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Abstract
This work explores the application of a physiologically structured population (PSP) 
framework in modeling hepatitis C virus (HCV) kinetics. To do so, a model was 
developed for the viral RNA load in plasma and liver as observed in 15 patients 
treated with a combination therapy of pegylated interferon, ribavirin, and telaprevir. 
By including both intracellular and extracellular processes of the HCV lifecycle, the 
model provided a description of the treatment effect on the intracellular HCV life-
cycle. Combining PSP models with a nonlinear mixed effects approach in a single 
model permits a natural inclusion of the direct-acting antiviral effect on intracellular 
processes, which can then be integrated with the viral kinetics within the host while 
accounting for the interindividual variability between patients. This should allow an 
exploration of the treatment effect within the entire chronic HCV-infected population.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Direct-acting antiviral (DAA) drugs affect the intracellular reproduction of the virus. 
Multiscale models mechanistically describe the critical intracellular steps in the hepati-
tis C virus (HCV) lifecycle that are affected by DAA-based therapy while capturing the 
extracellular viral kinetics and accounting for sources of between-subject variability.
WHAT QUESTION DID THIS STUDY ADDRESS?
This study describes and quantifies the intracellular processes of the HCV replication 
machinery that are affected by DAA agents.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The multiscale model provides quantification of the distribution of the viral RNA in 
the HCV-infected hepatocytes following treatment with DAAs and provides a quan-
tification of the extent and duration of the treatment effects, which is critical to select 
the appropriate dose, schedule, and treatment duration of new drug combinations.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/
OR THERAPEUTICS?
Monotherapy with DAAs often results in the development of HCV resistance. 
Identifying intracellular processes affected by the drug provides insights to stream-
line the optimization of new drug combination therapies to achieve functional cure 
and avoid resistance.

http://www.psp-journal.com
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INTRODUCTION

Hepatitis C virus (HCV) is a positive-strand RNA virus of 
the Flaviviridae family that primarily infects hepatocytes 
and can lead to liver cirrhosis, hepatocellular carcinoma, 
liver failure, and liver failure–related death.1 Less than 50% 
of the patients with HCV treated with general inhibitors of 
viral infection, such as pegylated interferon (IFN) and riba-
virin (RBV), achieved sustained virologic response (SVR), 
defined as the absence of detectable virus at the end of the 
therapy and 6 months later. Improvements in the understand-
ing of the intracellular HCV lifecycle2 have led to the identi-
fication of new targets and the development of direct-acting 
antiviral (DAA) drugs affecting the intracellular reproduction 
of the virus. However, DAA-based monotherapy resulted in 
viral breakthroughs attributed to the development of drug 
resistance, but the combination of protease inhibitors, tel-
aprevir (TVR) or boceprevir, with IFN and RBV was able to 
overcome resistance and yielded SVR rates of approximately 
70%. Recently, IFN-free combinations of DAA reach a SVR 
of >95%, with treatment durations of less than 12 weeks, thus 
becoming the new standard of care.

Understanding the key mechanism of action of DAA-
based therapy is essential for the development of optimal 
drug combinations. Previous mathematical models of HCV 
infection provided multiple insights into the pathogenesis and 
treatment effects on the virus. For instance, the estimation 
of the antiviral agents’ efficacy3,4 and the lifespan of HCV-
infected cells justified the chosen treatment duration required 
to cure the infection.5 These modeling efforts have led to a 
wide range of available viral kinetics models,3–6 which de-
scribe the production of uninfected (target) hepatocytes that 
become infected by circulating virions, which in turn produce 
and release new virions in the circulation. However, these 
models fail to consider the viral RNA replication/degradation 
within the infected cell. Multiscale models mechanistically 
describe the critical intracellular steps in the HCV lifecycle 
that are affected by DAA-based therapy while describing the 
extracellular viral kinetics.7,8

In a previous article,9 we introduced the potential of a 
physiologically structured population (PSP) model framework 
where tissue heterogeneity is expressed in terms of the vRNA 
load, assuming that (1) all cells can be characterized by their 
intracellular viral RNA (vRNA) load, (2) all extracellular in-
teractions are mediated through a (well-stirred) environment, 
and (3) intracellular vRNA replication in a typical cell can be 
described as a deterministic process. In other words, assuming 
each cell behaves as an independent individual within the host 
helps describe intracellular dynamics using a semimechanistic 
model, depending on changes in the environment, for instance, 
changes attributed to the presence of a drug. However, where 
the classic compartmental models will assume that the infected 
population of cells could be represented by a single “average 

cell,” PSP models capture the evolution of the entire (infected) 
cell population to derive the overall dynamics accounting for 
the fact that cells affect their environment differently depending 
on their internal state.

In this article, we apply the PSP model for the first time 
to describe the dynamics of HCV in plasma and liver fol-
lowing TVR/IFN/RBV administration, and we propose the 
intracellular vRNA in infected hepatocytes as a structure. We 
have used publicly available data to estimate model parame-
ters of the nonlinear mixed effects model using MONOLIX 
(2018R2 Lixoft10). The model proposed justifies the need for 
considering an additional TVR effect on vRNA synthesis. In 
addition, the steady-state distribution of HCV is determined, 
and its clinical implications are discussed.

METHODS

Data

The data set, digitized from the publication of Talal et al. on 
TVR/IFN/RBV-based treatment effects on HCV in the liver 
and blood,11 consists of the concentration of vRNA in blood 
(about 106.5 copies/mL at baseline) and liver (copies/ng total 
RNA) obtained through fine-needle aspiration. Data from 15 
subjects with genotype 1 chronic HCV (cHVC) infection, for 
which the vRNA plasma concentrations were measured at 
baseline, 6 h, 10 h, day 1, day 3, and day 14 after the start of 
therapy in blood and at baseline, 10 h, day 3, and day 14 after 
the start of therapy in the liver. Patients were treated with a 
combination of TVR, PegIFN, and RBV, resulting in a sig-
nificant drop in both blood and liver vRNA concentrations.

To evaluate the intracellular vRNA load, the data set is 
complemented with the data published by Kandathil et al. 
in their mapping of the HCV-positive hepatocytes in human 
liver obtained by laser capture microdissection.12 The dig-
itized data consist of histograms reporting cell counts for a 
given vRNA load per cell (IU/hepatocyte) as well as the base-
line viral load. These data come from the analysis of biopsies, 
originating from 4 patients with genotype 1 cHCV infection. 
For each subject, about 120 to 290 hepatocytes expressed 
vRNA levels at and above a detection limit of 1 IU/hepato-
cytes. Only hepatocytes with vRNA >1 IU were considered 
infected and included in the analysis.

Multiscale vRNA model

As with the classic/standard viral kinetic model2 used to de-
scribe chronic infections, the spread of the virus within the 
host is modeled by describing the turnover of the target (un-
infected) cells T , which are infected at a rate proportional to 
the viral load V:



828  |      TRIXHE et al.

where s represents the zero-order production rate of target 
hepatocytes; d the first-order elimination rate of target he-
patocytes; � the rate of contact between virions and target 
hepatocytes; P (t) , the virion secretion at time t and c, the elim-
ination rate of virion.

In the classic viral kinetic models,13 this virion secre-
tion is assumed to be proportional to the number of infected 
cells, I. In this PSP model, however, the viral secretion is 
assumed to be proportional to the intracellular vRNA load 
r(copies/cell), such that the total secretion can be evaluated 
by integration over the hepatocyte distribution function i(r, 
t) ([cells/copies/cell] =  [cell2/copies]) corresponding to the 
number of cells with a given vRNA load ranging form 0 to 
infinity, with the added restriction that no cell could reach 
such density lim

r→∞
i (r, t) = 0. In general, one can define a time 

invariant function z(r) expressing some quantity in terms of 
vRNA load such that, by integration over the whole (infected) 
tissue, one could derive the total at any moment Z (t):

where Ω = (0,∞) or Ω =
(

0, rm

)

 is the domain of the vRNA 
load, and the function is z (r) = 1, z (r) = r, or z (r) = pr.

Let the z (r) function be defined for infected hepato-
cytes as zI (r) = 1, for the intracellular vRNA content as 
zR (r) = r (copies/cell), and for the virion secretion as 
zP (r) = p r(copies/cell/day), where p(1/day) is the first-order 
vRNA secretion rate constant in an infected hepatocyte. 
Then the total number of infected hepatocytes I(t) (cell), the 
amount of intracellular vRNA R (t)(copies/cell), and the vi-
rion secretion P (t) [copies/cell/day] are:

The evolution of the distribution function i (r, t) is at the 
core of the PSP modeling framework.14 Assuming infected 
hepatocytes do not replicate and a fixed hazard rate for the 
death of infected hepatocytes � independent of the intracellu-
lar vRNA load, the evolution of this distribution is described 
by the following partial differential equation (PDE):

where g(r) represents the vRNA dynamics of hepatocytes with 
a given vRNA load r.

The intracellular vRNA dynamics are captured by the fol-
lowing model:

with � the vRNA replication rate, � the vRNA decay rate, and p 
represents the loss of cellular vRNA as a result of the secretion 
of virions.

Finally, the boundary conditions are such that all newly 
infected hepatocytes enter the distribution through the 
boundary at r = 0:

The initial conditions of the model are derived assuming 
steady state before the onset of the treatment (Appendix S1):

where rm = �∕(� + p) and � = �∕(� + p). I0 is the number of 
infected hepatocytes at steady state calculated in Appendix S2. 
To conclude, the effect of the therapy is introduced given the 
mechanisms of action of the combination of TVR, PegIFN, 
and RBV,15 which basically consists of disrupting the synthesis 
of proteins required for the formation and replication of HCV. 
Consequently, the effect of the therapy is assumed to inhibit 
both the replication and secretion rates � and p. Unfortunately, 
although it has been demonstrated that the model can natu-
rally be extended to include the pharmacokinetics (PK) of the 
drugs,9 in the absence of PK data the inhibition of these rates is 
assumed to be constant after some lag time. Hence:

where �p, �� ∈ [0, 1] represent the inhibition of virion produc-
tion/secretion and the vRNA replication denoted by the short-
hand p̀ and �̀.

Macroscopic model

As the model described by (1) to (11) is linear, it can be par-
tially solved 9 (Appendix S2) whereby the dynamics of the 
total number of infected hepatocytes, I, and the total amount 
of intracellular vRNA, R, and the virion production due 

(1)dT

dt
= s − d T − � V T

(2)dV

dt
= P (t) − c V

(3)Z (t) = ∫Ω z(r) i (r, t) dr

(4)I (t) = ∫Ω i (r, t) dr

(5)R (t) = ∫Ω r i (r, t) dr

(6)P (t) = ∫Ω pr i (r, t) dr = p R (t)

(7)�i(r, t)

�t
+

�(g (r) i (r, t) )

�r
= −� i (r, t)

(8)g (r) ≡ dr

dt
= � − (� + p) r

(9)lim
r→0+

g(r)i (r, t) = � V T

(10)i (r, 0) = iss (r) =
�I0

�

(

1 −
r

rm

)� −1

(11)
p→ p̀ =

(

1−�p

)

p

�→ �̀ =
(

1−��
)

�
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secretion, P(t), be expressed as a system of ODEs at the mac-
roscopic level: 

 

 

 

with the initial conditions determined by the steady state: 

Equations for T0, I0, and R0 as functions of the model pa-
rameters and V0 are provided in Appendix S2.

Data fitting

The fitting of data was performed in two steps. First, the hepato-
cyte vRNA distribution data were fitted allowing to obtain es-
timates of the two parameters rm and γ. In the next step, the 
observations of viral load in plasma and liver were fitted with 
rm and γ fixed at their estimated values from the previous step.

Fitting hepatocyte vRNA distribution

The data consisted of vRNA measurements rij in the infected 
hepatocytes of four patients (i  =  1, …,4, j  =  1,…ni). The 
measurements rij were assumed to have no error. This al-
lowed us to fit the probability density function.

to each patient and obtain the maximum likelihood estimates 
of parameters rm and γi (i  =  1, …,4). The mean values of 
rm1,…, rm4 and γ1,…, γ4 were considered to be the estimates 
of rm and γ, respectively, for the patient population. The maxi-
mum likelihood estimation was performed in MONOLIX ver-
sion 2018R210 using a basic time-to-event (TTE) model, with 
rij (j = 1,…ni) interpreted as the TTE and the hazard function 
that can be calculated from the probability density function 
(Equation 17) according to the following formula16

Subsequently, the vRNA distribution parameters γ and rm 
were estimated as if vRNA measurements were the death times 
of the infected hepatocytes determined by the hazard of death 
function (Equation 18) using survival analysis techniques.16

Reparameterization and scaling

The viral load in plasma Cv expressed as copies/mL was de-
scribed by

where Vd = Vpl∕f , Vpl denotes the patient's plasma volume, and 
f is the fraction of the viral load V in the plasma. The viral load 
in the liver CR was measured with units copies/(ng total RNA) 
and was modeled as

where sR is the conversion factor between copies/cell and cop-
ies/(ng total RNA). As Vpl is not identifiable from the available 
data, we introduced hybrid variables and parameters:

The Models (1) to (11) and output equations were rewritten 
in new variables. The steady-state Equations (24) to (27) were 
used to evaluate some of the model parameters as follows:

The parameters � and rm obtained from the fitting of the he-
patocyte distribution were further used to calculate three more 
parameters from the steady-state Equations (17) and (18).

(12)dT

dt
= s − �VT − dT

(13)dI

dt
= �VT − �I

(14)dR

dt
= �̀ I − (� + p̀ + �)R

(15)dV

dt
= p̀ R − c V

(16)T(0) = T0, I(0) = I0, R(0) = R0, V(0) = V0

(17)pdf (r) =
�

rm

(

1 −
r

rm

)� −1

(18)h (r) =
pdf (r)

∫ rm

r
pdf (�) d�

=
�

rm − r

(19)CV =
V

Vd

(20)CR = sR

R

T + I

(21)Ṽ =
V

Vd

,…T̃ =
T

Vd

,… Ĩ =
I

Vd

,…R̃ =
R

Vd

(22)Ṽ0 =
V0

Vd

, … T̃0 =
T0

Vd

, … Ĩ0 =
I0

Vd

, … R̃0 =
R0

Vd

(23)s̃ =
s

Vd

,…�̃ = �Vd,

(24)R̃0 =
cṼ0

p

(25)Ĩ0 =
(p + � + �) R̃0

�

(26)T̃0 =
� Ĩ0

�̃ Ṽ0

(27)s̃ =
(

d +%�̃%Ṽ0

)

T̃0
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where � = �∕� and 0 ≤ q ≤ 1. The parameter q expresses p as a 
fraction of the first-order elimination rate constant p + u repre-
senting the total elimination rate of vRNA from a hepatocyte. A 
set of final (primary) parameters estimated from the observed 
data was Ṽ0, c, �, �̃, q, �p, ��, and sR. The death rate of target 
hepatocytes was fixed at a value d = 0.006 (1/day),3 matching 
the 150 to 200 day lifespan of healthy hepatocytes.

Fitting viral load data

The parameters Ṽ0, c, �, �̃, and sR were allowed to be lognor-
mally distributed among patients:

where �i denotes an individual parameter value and �pop its 
population mean. Since the parameters 0 ≤ q, �p, �� ≤ 1, we as-
sumed that they were logit distributed.

The viral load data11 consisted of viral load profiles in 
plasma CVij and vRNA loads in the liver CRij, where j is an 
index for individual measurements for the ith subject. The 
data were log10 transformed and the constant residual error 
models were used:

where VijRij, Tij, and Iij represent the model predicted viral load, 
vRNA content, target, and infected hepatocytes at the time of 
observation, tij. Moreover, �CV,ij and �CRij represent the residual 
error associated with each variable and assumed to be additive 
and normally distributed on the log10 scale, a technique re-
ferred to as “both sides transformation.”

The maximum likelihood estimates were obtained for 
the typical values and the variance of the model parame-
ters, along with the residual variances, using the Stochastic 
Approximation of Expectation Maximization algorithm im-
plemented in MONOLIX version 2018R2.10 The model per-
formance was assessed using the goodness of fit plots and 
visual predictive checks.

RESULTS

The individual patient hepatocyte vRNA distribution was fit-
ted with the probability density function given by Equation 

(17). The density histograms overlaid with fitted distribution 
curves are shown in Figure 1. The distributions are unimodal 
and skewed to the right, with the mode located at the low-
est detectable vRNA load of 1 to 4  IU/cell. The maximum 
estimates of the distribution parameters γ and rm are shown 

(28)� = �rm, p = qv,� = (1 − q)v

(29)�
i
=�popexp(�

Pi
) with �

Pi
∼ �

(

0,�2
P

)

(30)�
i
=�pop logit(�

Pi
) with �

Pi
∼ �

(

0,�2
P

)

(31)lCVij = log10

(

CVij

)

+ �CVij with �CVij ∼ N
(

0, �2
V

)

(32)lCRij = log10

(

CRij

)

+ �CRij with �CRij ∼ N
(

0, �2
V

)

F I G U R E  1   Individual patient hepatocyte vRNA distributions. The 
density histograms of observed vRNA concentration in a sample of 
hepatocytes for a patient with hepatitis C virus is overlaid with a curve 
representing the probability density curve for the hepatocyte vRNA 
distribution at steady state (Equation 17). The distribution parameters 
were obtained by the maximum likelihood fitting of Equation (17) to 
the vRNA data reported in de Roos14
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in Table 1. The average γ was 9.8, and the average rm was 
48.2  IU/cell with a standard deviation of 33.9  IU/cell rep-
resenting between-subject variability based on a sample of 
N = 4. To convert IU/cell to copies/cell, we used a relation-
ship from Kandathil et al.12

This implies that for a typical patient with HCV, the maxi-
mum number of vRNA copies per infected hepatocyte is 94.5, 
which agrees with the value reported in Kandathil et al.12 The 
explicit Equation (17) for the probability density function of 
the vRNA distribution allows us to calculate its mean as

This implies that on average there are about 9.6 vRNA 
copies in an infected hepatocyte.

Graphical analysis of the plasma viral load data, shown 
alongside the individual fits (Figure 2), reveal a biphasic de-
cline of HCV load in blood in most of the (n = 15) treated 
subjects. The early part of the plasma vRNA load profile had 
a median half-life of 0.1 days with an interquartile interval 
of 0.08–0.12 days, whereas the terminal phase exhibited a 
median half-life of 2.2 days with an interquartile interval of 
1.9–2.6 days. The individual liver vRNA concentration-time 
profiles for patients with HCV are shown in Figure 3. The 
model predicted an exponential decline for all subjects with 
median half-life of 2.2 days with an interquartile interval of 
2.0–2.4 days.

Estimates of the microscopic model parameters are pre-
sented in Table 2. The estimates of typical values of q and 
�� were at the upper limit of the domain, and therefore were 
fixed at 1.0. The interindividual variability (IIV) for β was 
not estimable and removed from the model. The estimate 
of ��p

 was close to 0 and subsequently fixed at this value. 
The relative standard errors of estimates of typical values did 
not exceed 14%, and for IIVs they were less than 38%. The 
model evaluation was performed at a population level using 
goodness-of-fit plots and visual predictive checks (Figures 
S1–S2), which showed that the model was able to describe 

the time course of the vRNA and its associated variability in 
HCV subjects.

Three scenarios were considered to assess the impact of 
inhibition of vRNA secretion versus inhibition of vRNA rep-
lication on the viral load time course in plasma and liver via 
the model-based simulations (Figure 4). In scenario A, both 
inhibitory mechanisms are in place as estimated from the 
available data (�� = 1.0 and �p = 0.999). In scenario B, we 
turned off the inhibition of vRNA replication while keeping 
the inhibition of vRNA secretion on (�� = 0 and �p = 0.999). 
In scenario C, we turned off the inhibition of vRNA secretion 
while keeping the inhibition of vRNA replication on (�� = 1.0 
and �p = 0). The inhibition of vRNA secretion is the dominant 
mechanism controlling the viral load in the plasma. Scenario 
C resulted in a 62% reduction of the baseline viral load (in the 
log10 domain) after 2 weeks of treatment, whereas scenario 
B resulted in a 30% reduction. When the two mechanisms 
are present (scenario A), a 73% reduction of the baseline 
viral load was observed. On the other hand, the inhibition of 
vRNA replication is a dominant mechanism controlling the 
viral load in the liver. Scenario B resulted in a 51% reduction 
of the baseline viral load after 2 weeks of treatment, whereas 
scenario C resulted in a 29% reduction. Scenario A yielded a 
47% reduction of the log10-transformed baseline viral load.

The i-state model permits the evaluation of the impact of 
two mechanisms of action on the distribution of vRNA in a 
hepatocyte. Using the method of characteristics (Appendix 
S3), we performed simulations of the probability density 
function for the distribution of vRNA pdf (r, t) = i (r, t) ∕I (t) 
versus time t for the three scenarios defined previously. The 
results are shown in Figure 5. There is a distinct difference 
in vRNA distribution in the presence of inhibition of vRNA 
replication (scenarios A and C) and in its absence (scenario 
B) that is manifested by the observed peak in the latter sce-
nario. The blockage of the vRNA replication ensures that all 
infected hepatocytes contain vRNA produced only before the 
treatment, whereas scenario B is a mixture of hepatocytes 
infected before treatment (old cells) and hepatocytes infected 
after the start of treatment (new cells). Since the vRNA in 
each hepatocyte increases over time and newly infected he-
patocytes have a vRNA load close to 0, the vRNA distribu-
tion is divided into new hepatocytes with lower vRNA load 
and old hepatocytes with higher vRNA load with a boundary 
that coincides with the distribution mode (data not shown). 

(33)1 IU∕cell = 1.96 copies∕cell

(34)

rm

∫
0

rpdf (r) =
rm

�

T A B L E  1   Estimates of parameters for the hepatocyte vRNA distribution at steady state

Patient
Subject 1, estimate 
(SE)

Subject 2, estimate 
(SE)

Subject 3, estimate 
(SE)

Subject 4, estimate 
(SE)

Mean 
(SD)

rm, IU/cell 26.5 (2.7) 90.7 (28.6) 59.5(23.7) 15.9 (4.6) 48.2 (33.9)

γ 7.7 (1.2) 18.9 (5.3) 10.0 (4.5) 2.4 (1.3) 9.8 (6.9)

SD, standard deviation; SE, standard error.
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F I G U R E  2   Log10 transformed plasma concentrations of hepatitis C vRNA in individual patients. Symbols represent the observed data, and 
the lines are model-fitted profiles using microscopic Models (1) to (11). The bars indicate the observations below the limit of quantification. Data 
were obtained from Canini and Perelson13
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F I G U R E  3   Log10 transformed liver concentrations of hepatitis C vRNA in individual patients. Symbols represent the observed data, and the 
lines are model-fitted profiles using microscopic Models (1) to (11). The bars indicate the observations below the limit of quantification. Data were 
obtained from Canini and Perelson13
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The continuous increase of vRNA in time shifts the distribu-
tion to the right. A drop in the probability density function 
(r, t) corresponding to vRNA for new hepatocytes is caused 
by a rapid decrease in the number of infected hepatocytes I(t) 
attributed to the blockage of the virion secretion. In scenario 
C, the vRNA production is blocked and the number of vRNA 
copies in each old hepatocyte decreases to 0, causing the 
vRNA distribution to shift to the left with time. Since both 
the viral production and elimination are blocked in scenario 
A, there is almost no change in intracellular vRNA load, and 
its distribution among old hepatocytes does not differ from 
the steady-state distribution over time.

DISCUSSION

The theoretical potential of the PSP model framework to con-
sider the tissue heterogeneity in terms of a physiological entity, 

such as vRNA load, has been presented previously.9 In this ar-
ticle, a mixed effects approach has been developed and applied 
to describe dynamics of HCV in plasma and liver following 
TVR/IFN/RBV treatment based on real data collected from 
patients infected with HCV. The current analysis demonstrates 
the value of structuring infected hepatocytes in terms of their 
vRNA load. As the approach uses an explicit, compartmental, 
(sub-)model to describe dynamics of the intracellular state var-
iable associated with the model structure, the approach permits 
to naturally account for drug effects driven by (time varying) 
compound concentration in the infected tissue. By extension, 
the model could also be used to introduce more complex PK/
PD9 models to describe viral load in treated subjects. Although 
PK has not been explored here because of the lack of available 
data, incorporating the PK component will be critical to use the 
PSP model framework for dose and schedule selections dur-
ing the development of new drugs or drug combinations in the 
target population.

T A B L E  2   Model parameters along with description, units, typical values, and IIV or source for the typical value

Parameter Description Units
Typical value 
(RSE)

IIV/source 
(RSE)

log10

(

V0∕Vd

)

Baseline concentration of vRNA in plasma log10(copies/mL) 6.53 (0.18) 0.59 (0.13)

c First-order elimination rate constant of vRNA from plasma 1/day 6.84 (0.95) 0.42 (0.12)

� First-order elimination rate constant of infected hepatocytes 1/day 0.299 (0.035) 0.31 (0.12)

log10

(

�Vd

)

Second-order production rate constant of infected 
hepatocytes

log10([ml/copy]/day) −7.68 (0.44)

log10

(

sR

)

Conversion factor between copies/cell and copies/(ng total 
RNA)

cell/(ng total RNA) 4.02 (0.36) 0.69 (0.17)

q Fraction of elimination rate of vRNA from hepatocyte due to 
secretion to plasma

1 1.0a 

�p Inhibition of vRNA secretion to plasma 1 0.999 (0.00027)

�� Inhibition of vRNA replication 1 1.0a 

�V Standard deviation of the residual error for log10 
transformed viral load in plasma

log10(copies/mL) 0.403 (0.036)

�R Standard deviation of the residual error for log10 
transformed viral load in liver

log10(copies/[ng total 
RNA])

0.587 (0.077)

rm Maximum number of vRNA copies per hepatocyte copies/cell 94.5 66.4b 

γ Shape factor of hepatocyte vRNA distribution 1 9.8 6.9b 

d First-order elimination rate constant of target hepatocytes 1/day 0.006a  3

α Zero-order vRNA replication rate constant (copies/cell)/day 139a  Equation (28)

p First-order vRNA secretion rate constant 1/day 0.0305a  Equation (28)

μ First-order vRNA degradation rate constant 1/day 0.0a  Equation (28)

R0∕Vd Total number of vRNA copies in liver at baseline 108 copies/mL 7.6a  Equation (24)

I0∕Vd Total number of infected cells in liver at baseline 106 cells/mL 1.8a  Equation (25)

T0∕Vd Total number of target cells in liver at baseline 106 cells/mL 7.6a  Equation (26)

s∕Vd Zero-order target cells production rate constant (106 cells/mL)/day 0.584a  Equation (27)

IIV, individual variability; RSE, relative standard error.
aParameter was fixed.
bStandard deviation of sample, N = 4.
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Multiscale models mechanistically describe the critical in-
tracellular steps in the HCV lifecycle that are affected by DAA-
based therapy while capturing the extracellular viral kinetics. An 
age-structured model of HCV has been previously introduced 
where the underlying structure is the time from infection.7,8 It 
proved to properly describe the time course of viral declines in 
patients on IFN, daclatasvir, and TVR and has helped decipher 
the mode of action and the antiviral effectiveness of these drugs 
in blocking intracellular vRNA production and virion assem-
bly/secretion in vivo. Our vRNA-structured population model is 
similar in formalism to the age-structured model of HCV. More 
information about the differences between these two approaches 
can be found in Woot de Trixhe et al.9

The flexibility of the PSP model allowed the incor-
poration of data from multiple sources under a common 
mechanism-based framework. The current analysis was able 
to pool data from laser micro-dissection to determine the 

shape of the distribution of vRNA copies per infected cell 
along with clinical data on the viral dynamics observed in 
patients. Unfortunately, these data were from two different 
sources with only common baseline distributions, which does 
not allow for firm conclusions; however, these data allow us 
to show the added value of the proposed methodology to 
integrate data at microscopic and macroscopic levels. The 
estimate of the mean vRNA copies per infected hepatocyte 
(9.6), with a maximum range of 94.5 copies per hepatocyte, 
is consistent with the values reported in Kandathil et al.,12 but 
falls below the range observed in in vitro studies of 250–5000 
(copies/cell) as reported in Lohmann et al.17 and Quinkert 
et al.18 These numbers need to be interpreted with caution 
given the small sample of patients with HCV enrolled in the 
study from which the data were obtained.12

A new mechanism of drug action was added to our previ-
ous model.9 In fact, in addition to the intracellular degradation 

F I G U R E  4   Simulations assessing the impact of inhibition of vRNA secretion versus inhibition of vRNA replication on the viral load time 
course in plasma (upper) and liver (lower). The values of treatment inhibition parameters �� and �

p
 are shown in the legend. The remaining 

parameter values used for simulations are presented in Table 2
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rate μ, TVR/IFN/RBV inhibited the elimination rate of vRNA 
from an infected hepatocyte due to the secretion of virions to 
the plasma p, and both parameters were estimated from the 
observed data. The model strongly favored the drug effect 
on p over μ rendering the effect on μ negligible. This can be 
interpreted that the dominant mechanism of vRNA removal 
from a hepatocyte is formation of virions rather than degra-
dation, however, further studies are necessary to confirm this 
conclusion. The insignificance of μ predicted by our model 
might be an artifact of the overly simplified linear model for 
the turnover of vRNA in infected hepatocytes. Another factor 
contributing to our conclusion is the lack of a third slower 
phase in the viral kinetic profile in most of subjects in our 
data set that is informative about μ.9

The utility of the multiscale models lies in their ability 
to explain macroscopic observations based on microscopic 
(intracellular) mechanisms. We were able to estimate the 
efficacies of the TVR/IFN/RBV treatment on the inhibition 
of vRNA replication and secretion and subsequently on the 
viral load in plasma and liver �� and �p, respectively. Because 

of the linearity assumption of the vRNA turnover in hepato-
cytes, both parameters were at or almost at 100% inhibition. 
An implementation of a more realistic nonlinear model for 
the vRNA turnover would result in the macroscopic model 
to be a system of integral-differential equations that is not 
solvable by currently available pharmacometric software. We 
tested through simulations the impact of �� and �p on the viral 
load in plasma and the liver. Although the dominant mech-
anism controlling the TVR/IFN/RBV effect in plasma is the 
inhibition of the virion secretion, the viral load in the liver 
is more affected by the inhibition of vRNA replication. The 
inhibition of vRNA secretion can be attributed to the TVR 
effect alone.5 Our model tested the impact of �� and �p on 
the intracellular vRNA level in hepatocytes. We observed 
that if the replication of vRNA is not completely blocked, 
the distribution of vRNA among infected hepatocytes sig-
nificantly differs from the steady-state distribution. While at 
steady state the mode is determined by hepatocytes with low 
vRNA levels, an inhibition of virion release alone results in a 
peak in vRNA distribution with a mode increasing with time. 

F I G U R E  5   Simulations assessing the impact of inhibition of vRNA secretion vs. inhibition of vRNA replication on the distribution of vRNA 
in hepatocytes at various times from the beginning of treatment. The black lines correspond to �� = 1.0 and �

p
= 0.999 (scenario A), red lines to 

�� = 0 and �
p
= 0.999 (scenario B), and blue lines to to �� = 1.0 and �

p
= 0 (scenario C). The dashed line represents the steady-state distribution. The 

vertical lines indicate the mean vRNA value for the corresponding distribution. The remaining parameter values used for simulations are presented 
in Table 2. The steady-state distribution overlaps with the black lines
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Interestingly, we observed that TVR/IFN/RBV treatment did 
not change the average vRNA content per hepatocyte that re-
mained at the steady-state level during the duration of the 
study.

Despite the limitations of the available data, the model 
(1) described the vRNA load in blood and liver as well 
as its intracellular distribution, (2) included secretion of 
virions as a mechanism of elimination of vRNA from he-
patocytes, (3) indicated  that  inhibition of the virion se-
cretion has a much stronger effect on the viral load in 
plasma than the inhibition of vRNA replication, and (4) 
combined multiple sources of data to investigate the den-
sity distribution of infected hepatocytes with respect to 
their vRNA content.

To conclude, although the model used for this analysis 
could rely on the linearity of the turnover model used to 
represent the intracellular vRNA replication and to derive 
a macroscopic equivalent model expressed as system of 
ODEs, it should be obvious that intracellular viral replica-
tion is much more complex than the proposed model. The 
simplified turnover model, which is sufficient to describe 
the heterogeneity of the HCV-infected tissue, should be 
seen as first-order Taylor approximation of the underlying 
physiological processes. This also  implies that the  intra-
cellular model should not be seen as describing any spe-
cific cell but, rather, the behavior of a “typical” cell where 
fractional vRNA loads, which might seem biologically im-
plausible especially below 1 copy per cell, are allowed to 
account for the fact that no (deterministic) model could 
ever be capable of fully describing the complete (stochas-
tic) nature of each and every cell, let alone fully charac-
terize each and every cell within each and every patient in 
a study. Similarly,  the PSP framework allows much more 
complex intracellular models, for example, one could con-
sider letting the cellular mortality depend on the intracellu-
lar vRNA load to capture the effect of the viral infection on 
the lifespan of a cell. Moreover, allowing a state-dependent 
mortality would also improve  granularity in the immune 
response, which could become dependent on the state of 
the infection in individual cells and allow for vertical (par-
ent to child) transmission of the infection due to the divi-
sion of  infected cells. Such model improvements  should, 
however, result in quantifiable changes at the macroscopic 
level to confirm—or refute—the hypothesis that the added 
complexity leads to more accurate predictions of the dis-
ease progression.  In other words, although more precise 
descriptions of  the  (patho-)physiology of viral infections 
could be formulated using structured population mod-
els that could be solved numerically to gain insights in the 
model behavior through simulation, it is unclear if and how 
the associated PDEs would translate to macroscopic mod-
els with predictable modes of action by which the drug ef-
fect can be accurately characterized.
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