN- �  than WT mice after a 2-d 
stimulation in vitro ( Fig. 1 C ). 

 T-CD4 Th1 cells produce Th2 cytokines in addition to IFN- �  

 Next, we investigated the eff ector function of T-CD4 T cells in 
comparison to E-CD4 T cells. For this set of experiments, we 
included CIITA Tg /CIITA  � / �   mice that only generate T-CD4 
T cells because of a defi ciency of MHC class II expression in 
TECs ( 19 ). Because there are more peripheral CD4 T cells of 
the eff ector/memory type (CD44 hi CD45RB lo ) in CIITA Tg  and 
CIITA Tg /CIITA  � / �   mice than in WT mice (i.e., 42  ±  9%, 41  ±  
7%, and 27  ±  6% among splenic CD4 T cells, respectively; 
Fig. S1 B), we sorted naive CD4 T cells (CD44 lo CD45RB hi ) 

T cell selection provides a mechanism for several documented 
observations that could not be otherwise explained ( 20 – 28 ). 
Therefore, in humans, CD4 T cells can be selected by two path-
ways, and the two CD4 T cell populations likely coexist in the 
periphery. Because mouse thymocytes do not express MHC 
class II, thymocyte-mediated selection has not been considered, 
and the role of this pathway in Th cell fate has been neglected. 

 We report in this study that thymocyte-selected CD4 
(T-CD4) T cells diff er from thymic epithelial cell (TEC) – 
selected CD4 (E-CD4) T cells in that they can rapidly produce 
both IL-4 and IFN- �  upon in vivo as well as in vitro TCR 
stimulation. When diff erentiated into eff ector cells under non-
polarizing conditions, these T-CD4 T cells appear to be Th0 
eff ector cells able to produce both Th1 and Th2 cytokines. 
Furthermore, they maintained the capability to produce the 
opposite type of cytokines when diff erentiated into Th1 or 
Th2 cell lineages. 

 T-CD4 cells made IL-4 shortly after stimulation and also 
produced Th2 cytokines under Th1-inducing conditions in a 
Stat6-independent manner. A high level of preformed IL-4 
mRNA were detected in CD4 single-positive (SP) thymo-
cytes if they are selected on thymocytes, which is at least 
partly caused by enhanced histone acetylation of the IL-4 
 locus. Finally, T-CD4 T cells seem to have a protective role 
during an airway challenge, suggesting a unique regulatory 
function of T-CD4 T cells during an immune response. 

  RESULTS  

 T-CD4 T cells rapidly produce both IL-4 and IFN- �  

 We generated mice that express MHC class II in thymocytes 
(Fig. S1 A, available at http://www.jem.org/cgi/content/full/
jem.20070321/DC1) and peripheral T cells by introducing the 
MHC class II transactivator (CIITA) as a transgene under con-
trol of the CD4 promoter (CIITA Tg ) ( 29 ). CIITA is a tran-
scription factor that is both necessary and suffi  cient for the 
expression of molecules that participate in MHC class II –
  restricted antigen presentation ( 30 ). Using these mice, we previ-

 Figure 1.   T-CD4 T cells rapidly produce high levels of IL-4 and IFN- � . (A) 2 h after tail vein injection of PBS or 10  � g anti-CD3 antibody, WT and 

CIITA Tg  mice were killed and blood was collected. Cytokine levels in the serum were determined by ELISA. Each symbol in the histograms represents an 

individual mouse. (B) Splenocytes from the indicated mice were stimulated with PMA and ionomycin for 5 h, followed by ICS. Plots were gated on NK1.1  �   

CD4 T cells. The percentage of positive cells in each quadrant is shown. (C) Splenic CD4 T cells from WT and CIITA Tg  mice were stimulated with anti-CD3 

and anti-CD28 for 2 d. Cytokines in the culture supernatants were determined by ELISA. Results from three independent experiments are shown.   
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cytokine-producing CIITA Tg /CIITA  � / �   cells ( Fig. 2 B ). Total 
CD4 T cells from the same mice showed a similar cytokine pat-
tern as naive CD4 T cells (Fig. S3). Other Th2 cytokines, such 
as IL-5 and IL-13, were also increased in CIITA Tg  or CIITA Tg /
CIITA  � / �   CD4 T cells (unpublished data) ( 29 ). Because 
CIITA Tg  and CIITA Tg /CIITA  � / �   CD4 T cells can express the 
opposite cytokines, even under Th1- or Th2-skewing condi-
tions, and the Th1 cells expressed a relatively more prominent 
amount of IL-4, we subsequently focused on the characteriza-
tion of Th2 cytokine production by T-CD4 Th1 cells. 

 The thymocyte-mediated T cell selection pathway 

is responsible for the phenotype of T-CD4 T cells 

 To further substantiate the role of the CD4 T cell selection 
pathway in cytokine production potential, we used BM chi-
meric mice. We previously showed that in the WT hosts 
(C57BL/6), CIITA Tg  CD4 cells are developed on thymocytes 
as well as on cTECs, whereas in MHC class II – defi cient hosts, 
CD4 cells are only selected on thymocytes ( 19 ). Using this 
principle, we generated and examined three types of chimeric 

from total peripheral CD4 T cells (Fig. S2, available at http://
www.jem.org/cgi/content/full/jem.20070321/DC1). Sorted 
naive cells were then diff erentiated under neutral (ThN)-, Th1-, 
or Th2-inducing conditions. ThN cells from WT mice pro-
duced a small amount of IFN- �  and almost undetectable levels 
of IL-4 ( Fig. 2, A and B ).  In contrast, CIITA Tg  cells made a lot 
more IFN- �  and IL-4 than WT cells. Moreover, CIITA Tg /
CIITA  � / �   cells produced very high levels of both IFN- �  and 
IL-4 ( Fig. 2, A and B ). Th1 cells from WT mice predominantly 
made IFN- �  but not IL-4, whereas both CIITA Tg  and CII-
TA Tg /CIITA  � / �   Th1 cells produced IL-4 in addition to IFN- �  
( Fig. 2, A and B ) ( 29 ). The amount of IL-4 was much greater 
in CIITA Tg /CIITA  � / �   than in CIITA Tg  Th1 cells, whereas 
IFN- �  levels were comparable among the three. When we ex-
amined Th2 cells, both CIITA Tg  and CIITA Tg /CIITA  � / �   Th2 
cells produced more IL-4 than WT cells. Unlike Th1 cells, Th2 
cells from CIITA Tg  or CIITA Tg /CIITA  � / �   mice produced a 
moderately elevated level of IFN- � . The intracellular cytokine 
stating (ICS) data supported the dual cytokine production by 
CIITA Tg  and CIITA Tg /CIITA  � / �   cells with generally more 

 Figure 2.   Th1 cells from T-CD4 T cells produce the Th2 cytokine IL-4 as well as IFN- � . Sorted naive (CD45RB hi CD44 lo ) CD4 T cells from WT, 

CIITA Tg , and CIITA Tg /CIITA  � / �   mice were cultured under neutral, Th1-, or Th2-skewing conditions for 6 d, as described in Materials and methods. Differenti-

ated cells were subsequently restimulated with plate-coated anti-CD3 overnight, and culture supernatants were collected and analyzed for IFN- �  and 

IL-4 production by ELISA (A). The error bars represent the mean  �  SD. For intracellular cytokine analysis (B), differentiated neutral, Th1, or Th2 cells were 

restimulated with PMA plus ionomycin for 5 h, as described in Materials and methods. After fi xation and permeabilization, the cells were stained with PE-

conjugated anti – IFN- �  and allophycocyanin-conjugated anti – IL-4 and analyzed by FACS. Numbers in the dot plots represent the percentages of cytokine-

positive CD4 T cells. All experiments were repeated at least twice.   
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all CD4 T cells developed in CIITA Tg /A �   � / �   → B6 chimeras 
are selected on cTECs. If thymic selection determines cyto-
kine expression potential, the resulting CIITA Tg /A �   � / �   Th1 
and Th2 cells from the chimeric mice should not express IL-4 
and IFN- � , respectively. As shown in  Fig. 3 B , the cytokine 
pattern of Th1 cells from CIITA Tg /A �   � / �   → B6 chimeras 
was indistinguishable from that of WT → B6 chimeras. There-
fore, the thymocyte-mediated T cell selection pathway, not 
CIITA expression per se, is responsible for the generation of 
IL-4 – producing Th1 cells and IFN- �  – producing Th2 cells. 

 Antigen presentation potential of TECs versus thymocytes 

dictates selection and the phenotype of the resulting 

CD4 T cells 

 We previously reported that MHC class II I-E expressed as 
a transgene under the control of the MHC class I promoter 
(I-E Tg ; Fig. S1 A) can also mediate CD4 T cell selection in the 
absence of endogenous CIITA, albeit at a low effi  ciency ( 19 ). 
Interestingly, CD4 T cells in these mice (I-E Tg /CIITA  � / �  ) 
also showed a similar phenotype to that of CD4 T cells in CII-
TA Tg  mice ( Table I ) ( 31 ).  Surprisingly, however, the same I-E 
transgene on the A �   � / �   background (I-E Tg /A �   � / �  ) did not 
generate CD4 T cells that can produce IL-4 under Th1 cell 
diff erentiation conditions ( Table I ) ( 32 ). In both types of I-E Tg  
mice, CD4 T cells are expected to be selected on thymocytes 
and, therefore, their phenotype should be similar. We won-
dered whether thymocytes and TECs in the two models have 
a diff erential potential to support CD4 T cell selection, which 
results in the diff erent phenotype of CD4 T cells. Unlike the 
MHC class II I-E transgene, CIITA also induces the expres-
sion of Ii and H-2M in cells, which allow them to become ef-
fi cient APCs ( 33, 34 ). In fact, CIITA Tg  thymocytes express 
high levels of both Ii and H-2M mRNA (unpublished data). 
Conversely, CIITA  � / �   cells express decreased Ii and H-2M ( 35 ). 
Therefore, introducing the I-E transgene to CIITA  � / �   mice 

mice: WT → B6, CIITA Tg  → B6, and CIITA Tg  → CIITA  � / �   
mice, which generate E-CD4, E- and T-CD4, and T-CD4 T 
cells, respectively. CD4 T cell reconstitution was comparable 
among all chimeras but was lacking in the control WT → 
CIITA  � / �   chimeric mice (Fig. S4, available at http://www
.jem.org/cgi/content/full/jem.20070321/DC1). Total splenic 
CD4 T cells from the BM chimeras were skewed under Th1- 
or Th2-inducing conditions, and their cytokine-producing 
capacities were assessed by ICS. Th1 cells derived from 
CIITA Tg  → B6 and CIITA Tg  → CIITA  � / �   BM chimeric mice 
produced abundant IL-4 in addition to IFN- � , with a consis-
tently higher percentage of IL-4 – producing Th1 cells from 
CIITA Tg  → CIITA  � / �   mice ( Fig. 3 A ).  In addition, the Th2 
cell cultures from CIITA Tg  → B6 and CIITA Tg  → CIITA  � / �   
chimeras that had T-CD4 T cells also produced greater num-
bers of IFN- �  – expressing cells than WT → B6 mice, whereas 
IFN- �  production by Th2 cells was variable among chimeras 
( Fig. 3 A ). This variability in cells producing IFN- �  alone or 
IFN- �  together with IL-4 in WT → B6 mice seems to corre-
late with cell activation caused by the lymphopenic environ-
ment of the hosts ( 19 ) because these two populations are not 
present in WT mice ( Fig. 2 B ). 

 It was possible that the Th2 cytokine production by Th1 
cells and enhanced IFN- �  production by Th2 cells from 
CIITA Tg  → B6 and CIITA Tg  → CIITA  � / �   BM chimeric mice 
was caused by CIITA expression rather than thymic selection 
diff erences. To determine whether CIITA expression itself 
regulates cytokine gene expression or whether thymic selec-
tion is indeed responsible for the phenotype, we tested BM 
from CIITA Tg /A �   � / �   mice. Cells from CIITA Tg /A �   � / �   mice 
express the CIITA transgene but not MHC class II because of 
a defi ciency in the MHC class II structural gene A � . Thus, 
CIITA Tg /A �   � / �   BM-originated thymocytes in the chimera 
cannot mediate T-CD4 T cell selection because they do not 
express MHC class II molecules ( 18, 19 ). As a consequence, 

 Figure 3.   The CD4 T cell selection pathway is responsible for IL-4 – producing Th1 cells. (A) WT → B6, CIITA Tg  → B6, and CIITA Tg  → CIITA  � / �   chimeric 

mice were generated as described in Materials and methods. 11 wk after reconstitution, splenic CD4 T cells were differentiated under Th1- or Th2-inducing 

conditions for 6 d. Differentiated cells were then restimulated with PMA and ionomycin and analyzed for IFN- �  and IL-4 production. (B) CIITA transgene 

expression in the absence of MHC class II cannot generate IL-4 – producing Th1 cells. BM from WT, CIITA Tg , or CIITA Tg /A �   � / �   mice were transplanted into 

lethally irradiated B6 mice. Differentiated Th1 or Th2 cells from the mice reconstituted for 3 mo were assayed for cytokine production by ICS. The 

percentage of positive cells in each quadrant is shown.   
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whether IL-4 production by T-CD4 T cells requires Stat6. 
We have previously observed that CD4 T cells from CIITA Tg  
mice bred to Stat6  � / �   mice produced IL-4 ( 29 ). However, 
those data did not distinguish whether Stat6 independency is 
caused by thymic selection. Thus, we tested Stat6  � / �   CD4 
T cells for their ability to produce IL-4 after being selected 
on thymocytes. For this experiment, we mixed two diff erent 
sources of BM, as MHC class II – positive thymocytes can me-
diate the development of MHC class II – negative thymocytes 
in mixed BM chimeras (unpublished data) ( 18 ). Stat6  � / �   
BM, together with WT or CIITA Tg  (Stat6 �/� ) BM, were 
cotransferred into B6 or A �   � / �   hosts. To identify diff erent 
populations of CD4 T cells, we used the congenic marker 
CD45. Splenic CD4 T cells from reconstituted animals were 
skewed under Th1- and Th2-polarizing conditions, and Th1 
cells derived from Stat6 �/�  BM (CD45.2 � ) and Stat6  � / �   BM 
(CD45.1 � ) were analyzed for cytokine production by ICS. 
As expected, Stat6 �/�  cells from Stat6  � / �   � WT → B6 chi-
meric mice expressed IL-4 when they were diff erentiated to 
Th2 but not Th1 cells ( Fig. 4 A , top group).  When Stat6  � / �   
cells were examined, both Stat6  � / �   Th1 and Th2 cells from 
Stat6  � / �   � WT → B6 BM chimeras produced a negligible 
amount of IL-4. In contrast, if Stat6  � / �   were developed in the 
presence of CIITA Tg  BM-derived thymocytes, Stat6  � / �   Th1 
and Th2 CD4 T cells produced IL-4 ( Fig. 4 A , middle and 
bottom groups). Moreover, Stat6  � / �   CD4 T cells that were  
exclusively selected on thymocytes (Stat6  � / �   � CIITA Tg  → 
A �   � / �  ) had a greater potential to express IL-4. Stat6 �/�  cells 
made IL-4 after diff erentiation into either the Th1 or Th2 cell 
lineage when they were from both Stat6  � / �   � CIITA Tg  → B6 
and Stat6  � / �   � CIITA Tg  → A �   � / �   hosts. The Th2 cell cul-
tures generated more IL-4 – expressing cells than the Th1 cells 
( Fig. 4 A ). We also examined cytokine production by freshly 

cannot restore the APC function of TECs at full capacity, 
whereas the same transgene expression in A �   � / �   TECs can. 
Likewise, thymocytes expressing CIITA would be more effi  -
cient APCs than those expressing I-E only. Together with the 
diff erent phenotype of I-E Tg  mice on the A �   � / �   or CIITA  � / �   
background, it appears that the potency of antigen presentation 
of thymocytes and TECs dictates the direction of CD4 T cell 
selection toward the T- or E-CD4 T cell lineage. 

 To address this hypothesis, we constructed and tested sev-
eral additional BM chimeras. The expression pattern of MHC 
class II, Ii, and H-2M in TECs and thymocytes in mice used 
in those experiments is shown in the Table S1 (available at 
http://www.jem.org/cgi/content/full/jem.20070321/DC1). 
As summarized in  Table I , the results showed that if the 
 predicted potency of thymocytes being APCs is greater than 
TECs (CIITA Tg /CIITA  � / �  , CIITA Tg  → A �   � / �  , CIITA Tg  → 
CIITA  � / �  , I-E Tg  → A �   � / �  , and I-E Tg /CIITA  � / �   → A �   � / �  ) or 
equivalent to that of TECs (CIITA Tg , I-E Tg /CIITA  � / �  , and 
CIITA Tg  → B6), CD4 T cells seem to be selected on thymo-
cytes as effi  ciently as TECs, and the resulting CD4 T cells 
can express Th2 cytokines under Th1-inducing conditions. In 
contrast, CD4 T cells did not show the same phenotype when 
they were developed in mice in which TECs have a greater 
potential to present antigens than thymocytes (B6, I-E Tg , 
I-E Tg /A �   � / �  , CIITA Tg /A �   � / �   → B6, I-E Tg  → B6, and I-E Tg /
CIITA  � / �   → B6). Therefore, these data clearly demonstrate a 
strong correlation between thymocyte-mediated selection and 
the Th cell function of the resulting CD4 T cells. 

 Thymocyte-mediated selection pathway can override 

a requirement of Stat6 in Th2 cytokine expression 

 NKT cells that are selected on thymocytes produce IL-4 in 
a Stat6-independent manner ( 36, 37 ). Therefore, we asked 

  Table I.    Relationship of the potency of antigen presentation in BM chimeras and the Th cell phenotype 

MHC II expression Ii and H-2M

Mice TECs Thymocytes TECs Thymocytes Predicted potency of  

 antigen presentation

Th2 cytokine  

 production by Th1 cells

B6 �  � �  � TEC N

CIITA Tg � � � � TEC � thy Y

CIITA Tg /CIITA  � / �   � �  � � thy Y

I-E Tg � � �  � TEC   	   thy N

I-E Tg /A �   � / �  � � �  � TEC  	  thy N

I-E Tg /CIITA  � / �  � �  �  � TEC � thy Y

CIITA Tg  → B6 � � � � TEC � thy Y

CIITA Tg  → A �   � / �   � � � � thy Y

CIITA Tg  → CIITA  � / �   � �  � � thy Y

CIITA Tg /A �   � / �   → B6 �  � � � TEC N

I-E Tg  → B6 � � �  � TEC   	   thy N

I-E Tg  → A �   � / �   � � �  � thy Y

I-E Tg /CIITA  � / �   → B6 � � �  � TEC   	   thy N

I-E Tg /CIITA  � / �   → A �   � / �   � � �  � thy Y

Mice indicated with  →  are BM chimeras. Cells expressing MHC class II, Ii, and H-2M are considered hypothetically more potent than the cells expressing MHC class II in the 

absence or in low levels of Ii and H-2M. Expression denoted with  �  includes cells that express none or a low level of the indicated molecules. � or  	  show an equivalent or a 

stronger potency of antigen presentation function, respectively. Th2 cytokine production was experimentally determined using ICS. N, no; Y, yes.
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purifi ed splenic CD4 T cells from Stat6  � / �   mice were mixed 
in vitro with WT or CIITA Tg  CD4 T cells and diff erentiated 
under Th1- and Th2-inducing conditions. Stat6 �/�  cells 
showed the expected cytokine profi le from both WT and 
CIITA Tg  Th1 and Th2 cells ( Fig. 4 B ). However, Stat6  � / �   
CD4 T cells that were codiff erentiated with CIITA Tg  CD4 T 
cells did not acquire the ability to express IL-4. ( Fig. 4 B ). 
Collectively, our data strongly suggest that T-CD4 T cells 
produce Th2 cytokines in a Stat6-independent manner. 

isolated Stat6  � / �   thymic and splenic CD4 T cells from mixed 
BM chimeras. Again, whenever the thymocyte-mediated selec-
tion pathway was available, Stat6  � / �   cells acquired the poten-
tial to express IL-4 (Fig. S5, available at http://www.jem
.org/cgi/content/full/jem.20070321/DC1). 

 Because Stat6  � / �   CD4 T cells were diff erentiated to-
gether with Stat6 �/�  CD4 T cells, it was possible that the 
IL-4 produced by CIITA Tg  CD4 T cells could have skewed 
Stat6  � / �   CD4 T cells to produce IL-4. To test this possibility, 

 Figure 4.   Stat6-independent production of IL-4 by T-CD4 T cells. (A) Mixed BM chimeras. BM from Stat6  � / �   mice were mixed with those from WT 

or CIITA Tg  mice and cotransferred into B6 or A �   � / �   recipients. Splenic CD4 T cells from mixed BM chimeras were differentiated into Th1 or Th2 cells. 

Before fi xation and permeabilization, Th cells were stained with an anti-CD45.2 mAb to distinguish T cells derived from Stat6  � / �   BM (CD45.1 � ) as opposed 

to those from Stat6 �/�  BM (CD45.2 � ). Cytokine production profi les were subsequently assayed by ICS. Mice were analyzed 10 wk after BM transplanta-

tion. The percentage of positive cells in each quadrant is shown. (B) Co-culturing Stat6  � / �   CD4 T cells with CIITA Tg  CD4 T cells during in vitro Th cell dif-

ferentiation is not suffi cient to induce IL-4 expression. Histograms show IL-4 production profi les of Stat6 �/�  WT or CIITA Tg  cells (CD45.1 � ), or Stat6  � / �   

cells (CD45.2 � ) in the co-cultures. The percentage of positive cells in each gate is shown.   
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crease in H3 acetylation ( Fig. 6 A , bottom). Moreover, this 
small change correlated with IL-4 gene transcription even in 
the absence of stimulation, as the amount of IL-4 transcripts 
was greater in freshly isolated CIITA Tg  CD4 SP cells than in 
control cells ( Fig. 6 B ). The level of IFN- �  mRNA in those 
CIITA Tg  thymocytes was variable and did not show a consis-
tent increase (unpublished data). Consistent with the RNA 
data, NK1.1  �   CD4 SP cells produced a small but reproduc-
ibly higher percentage of IL-4 – expressing cells in CIITA Tg  
and CIITA Tg /CIITA  � / �   but not WT mice ( Fig. 6 C ). The 
IL-4 producers were all CD44 hi , which is similar to IL-4 –
 producing thymic NKT cells (unpublished data). We also 
examined Stat6  � / �   thymocytes prepared from mixed BM 
chimeric mice and found that Stat6  � / �   thymocytes produced 
IL-4 when they were selected on thymocytes (Fig. S5 A). 
Collectively, our results indicate that the IL-4 locus in CD4 
T cells that are selected on thymocytes is programmed for in-
creased expression before Th cell diff erentiation. 

 T-CD4 T cells can dampen allergen-induced 

airway infl ammation 

 To investigate what role T-CD4 T cells play during an im-
mune response in vivo, we used an antigen-induced airway 
infl ammation model of asthma. CIITA Tg  and WT mice were 
sensitized with chicken OVA and subsequently challenged 
with aerosolized OVA to induce infl ammation in the respira-
tory tract. Mice were then killed to measure several parameters 
that are indicative of airway infl ammation. We fi rst examined 
the number of total cells in the bronchoalveolar lavage fl uid 
(BALF). As shown in  Fig. 7 A , the total cell numbers in BALF 
from OVA-challenged mice were decreased in CIITA Tg  mice.  
Infi ltration of eosinophils in the lung tissue is one of the cardi-
nal features of asthma and serves as a simple readout for airway 
infl ammation. In agreement with the total BALF cell num-
bers, CIITA Tg  mice had signifi cantly fewer BALF eosinophils 
than WT mice ( Fig. 7 B ). Neutrophilic infi ltration in BALF 
was also reduced in CIITA Tg  mice ( Fig. 7 B ). The percentage 

 NKT cells do not infl uence the phenotype of T-CD4 T cells 

 The rapid production of IFN- �  and IL-4, the Th0-like pheno-
type of T-CD4 cells, and the Stat6-independent IL-4 produc-
tion by T-CD4 cells seem to be similar to that of NKT cells 
( 36, 37 ). NKT cells play an important role in regulating both 
innate and adaptive immune responses through their prompt 
production of large amounts of cytokines, including IL-4 upon 
both in vivo and in vitro TCR stimulation. Therefore, we in-
vestigated whether NKT cells contribute to IL-4 expression in 
T-CD4 T cells using CIITA Tg  mice lacking CD1d (CIITA Tg /
CD1d  � / �  ), which is necessary for NKT cell development ( 38 ). 
Primarily, when in vivo cytokine production was analyzed, a 
lack of CD1d and thus a defi ciency in NKT cells did not alter 
the ability of CIITA Tg  mice to produce IL-4 in response to 
short in vivo stimulation ( Fig. 5 A ).  In addition, CD1d defi -
ciency did not compromise the IL-4 production by CIITA Tg  
Th1 cells, thymocytes, and peripheral CD4 T cells upon in vitro 
stimulation ( Fig. 5 B  and not depicted). Therefore, CD1d-
restricted NKT cells do not contribute to the Th2 cytokine –
 producing potential of T-CD4 T cells. 

 Preformed IL-4 mRNA in T-CD4 cells 

 IL-4 expression in freshly isolated CIITA Tg  CD4 T cells (Fig. 
S5) ( 29 ) suggested that the chromatin structure at the IL-4 
locus might already be diff erentially modifi ed. To test this, 
we performed a chromatin immunoprecipitation (ChIP) as-
say to analyze the acetylation status of histone H3 at the IL-4 
intronic enhancer (IE) that has been shown to be hyperacety-
lated in diff erentiated Th2 cells ( 39 – 41 ). Naive CD4 T cells 
were purifi ed from total peripheral CD4 cells obtained from 
WT and CIITA Tg  mice by FACS sorting and subjected to the 
ChIP assay. In naive CD4 T cells, histone H3 at this regula-
tory region was indeed hyperacetylated compared with the 
WT cells ( Fig. 6 A , top).  The modifi ed IL-4 locus in naive 
cells raised the possibility that a similar change might have 
occurred in the thymus. Indeed, purifi ed CD4 SP thymo-
cytes from CIITA Tg  mice showed a small but consistent in-

 Figure 5.   NKT cells are not responsible for the IL-4 – producing potential of T-CD4 Th1 cells. (A) Age-matched WT, CIITA Tg , CD1d  � / �  , and CIITA Tg /

CD1d  � / �  mice were injected with 10  � g anti-CD3 antibody and killed 2 h later. The circulating IL-4 level in the serum was determined by ELISA. The error 

bars represent the mean  �  SD of IL-4 measurements in the indicated mice. (B) CD4 T cells from CIITA Tg  mice that were suffi cient or defi cient in CD1d ex-

pression were examined for their cytokine production profi le by ICS after Th1 or Th2 cell differentiation. WT or CIITA Tg  littermates on the CD1d �/ �   back-

ground were used as controls. Data are representative of at least two independent experiments. The percentage of positive cells in each quadrant is shown.   
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consistent with our data showing that the IL-4 locus, possibly 
including the IL-5 and IL-13 loci, is already remodeled in T-
CD4 T cells such that the IL-5 and IL-13 genes are readily 
transcribed without IL-4. 

 Currently, it is not known how the thymic selection pro-
cess regulates Th cell fate. Many factors are known to infl u-
ence Th cell diff erentiation of conventional CD4 T cells, 
and the IL-4 – Stat6 signaling pathway is critical for the diff er-
entiation of Th2 eff ector cells ( 14 – 17, 42 – 44 ). Stat6 activates 
GATA3, the master regulator of Th2 cells, which subse-
quently mediates chromatin remodeling accompanied by an 
increased level of histone hyperacetylation at the IL-4 locus. 
Although we could detect enhanced histone H3 and H4 
acetylation at the IL-4 IE in both CD4 SP thymocytes and 
naive CD4 T cells from CIITA Tg  mice, we found little diff er-
ence in GATA3 expression in CIITA Tg  cells as compared with 
WT controls (unpublished data). Consistent with this fi nd-
ing, we showed that Th2 cytokine production by T-CD4 T 
cells does not totally depend on the Stat6 signaling pathway. 
Interestingly, this Stat6-independent production of IL-4 
is shared by NKT cells ( 36, 37 ). NKT cells coexpress sur-
face markers characteristic of both conventional T cells 
and NK cells and are positively selected by nonclassic MHC 
class I molecule CD1d on cortical double-positive thymo-
cytes ( 45 – 47 ). Functionally, NKT cells resemble innate ef-
fector cells in that they promptly produce large amounts of 

of monocytes was signifi cantly higher in CIITA Tg  than in WT 
mice, whereas the level of lymphocytes was comparable be-
tween WT and CIITA Tg  mice ( Fig. 7 B ). Hematoxylin and 
eosin (H & E) staining of lung tissue sections also supported the 
diff erence in eosinophil infi ltration between the two groups 
of mice ( Fig. 7 C ). In addition, OVA-specifi c IgE levels in 
serum were decreased in CIITA Tg  mice ( Fig. 7 D ). We further 
examined the expression of several cytokines involved in air-
way infl ammation. The lung tissue from OVA-sensitized and 
-challenged CIITA Tg  mice had signifi cantly more IFN- �  but 
less IL-13 and IL-17 transcripts compared with the WT con-
trol mice. The IL-4 and IL-5 mRNA levels were comparable 
between the two groups ( Fig. 7 E ). Collectively, T-CD4 T 
cells seem to play a protective role during airway infl amma-
tion, which was associated with a distinct Th eff ector cytokine 
production profi le at the site of infl ammation. 

  DISCUSSION  

 In this study, we have shown that the thymic selection pro-
cess plays an important role in the cytokine production po-
tential of CD4 T cells. Hence, unlike E-CD4 T cells, T-CD4 
T cells secrete both Th1 and Th2 cytokines shortly after 
stimulation. Remarkably, IL-4 – producing cells can develop 
in the absence of Stat6 when CD4 T cells are selected on 
thymocytes. In addition, T-CD4 T cells can produce IL-5 
and IL-13 in the absence of IL-4 ( 29 ). These observations are 

 Figure 6.   T-CD4 T cells acquire the potential to express IL-4 in the thymus. (A) Histone H3 at the IL-4 locus is hyperacetylated in CIITA Tg  CD4 T 

cells and thymocytes. Naive (CD44 lo CD45RB hi ) CD4 T cells and CD4 SP thymocytes from WT and CIITA Tg  mice were sorted and used for the ChIP assay with 

an antiacetylated histone H3 antibody. PCR primers specifi c for the IL-4 enhancer were used to amplify the precipitated DNA. No antibody was used as 

the negative control for the immunoprecipitation, and primers specifi c for CD3 
  were used as an internal loading control. Note that the CD3 
  mRNA level 

was equivalent between WT and CIITA Tg  T cells (not depicted). (B) CIITA Tg  CD4 SP thymocytes are poised to express the IL-4 gene. RNA was extracted from 

CD4 SP thymocytes from WT and CIITA Tg  mice immediately after FACS sorting. IL-4 mRNA was quantifi ed by quantitative RT-PCR, and the results were 

expressed as ratios relative to the housekeeping gene GAPDH. (C) CD4 SP T cells are capable of producing IL-4. Sorted NK1.1  �   CD4 SP cells from WT, 

CIITA Tg , or CIITA Tg /CIITA  � / �   thymocytes were stimulated with PMA plus ionomycin for 5 h. Cytokine production was analyzed by ICS. The percentage of 

positive cells in each quadrant is shown.   



JEM VOL. 204, September 3, 2007 

ARTICLE

2153

with Th cell diff erentiation ( 51 – 55 ). Therefore, the diff erence 
in TCR signaling potency could contribute to Th cytokine 
production by T-CD4 T cells. Previously, we demonstrated 
that the antigen repertoire of thymocytes does not totally 
overlap with that of TECs ( 19 ). Our current data also showed 
that the antigen presentation potential of thymic APCs seems 
to regulate the selection pathway and Th cell fate. Therefore, 
it appears that developing thymocytes receive diff erent signal 
strength when they are selected on thymocytes, generating 
a distinct cellular phenotype of cells. This is consistent with 
the similar cytokine production potential observed in both 
T-CD4 T cells and NKT cells. 

 Despite the fact that T-CD4 cells can readily express 
Th2 cytokines in vivo, mice that can generate T-CD4 T 

cytokines such as IFN- �  and IL-4 cytokines upon TCR 
stimulation. It was shown that during thymic development, 
the IFN- �  and IL-4 loci in NKT cells are modifi ed by his-
tone acetylation and both genes are constitutively transcribed, 
which correlates well with the capacity of NKT cells to rap-
idly produce cytokines ( 37 ). However, T-CD4 T cells are 
distinct from NKT cells ( 19 ), and their phenotype is not in-
fl uenced by CD1d-restricted NKT cells. 

 T cells selected on thymocytes such as NKT cells and 
nonclassical MHC class Ib – restricted CD8 cells appear to 
have TCR with higher avidity ( 48 – 50 ). Similarly, it is possi-
ble that thymocytes with higher TCR avidity could have 
been preferentially selected on MHC class II – positive thymo-
cytes. The TCR signaling potency is known to be associated 

 Figure 7.   Allergen-induced airway infl ammation is attenuated in CIITA Tg  mice. Total BALF cells (A) and percentages of differential cell counts 

(B) in the BALF of WT and CIITA Tg  mice 48 h after the last OVA aerosol treatment were determined. Each symbol in the graphs represents one mouse. Eos, 

eosinophils; Neu, neutrophils; LM, lymphocytes; MC, monocytes. (C) Reduced perivascular eosinophilic infi ltration in CIITA Tg  lung sections 2 d after the last 

exposure to OVA. Eosinophils are the red-staining cells in the H & E lung sections. Bars: (top) 100  � m; (bottom) 25  � m. (D) OVA-specifi c serum IgE levels. 

(E) Real-time RT-PCR of cytokine mRNA levels in the lung tissue of the OVA-challenged mice. The error bars represent the mean  �  SD of six mice in each 

group. Horizontal lines in A and D represent median values. The Student ’ s two-tailed  t  test was used to calculate statistical signifi cance. Data are pooled 

from two independent experiments. P  �  0.05 was considered statistically signifi cant. *, P  �  0.05; **, P  �  0.01.   
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Perhaps the presence of two selection pathways in humans 
is responsible for generating CD4 T cells that produce both 
IL-4 and IFN- � . Further investigations are warranted to eluci-
date the role of T-CD4 T cells in the modulation of immune 
diseases in humans. 

 MATERIALS AND METHODS 
 Mice.   Mice carrying the human type III CIITA transgene (CIITA Tg ), 

CIITA-defi cient mice (CIITA  � / �  ), CIITA Tg  mice on the CIITA-defi cient 

background (CIITA Tg /CIITA  � / �  ) and on the MHC class II – defi cient 

A �   � / �   background (CIITA Tg /A �   � / �  ), MHC class II I-E transgenic mice 

(I-E Tg ), I-E Tg  mice on the CIITA-defi cient background (I-E Tg /CIITA  � / �  ) 

and on the MHC class II – defi cient A �   � / �   background (I-E Tg /A �   � / �  ), and 

Stat6  � / �   mice were previously described ( 19, 29, 32, 34, 44 ). CD1d-defi -

cient mice on the C57BL/6 background ( 38 ) were bred with CIITA Tg  mice 

to generate CIITA Tg /CD1d  � / �  mice, and WT and CIITA Tg /CD1d �/ �   litter-

mates were used as CD1d-positive controls. Stat6  � / �   mice were bred onto 

the H-2 b  background and carried the CD45.1 congenic marker. C57BL/6 

(B6) mice and the MHC class II – defi cient A �   � / �   mice were purchased from 

the Jackson Laboratory and Taconic, respectively, and bred in the animal 

 facility at the Indiana University School of Medicine (IUSM). All mice were 

housed under specifi c pathogen-free conditions and used at 6 – 12 wk of age. 

All animal experiments were performed under protocols approved by the 

IUSM Animal Care and Use Committee. 

 In vivo anti-CD3 stimulation.   PBS or 10  μ g anti-CD3 antibody in PBS 

was injected into WT or CIITA Tg  mice through the tail vein. 2 h later, mice 

were killed and blood was collected by cardiac puncture. Serum cytokines 

were determined by ELISA. 

 BM chimeras.   Recipient B6, A �   � / �  , or CIITA  � / �   mice were lethally ir-

radiated (950 rad) and rested for 24 h before receiving BM cells. Total BM 

cells were prepared from the femurs and tibias of donor mice (2 – 3 mo of age) 

and depleted of mature T cells, B cells, and MHC class II – positive lympho-

cytes by using a cocktail of antibodies containing anti-CD4 (RL172) and 

anti-CD8 (TIB105, TIB210), anti-CD19 (1D3), and anti – MHC class II 

(M5/114), followed by complement-mediated lysis. These cells were subse-

quently referred to as T-depleted BM cells. Each recipient mouse received 

2.5  ×  10 6  T-depleted BM cells in 500  μ l of 1 ×  PBS via tail vein injection. 

Reconstituted mice were analyzed 2 – 3 mo later. 

 Flow cytometry.   All antibodies for fl ow cytometry were purchased from 

BD Biosciences, and cells were preincubated with the anti-Fc � R mAb 

2.4G2 to block nonspecifi c antibody binding. The following FITC-, PE-, 

PerCP-, cychrome-, allophycocyanin-, or biotin-conjugated antibodies were 

used: CD4 (L3T4), CD8 (53-6.7), CD45RB (16A), CD44 (IM7), NK1.1 

(PK136), CD1d (1B1), CD45.1 (A20), CD45.2 (104), anti – IL-4 (11B11), 

and anti – IFN- �  (XMG1.2). Allophycocyanin-conjugated streptavidin was 

used to visualize staining by biotinylated primary antibodies. Events were 

acquired on a fl ow cytometer (FACSCalibur; Beckman Dickinson), and the 

data were analyzed using CellQuest software (BD Biosciences). 

 T cell preparation and stimulation.   To purify CD4 and CD8 SP T cells, 

total thymocytes were depleted of double-positive cells by complement-

mediated lysis of HSA �  cells. The remaining cells were subsequently sorted 

electronically for NK1.1  �  CD4 � CD8  �   and NK1.1  �  CD4  �  CD8 �  cells. Total 

peripheral CD4 cells were enriched from single-cell suspensions from spleen 

and lymph nodes (auxiliary, brachial, inguinal, and mesenteric) with anti –

 mouse CD4 microbeads (Miltenyi Biotec). To obtain naive CD4 T cells, 

enriched CD4 T cells were stained with anti-CD4, CD45RB, and CD44 

and electronically sorted for CD4 � CD45RB hi CD44 lo  cells. In some experi-

ments, CD4 T cells were enriched from splenocytes. To induce Th cell dif-

ferentiation under neutral conditions (ThN), total peripheral, splenic CD4 T 

cells or 10 6  naive T cells/ml were stimulated with 5  � g/ml of plate-bound 

cells were less susceptible to airway infl ammation induced 
by a Th2-biased allergen. Although it is not yet clear how 
T-CD4 T cells exert this suppressive eff ect, several possi-
bilities can be envisioned. First, T-CD4 T cells can produce 
IFN- �  at a high level upon stimulation. Because IFN- �  has 
been shown to suppress the development of mouse airway 
infl ammation ( 56, 57 ), it is possible that the IFN- �  pro-
duced by T-CD4 T cells can dampen Th2-inducing condi-
tions in vivo, which in turn may attenuate the function of 
Th2 cells during disease development. Second, there was a 
marked reduction of IL-17 transcripts in the lung tissue of 
the OVA-challenged CIITA Tg  mice. IL-17 has been shown 
to play an important role in many immune diseases, includ-
ing airway infl ammation ( 3, 58, 59 ). Because both IL-4 and 
IFN- �  suppress the generation of Th17 ( 2, 3 ), T-CD4 T 
cells with a dual cytokine production potential might have 
altered Th17 cell diff erentiation, contributing to  protection. 
Indeed, CIITA Tg  CD4 T cells make substantially less IL-17 
than WT CD4 T cells in vitro (unpublished data). Reduced 
IL-17 production in CIITA Tg  mice could also be responsi-
ble for protecting them from experimental auto immune 
encephalomyelitis ( 60 ). Third, T-CD4 T cells may have a 
limited capability to expand during the challenge period, 
and mount an ineffi  cient memory response. In this regard, 
nonclassical MHC class Ib – restricted CD8 cells that can be 
selected on TECs or hematopoietic cells failed to undergo 
secondary expansion upon  Listeria  infection, even though 
they can mount a rapid primary immune response ( 50, 
61 – 63 ). Lastly, it is possible that OVA-specifi c eff ector T-
CD4 T cells could not be generated effi  ciently or their 
 infi ltration into the lung was defective. An identifi cation of 
markers specifi c for T-CD4 T cells would help to address 
this issue in the future. Regardless of mechanism, T-CD4 
T cells appear to play a critical and diverse role during an 
immune response. 

 A substantial portion of human fetal and neonatal thymo-
cytes express MHC class II molecules, which have been 
shown to be involved in the positive selection of CD4 T cells 
through interactions between thymocytes ( 64 ). Therefore, it 
is reasonable to propose that healthy individuals have two 
CD4 T cell populations selected on TECs as well as thymo-
cytes. At the moment, nothing is known about the regulation 
of these two pathways. We do not know whether the two 
populations of CD4 T cells are selected and maintained 
equally or whether one population is preferentially selected 
over the other. Nonetheless, it is conceivable that the diff eren-
tial selection effi  ciency in an individual could have profound 
consequences in immunity. Whereas Th cell diff erentiation 
is relatively easy to observe in mice, the paradigm has not 
been as clear in the human system ( 65 – 70 ). In addition, diff er-
entiated human Th cells can produce both cytokines when 
they are cultured in the opposing polarizing condition ( 71 ), 
whereas committed mouse Th cells cannot be reversed ( 72 ). 
The phenotype of human Th cells suggests a distinct ge-
netic programming in their cytokine gene expression, which 
appears to be similar to T-CD4 T cells in CIITA Tg  mice. 
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 Online supplemental material.   Table S1 shows MHC class II, Ii, and H-

2M expression in mice used in this study. Fig. S1 shows MHC class II ex-

pression on thymocytes and CD44 and CD45RB expression on splenic CD4 

T cells from WT, CIITA Tg , CIITA Tg /CIITA  � / �  , and I-E Tg  mice. Fig. S2 

shows the gate used to sort naive CD4 T cells (CD45RB hi CD44 lo ). Fig. S3 

shows IL-4 and IFN- �  production by Th1 and Th2 cells diff erentiated from 

total WT, CIITA Tg , and CIITA Tg /CIITA  � / �   CD4 T cells. Fig. S4 shows 

the generation of E- and T-CD4 T cells in BM chimeric mice. The FACS 

plots represent profi les of CD4 versus CD8 in the thymus and LN. Fig. S5 

shows IL-4 production by TEC- and thymocyte-selected Stat6  � / �   thymo-

cytes and splenic CD4 T cells from chimeras that were reconstituted with 

Stat6  � / �   and WT or CIITA Tg  BM. Online supplemental material is available 

at http://www.jem.org/cgi/content/full/jem.20070321/DC1. 
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anti-CD3 
  (145-2C11), 1  � g/ml anti-CD28 (37.51), and 50 U IL-2 (Roche) 

for 5 – 7 d. For Th1 cell diff erentiation, and additional 3.5 ng/ml IL-12 and 

10  � g/ml anti – IL-4 (11B11) were added. Th2 cell cultures were supple-

mented with 10 ng/ml IL-4 and 10  � g/ml anti – IFN- �  (R4-6A2). 

 Cytokine assays.   For the ELISA assays, diff erentiated cells were restimu-

lated overnight with 5  � g/ml of plate-bound anti-CD3 antibody at a cell 

density of 1  �  10 6 /ml. IL-4 and IFN- �  in the supernatants were quantifi ed 

by paired cytokine-specifi c antibodies (BD Biosciences). Recombinant cyto-

kines were used as standards. For ICS, cells were stimulated with 50 ng/ml 

phorbol myristyl acetate and 1.5  � M ionomycin (Calbiochem) for 5 h. Mo-

nensin (Sigma-Aldrich) at 3  � M was added during the last 3 h of stimulation. 

Activated cells were stained with anti-CD4 and anti-NK1.1 in some cases. 

Cells were fi xed in 2 – 4% paraformaldehyde and permeabilized with 0.2% 

saponin (Sigma-Aldrich), followed by staining with anti-IL4 (11B11) and 

anti – IFN- �  (XMG1.2) for fl ow cytometry. 

 RT-PCR.   Total RNA was extracted from sorted CD4 SP thymocytes lysed in 

TRI zol  reagent (Invitrogen), according to the manufacturer ’ s recommenda-

tions, and reverse transcribed using the SuperScript First-Strand cDNA Syn-

thesis System (Invitrogen). Quantitative real-time PCR was performed with 

SYBR Green PCR Master Mix (Applied Biosystems). All PCR reactions were 

done in triplicate, and the data were analyzed by the comparative threshold 

 cycle ( 
 C T ) method and normalized to GAPDH. The primer pairs used 

for GAPDH were 5 � -CCAGGTTGTCTCCTGCGACT-3 �  and 5 � -ATAC-

CAGGAAATGAGCTTGACAAAGT-3 � , and for IL-4 were 5 � -ACAG-

GAGAAGGGACGCCAT-3 �  and 5 � -GAAGCCCTACAGACGAGCTCA-3 �  

( 73 ). Message levels of IFN- � , IL-4, IL-5, IL-13, and IL-17A in the lung tissue 

were analyzed by TaqMan PCR (all reagents were obtained from Applied Bio-

systems). Cycle number of duplicate samples was normalized to expression of 

 � 2-microglobulin. Results are relative to one of the WT mice. 

 ChIP analysis.   ChIP analysis was performed according to the ChIP assay 

protocol (Upstate Biotechnology). In brief, 2 – 3  �  10 6  sorted CD4 or CD8 

SP thymocytes or sorted naive CD4 cells from WT and CIITA Tg  mice were 

fi xed in 1% formaldehyde for 10 min at room temperature, washed, lysed, 

and sonicated with three pulses to generate chromatin fragments of  � 500-bp 

in length. Antiacetylated histone H3 antibody (Upstate Biotechnology) was 

added (3  � l per immunoprecipitation) to the diluted lysates and incubated 

overnight. No antibody group was used as a negative control. Protein A –

 sepharose CL-4B beads (GE Healthcare) were added for 1 h. After washes, 

the immunocomplexes were eluted, the cross-links were reversed, and DNA 

was purifi ed by phenol/chloroform extraction and resuspended in 50  � l TE 

buff er. Semiquantitative PCR was done with twofold serial dilutions of 

ChIP DNA samples. The primers used for IL-4 IE were 5 � -GGGTGT-

GAATAAGCCATATTG-3 �  and 5 � -CCCAGCGTTTACATGAGC-3 �  ( 40 ), 

and for CD3 
  were 5 � -CATTTCCAAGTGACGTGG-3 �  and 5 � -AACA-

CACTGGCTGCATGC-3 �  ( 39 ). 

 OVA-induced airway infl ammation.   On days 0 and 7, mice were sensi-

tized i.p. with 20  μ g OVA (grade V; Sigma-Aldrich) adsorbed onto 0.5 mg of 

aluminum hydroxide gel (Sigma-Aldrich) in 0.5 ml PBS. Beginning on day 

14, mice were challenged with aerosolized OVA from a 1% OVA/PBS solu-

tion for 20 min using a jet nebulizer for 7 consecutive days. 2 d after the last 

aerosol challenge, mice were anesthetized with sodium pentobarbital. BALF 

was collected from airways by three washes with 1 �  PBS. After BALF collec-

tion, blood was drawn by a cardiac puncture, and a portion of the lung was 

fi xed in 10% buff ered formalin for histological examination. The remaining 

lung tissue was stored in RNAlater solution (Ambion) and homogenized in 

TRI zol  for RNA preparation. After cytospin of the BALF, slides were 

stained with the Diff -Quick stain set (Baxter), and diff erential cell numbers 

were determined by counting 200 cells per slide. OVA-specifi c IgE levels in 

serum were measured by ELISA, and the data were expressed as OD readings. 

Fixed lung tissues were embedded in paraffi  n, cut into 5- � m-thick sections, 

and stained with H & E for histological analysis of airway infl ammation. 
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