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Alzheimer’s disease (AD) is a neurodegenerative disorder in which the death of brain cells 
takes place leading to loss of memory and decreased cognitive ability. AD is a leading 
cause of death worldwide and is progressive in nature with symptoms worsening over 
time. Machine learning–based computational predictive models based on 2D and 3D 
descriptors have been effective in identifying potential active compounds. However, 
the use of data from molecular dynamics (MD) trajectories for training machine learning 
models still needs to be explored. In the present study, descriptors have been extracted 
from the MD trajectories of caspase-8 ligand complexes to train models using artificial 
neural networks and random forest algorithms. Caspase-8 plays a key role in causing AD 
by cleaving amyloid precursor proteins during apoptosis leading to increased formation 
of the amyloid-beta peptide. A total of 43 ligands were docked using the glide module 
of Schrodinger software, and short MD simulations of 10 ns were performed for the 
calculation of MD descriptors. The MD descriptors were also combined with the 2D 
and 3D descriptors of chemical compounds, and individual descriptor based as well 
as combination models were generated. This study demonstrated that MD descriptors 
could be effectively used for the characterization of bioactive compounds along with lead 
prioritization and optimization.
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INTRODUCTION

Neurological disorders affect millions of people globally with Alzheimer’s disease being the most 
common type of disease. Alzheimer’s disease (AD) is the sixth prominent cause of death in the United 
States and, as per the data from the National Center for Health Statistics of the center for disease control 
(CDC), AD was responsible for approximately 110,561 deaths in 2015 (Alzheimer’s Association, 
2018). AD is the only disease among the top 10 causes of death with no means of prevention, 
treatment, or delay in progression. The disease is pathologically defined by protein aggregation and 
its impact on the function of neurons; therefore, studies have been primarily focusing on reducing 
protein aggregation and promoting clearance from the brain (Small et al., 2001). However, these 
therapies have been unsuccessful in clinical trials, which suggests targeting protein aggregation and 
clearance alone may not be sufficient to treat AD. Among the many factors responsible for AD 
such as amyloid hypothesis, cholinergic hypothesis, tau hypothesis, environmental risks, and genetic 
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factors, it has been well established that approximately 70% of 
risk for the disease is attributable to genetics (Ballard et al., 2011). 
The previously discovered genes presenilin 1 (PSEN1), presenilin 
1 (PSEN2), and amyloid precursor protein (APP) are accountable 
for the pathogenesis of AD in only about 5% of patients (Van 
Cauwenberghe et al., 2016). Considering the complex physiology 
of AD and multiple causes responsible for the disease, drug 
development against AD must consider all events related to the 
pathophysiology for more effective treatment strategies, which 
cannot be accomplished concentrating on one cause alone. The 
development of effective treatment options for AD has been of 
great interest considering the global burden of the disease, and 
thus, identification of more potent and selective inhibitors from 
the large pool of chemical compounds is imperative. Caspases 
have been reported to play an important role in AD due to 
the increase in β-amyloid levels by the cleavage of APP during 
apoptosis (Rohn et al., 2001). Multiple evidences are there which 
suggest that APP is a substrate for caspase-lead cleavage which is 
a crucial step in the AD process that may result in amyloid-beta 
formation, loss of synaptic activity, and behavior changes related 
with AD (Gervais et al., 1999; Cotman et al., 2005; Galvan et al., 
2006). Recent studies have reported that activation of caspases 
leads to the formation of neurofibrillary tangles (NFT) (Gamblin 
et al., 2003; Rissman et al., 2004). Another study has confirmed 
the cleavage of tau by caspases in the early state of AD (Guillozet-
Bongaarts et al., 2005). It has also been put forward that caspase-
mediated truncation of tau is interrelated with the development of 
NFTs and beta-amyloids in AD (Dickson, 2004). In addition, all 
the caspases -1, -2, -3, -5, -6, -7, -8, and -9 have been identified to 
be transcriptionally elevated in AD (Castro et al., 2010). Caspase-8 
has been labeled an originator caspase that further activates 
other downstream caspases, making this enzyme an attractive 
target for the identification and development of inhibitors. 
This could prevent unwanted cell death related to various 
neurodegenerative disorders (Watt et al., 1999). Caspase-8 has 
also been associated with synaptic plasticity as well as associated 
neurotoxicity through its downstream effector caspase-3, which 
points toward other supplementary mechanisms that might lead 
to AD (Rehker et al., 2017). Caspases play an important role in 
disease mechanisms associated with AD that include formation 
of beta-amyloids as well as NFTs and thus inhibiting caspases 
may lead to prevention of formation of plaques and tangles and 
also reducing disease progression. Computational predictive 
models have been of great use to researchers doing studies on 
drug discovery. Machine learning approaches have been used 
extensively for the identification of potential active compounds 
based on 2D and 3D molecular descriptors (Jamal et al., 2015; 
Wahi et al., 2015; Jamal et al., 2017). Although the previously 
developed models were successful for screening lakhs to millions 
of compounds, a high degree of reliability is required for 
prioritizing the top five or 10 compounds from a set of hundreds 
of possibilities. This necessitates the generation of more accurate 
hyper-predictive target-specific models utilizing the descriptors 
extracted from molecular dynamics (MD) trajectories and 
consideration of  protein-ligand interactions (Ash and Fourches, 
2017). Various quantitative structure activity relationship studies 
for the development of caspase-3 inhibitors have already been 

reported in the literature (Legewie et al., 2006; Wang et al., 2009; 
Firoozpour et al., 2012; Sharma et al., 2013). The present study 
was carried out to utilize the potential of MD-derived descriptors 
in predictive modeling of potent caspase inhibitors. Thus, the 
present study is based on the hypothesis that MD-based machine 
learning models could be extremely useful for lead optimization 
and chemical compound prioritization. Potential inhibitors of 
caspase-8 have been used for the calculation of 2D, 3D, and MD 
descriptors. The ligands were docked into caspase-8 protein, and 
the protein-ligand complexes were subjected to MD simulations 
to generate descriptors from MD trajectories. Further, artificial 
neural network and random forest machine learning algorithms 
were used to generate the models using an individual set 
of descriptors with two and three level combinations. The 
conformational dynamics of caspase-8 upon binding with the 
compound predicted to be active against the protein using 100 
ns MD simulation was also explored. Moreover, pharmacophore 
model was developed using the ligands associated with caspase-8 
which was further used for virtual screening to identify the new 
potential caspase inhibitors.

METHODOLOGY

Caspase-8 Data Set
In the present study, we used the caspase-8 data set comprised of 
ligands associated with caspase-8 retrieved from the ChEMBL 
(Gaulton et al., 2012) database (ChEMBL46860, ChEMBL46862, 
ChEMBL399983, ChEMBL304686, ChEMBL430105, ChEMBL 
46849, and ChEMBL741342). A total of 81 compounds were 
obtained and preprocessed (Fourches et al., 2010), during which 
duplicates and compounds with approximate IC50 values were 
removed. Post-processing the data resulted in 43 compounds 
with pIC50 values ranging from 4.3 to 8.1, among which 
compounds with a pIC50 value above 6.5, were considered 
as active compounds while those with a pIC50 below 6.5 were 
considered as inactive compounds. The final data set including 
the molecule identifiers, SMILES, and pIC50 values has been 
provided in the Supporting Information. 

Molecular Docking
The X-ray crystal structure of human caspase-8 (PDB ID: 1qtn) 
in complex with acetyl-ile-glu-thr-asp-aldehyde peptide at a 
resolution of 1.2 Å was obtained from the protein data bank 
(PDB) (Parasuraman, 2012). The protein-ligand complex was 
preprocessed using Accelrys ViewerLite (Accelrys Inc., San 
Diego, CA, USA) during which ligands, water molecules, and 
heteroatoms were removed. Further, the protein was prepared 
with Preparation Wizard available from Schrodinger Suite 
(http://www.schrodinger.com/). Hydrogen bonds were added, 
and bond orders were assigned during protein preparation. The 
protonation states of residues were predicted using the PROPKA 
(Olsson et al., 2011) program at pH 7 followed by minimization 
of the protein using the OPLS3 force field (Sastry et al., 2013). 
The ligands associated with the caspase-8 protein were prepared 
using the LigPrep (Schrödinger, Inc., www.schrodinger.com) 
module of Schrodinger before molecular docking. The ligands 
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were also minimized using the OPLS3 force field, and the possible 
ionization states were created at pH 7.0 ± 2.0. The tautomers were 
generated, specific chiralities of the ligands were retained, and 
32 conformations per ligand were generated in case of indefinite 
chiralities. Next, using the Receptor Grid Generation section 
of the Glide (Halgren et al., 2004) module of Schrodinger, the 
binding site in protein was defined using the centroid of selected 
residues option in which the catalytic triad Cys360, His317, and 
Arg258 were chosen. A scaling factor of 1.0 was used to scale 
the van der Waals radii of receptor atoms having a partial atomic 
charge less than the specified cut-off, which was equal to 0.25. All 
other parameters were default. The prepared ligands were then 
docked into the active site of the receptor using an extra precision 
algorithm of Glide. The top-ranked pose for each ligand was 
selected and subjected to MD simulation studies.

Molecular Dynamics Simulation Details
The top scoring protein-ligand complexes were subjected to 10-ns 
MD simulations to evaluate their structural and thermodynamic 
stability in the presence of explicit salt and solvents. All the 
MD simulation studies were performed using the GROMACS 
(Abraham et al., 2015) software version 5.0 and GROMOS96 force 
field. Prior to the MD simulation, each protein-ligand complex 
was prepared by the removal of the water molecules, addition of 
hydrogen atoms, capping of termini, treating disulphides, and 
finding overlaps. After the initial preparation, the model was 
solvated with a simple point charge (SPC) water model and Na+ 
and Cl- ions were added to maintain the neutrality of the system. 
The solvated system was then subjected to energy minimization 
for 50,000 steps using the steepest descent method until a 
maximum force of 10.0 kJ/mol was attained. An equilibration 
run was performed in two sequential steps, NVT (number of 
particles, volume, and temperature) equilibration, and NPT 
(number of particles, pressure, and temperature) equilibration 
during which pressure and temperature were kept to 1 bar and 
300°C, respectively, for a maximum of 50,000 steps in both the 
types of equilibration. Further, a 10-ns MD simulation run was 
carried out to obtain a stable structure and time versus RMSD 
(root-mean square deviation) plot to ensure the stability of the 
system for the entire simulation run. 

Descriptors Computation
Molecular descriptors represent the chemical information of 
the ligands using numeric values. Three types of descriptors 
were used for modeling in the present study, 2D, 3D, and MD 
descriptors. The 2D descriptors included atom count, bond 
count, carbon types, hydrogen bond donor and acceptor count, 
Lipinski’s rule of five, rotatable bonds count, topological surface 
area, van der Waals volume, and many more. The 3D descriptors 
included gravitational index descriptor, charged partial surface 
area, and length over breadth and moment of inertia descriptors, 
among others. The 3D-WHIM descriptors involved descriptors 
weighted by unit weights, van der Waals volumes, atomic masses, 
atomic polarizabilities, and Mulliken atomic electronegativites. A 
total of 770 2D descriptors and 115 3D descriptors were generated 
for each ligand conformation using PaDEL (Yap, 2011) software. 

For MD descriptors, the trajectory of each protein-ligand 
complex was analyzed for three properties, radius of gyration 
(Rg), potential energy and total energy, and solvent accessible 
surface area (SASA). Each of the three MD descriptors was 
represented using the mean and standard deviation as described 
in other studies (Ash and Fourches, 2017; Riniker, 2017), 
resulting in a total of eight descriptors. 

Model Building 
Machine learning (ML)–based modeling is learning from 
known properties and using the learned model systems to make 
predictions for unseen data. Using an in-house Perl script, the 
molecular descriptor files were split with 70% for a training set and 
30% for a testing data set. The training set was used for generation 
of the models, and the test set was used for the assessment 
of model performance. An internal validation of the models 
generated using the training set was performed using k-fold cross 
validation, with k equal to 10 in the present work. Cross validation 
is a technique in which the data is divided into k subsets, with 
k-1 subsets used for model generation and the remaining subset 
used for testing purposes. This process is repeated until all the 
k folds have been used as a testing set at least once. The models 
were generated using individual 2D, 3D, and MD descriptors and 
their two level 2D+3D, 2D+MD, and 3D+MD and three level 
2D+3D+MD combinations. The 2D, 3D, MD, 2D+3D, 2D+MD, 
3D+MD, and 2D+3D+MD artificial neural network (ANN) 
and random forest (RF) models were generated using different 
parameters and finding the best combination of parameters. 

Machine Learning Algorithms
In the present study, two ML algorithms, ANN and RF, were used 
for building the models using Weka which is an ML software. 
ANN is a computational model that attempts to mimic the 
structure and function of neural networks in the human brain. 
It comprises a group of connected artificial neurons that process 
information and generate output. The ANN model used in 
the present study is multilayer perceptron (MLP), which is a 
feedforward ANN model using three or more layers including 
input and output layers along with hidden layers, to map input 
data and produce the correct output (Cheng et al., 2008). 

RF is a decision tree based classifier that creates an assembly 
of decision trees and outputs the class that is the mode of the 
output of all the individual decision trees. The decision tree for 
each attribute is created by sampling the attributes, then using 
random selection. Next, the information gain criterion is used to 
select the best feature from the data which is used as the origin 
node of the tree. The origin node is then divided into sub-nodes, 
and the process is repeated until the sub-node becomes an output 
class. The final prediction is the class chosen by the majority of 
the trees (Breiman, 2001).

Feature Selection
Feature, attribute, or descriptor selection is the procedure of 
identifying a subgroup of features that are relevant to the modeling 
and prediction task. Feature selection is performed to decrease 
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the dimensionality of the data by eliminating insignificant 
features and thus reducing training time, removing redundant 
descriptors, simplifying models, and lessening overfitting of the 
models. Feature selection was performed at two levels, initially 
using the Remove Useless filter of the Weka (Bouckaert et al., 
2010) ML tool followed by the selection of significant features. 
The Weka Remove Useless filter removed the descriptors having 
the same value for all compounds, as those descriptors did not 
contribute toward classification.

Two feature selection techniques were used, correlation-
based feature selection (CFS) and relief attribute evaluation. CFS 
ranks features using a correlation based heuristic function which 
outputs a subset of features having a high correlation with the 
class but uncorrelated with each other (Hall, 1999). The following 
correlation based heuristic function is used for calculating the 
merits of a feature subset:

 
Ms krcf

k k k rff
=

+ −( )1

 
where Ms is the merit of feature subset S consisting of k 

features, rff is the mean of feature-feature correlation, and rcf is 
the mean of feature-class correlation. 

The relief-based attribute selection algorithm calculates a 
feature score, ranks the features, and chooses the top ranked. The 
feature score is calculated using the Euclidean distances between 
features and their nearest neighboring instances. The training 
data set was used for feature selection, and the test set used to rid 
the data of any biasness (Kira and Rendell, 1992).

Model Performance Evaluation
A total of 14 ML models were generated using ANN and RF 
algorithms, which were evaluated using accuracy, balanced 
accuracy, training error, generalization error, and a receiver-
operating characteristic (ROC) plot. Accuracy ([{TP+TN/
(TP+TN+FP+FN}]) is the proportion of correctly classified 
active and inactive compounds by the classification models. 
An ROC plot is a graph plotted as true positive rate (TPR) vs 

false positive rate (FPR, 1-specificity). TPR ([TP/{TP+FN}]) is 
the percentage of correctly classified actives while FPR (1-[TN/
{TN+FP}]) is the proportion of correctly identified negatives.

Pharmacophore Search and Virtual 
Screening 
The 43 compounds used for the generation of ML models were used 
for ligand-based pharmacophore modeling using PharmaGist 
tool (Schneidman-Duhovny et al., 2008). A pharmacophore 
is a theoretical representation of features of ligand necessary 
for the recognition of ligand by the macromolecule and can be 
used to identify ligands that can bind to a common receptor 
through virtual screening. PharmaGist tools search for probable 
pharmacophores by multiple flexible alignment of input ligands 
and report the top scoring ones. The pharmacophore model 
developed in the present study was used for virtual screening to 
search through a total of 1,798 and 16 natural compounds from 
ZINCPharmer (Koes and Camacho, 2012) to get the similar hits 
from ZINC database. The top 10 most similar hits were subjected 
to Glide’s XP docking with the caspase-8 protein used for the 
docking study with 43 ligands used in the present study.

RESULTS 

Glide-Docking Analysis
A total of 43 active and inactive caspase-8-associated ligands were 
docked in the active site of the receptor protein, human caspase-8, 
using the extra precision (XP) docking approach. The XP docking 
scores of ligands ranged from −12.70 to −4.22 kcal/mol. The 
compounds having a pIC50 value above 6.5 categorized as actives 
corresponding to compound IDs 50267423, 50215849, 50215847, 
50215835, 50297218, 50267430, and 50215896 had docking 
scores of −9.1 kcal/mol, −6.22 kcal/mol, −12.06 kcal/mol, −5.34 
kcal/mol, −12.38 kcal/mol, −8.53 kcal/mol, and −7.16 kcal/mol, 
respectively. Additionally, we have generated the correlation plot 
between docking scores and pIC50. As is evident from the plot, 
the compounds having high pIC50 values had higher docking 
scores and vice versa (Figure 1).

FIGURE 1 | The correlation plot between docking scores and pIC50.
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Feature Analysis
In the present study, feature analysis was performed using the 
Remove Useless filter, CFS, and relief-based attribute selection 
using Weka. The number of 2D descriptors was reduced from 770 
to 387 after the Remove Useless filter was applied. The numbers of 
3D and MD descriptors remained the same, 115 and 8, respectively. 

E-state indices represent the electronic and topological 
character of an atom where the electronic state of an atom is 
encoded as perturbed by the electronic impact of other atoms in the 
molecule in context of the topological character of the molecule. 
The top ranked 2D features selected using CFS and relief-based 
selection included nwHBd, SwHBd, SHCHnX, minHCHnX, 
minwHBd, maxwHBd, maxHCHnX, and nHCHnX. The selected 
2D features included count, sum, and minimum and maximum 
of E-states for weak hydrogen bond (H-bond) donors and atom 
type, H (estate: CHnX where nX corresponds to a halogen atom). 
Various studies have explained the importance of weak H-bonds 
in chemical and biological systems (Steiner, 1999). 

The top ranked 3D features included FPSA-3, WK.unity, Wnu2.
unity, WK.mass, Wnu2.mass, Weta3.volume, Wlambda3.mass, and 
TPSA. The selected 3D descriptors included WHIM  descriptors 
which capture significant molecular 3D information that include 
shape, molecular size, atom distribution, and symmetry. These 
indices are computed using x, y, and z coordinates of a molecule 
using different weighing schemes like atomic mass, van der Waals 
volume, electronegativity, and atomic polarizabilities and have 
been used for QSAR modeling (Gramatica, 1997). 

In the case of MD descriptors, all the eight descriptors that 
included mean and standard deviation of potential and total energy, 
Rg, and SASA were used for model generation. The MD descriptors 
included total and potential energy, Rg, and SASA where total and 
potential energy are mathematical forms of representations of 
protein-ligand interactions; Rg indicates the compactness of the 

protein, and that is how the secondary structures are compactly 
folded in to 3D structure of the protein. SASA is a measure of 
accessible surface of a molecule which further helps in secondary 
structure prediction. The number and description of features used 
in the present study have been provided in Table 1. 

In addition to this, we also calculated importance of MD 
descriptors. This was carried out by computing average merit 
and average rank using CFS, relief-based attribute selection, 
and classifier attribute evaluation using ANN and RF classifiers. 
Average merit indicates the average accuracy loss when a particular 
feature is removed whereas average rank denotes the rank of the 
feature determined using 10-fold cross validation. The results 
indicated that potential energy of the protein-ligand complex was 
the most significant contributor toward classification followed by 
Rg, SASA, and total energy (Table 2).

Model Predictions and Performances
A total of 14 ML models were generated in the present study using 
ANN and RF ML algorithms. These ANN and RF models (2D, 3D, 
MD, 2D+3D, 2D+MD, 3D+MD, and 2D+3D+MD) were generated 
using best combination of different parameters. Initially, we tried to 
the models using default parameters for ANN and RF algorithms. 
However, these did not perform well in terms of the statistical 
parameters used for model performance evaluation (Table 3). 
The training set consisted of 29 compounds, and the test data set 
consisted of 14 compounds. Table 4 provides the performance 
metrics of all the generated ANN and RF models using the best 
combination of parameters. Figure 2 illustrates the ROC plots 
generated for ANN and RF models using 2D, 3D, MD, 2D+3D, 
2D+MD, 3D+MD, and 2D+3D+MD descriptors. The training and 
testing sets used for generating the models and the models build in 
the present study have been provided as Supplementary Material.

TABLE 1 | The number and description of features used in the present study.

Type of 
descriptor

Initial number 
of descripted

Remove 
useless filter

Relief-based 
selection

Selected descriptors Description as provided by PaDEL

2D 770 387 8 nwHBd, 
SwHBd, 
SHCHnX, 
minHCHnX
minwHBd, 
maxwHBd, 
maxHCHnX 
nHCHnX

Atom type electrotopological state
Count of E-state for weak H-bond donors
Sum of E-state for weak H-bond donors
Sum of atom type H E-state: CHnX
Minimum atom type H E-state: CHnX
Minimum of E-state for weak H-bond donors
Maximum of E-state for weak H-bond donors
Maximum atom type H E-state: CHnX
Count of atom type H E-state: CHnX

3D 115 115 8 FPSA-3,
WK.unity, 
Wnu2.unity, 
WK.mass, 
Wnu2.mass, 
Weta3.volume, 
Wlambda3.mass 
TPSA

Charged partial surface area 
Non-directional WHIM weighted by unit weights 
Directional WHIM weighted by unit weights
Non-directional WHIM weighted by atomic masses 
Directional WHIM weighted by atomic masses
Directional WHIM weighted by van der Waals volumes
Directional WHIM weighted by atomic masses
Topological polar surface area

MD 8 8 8 Potential energy
Total energy
Radius of gyration
Solvent accessible surface area

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Prediction of Caspase-8 Inhibitors Against Alzheimer’sJamal et al.

6 July 2019 | Volume 10 | Article 780Frontiers in Pharmacology | www.frontiersin.org

TABLE 2 | Importance of molecular dynamics (MD) descriptors using correlation-based feature selection (CFS), relief-based attribute selection, and classifier attribute 
evaluation using artificial neural network (ANN) and random forest (RF) classifiers.

MD descriptor CFS Relief-based Classifier attribute evaluator 
(ANN)

Classifier attribute 
evaluator (RF)

Average 
merit

Average 
rank

Average 
merit

Average 
rank

Average  
merit

Average 
rank

Average  
merit

Average 
rank

Total energy  0.062 ± 0.032 2.6 ± 0.92 0.021 ± 0.028 3.3 ± 0.64 −0.015 ± 0.023 2.2 ± 1.47 −0.133 ± 0.032 3.8 ± 0.4
Potential energy 0.062 ± 0.032 1.8 ± 0.75 0.021 ± 0.028 2.3 ± 0.64 −0.015 ± 0.023 2.4 ± 0.49 −0.068 ± 0.046 2.5 ± 0.81
Gyration 0.048 ± 0.033 2.9 ± 1.14  0.014 ± 0.011 3.2 ± 0.98 0 ± 0 2.6 ± 0.49  −0.036 ± 0.024 1.8 ± 0.75
SASA  0.057 ± 0.041 2.7 ± 1.27 0.092 ± 0.013 1.2 ± 0.6 0 ± 0 2.8 ± 1.47 −0.028 ± 0.036 1.9 ± 1.04

TABLE 3 | The performance metrics of all the generated machine learning (ML) models using ANN and RF algorithms using default parameters.

Machine 
learning 
algorithm

Descriptor 
type

Cross-
validation 
accuracy 

(%)

Accuracy 
(%)

AUC Balanced 
accuracy 

(%)

Training 
error

Generalization 
error

Training 
error

Generalization 
error

MSE RMSE MSE RMSE
Artificial 
neural 
network

2D 86.20 85.71 0.50 50.00 0.21 0.35 0.20 0.35
3D 82.75 85.71 0.91 70.50 0.16 0.37 0.16 0.37
MD 82.75 85.71 0.66 50.00 0.27 0.39 0.22 0.34
2D+3D 89.65 85.71 0.91 70.50 0.10 0.28 0.16 0.38
2D+MD 75.86 85.71 0.58 50.00 0.29 0.46 0.20 0.35
3D+MD 89.65 78.57 0.87 66.50 0.10 0.25 0.20 0.42
2D+3D+MD 89.65 78.57 0.87 66.50 0.13 0.32 0.20 0.42

Random 
forest

2D 86.20 85.71 0.50 50.00 0.21 0.35 0.21 0.35
3D 89.65 85.71 0.50 62.00 0.15 0.26 0.18 0.34
MD 82.75 85.71 0.68 50.00 0.26 0.38 0.19 0.34
2D+3D 86.20 85.71 0.52 50.00 0.15 0.27 0.18 0.33
2D+MD 82.75 85.71 0.62 50.00 0.26 0.40 0.19 0.35
3D+MD 86.20 85.71 0.89 50.00 0.16 0.26 0.17 0.31
2D+3D+MD 86.20 85.71 0.87 50.00 0.17 0.28 0.16 0.30

TABLE 4 | The performance metrics of all the generated ANN and RF models using the best combination of parameters.

Machine 
learning 
algorithm

Descriptor 
type

Cross-
validation 
accuracy 

(%)

Accuracy 
(%)

AUC Balanced 
accuracy 

(%)

Training 
error

Generalization 
error

Training 
error

Generalization 
error

MSE RMSE MSE RMSE
Artificial 
neural 
network

2D 86.20 85.71 0.50 50.00 0.21 0.25 0.2 0.35
3D 44.82 64.28 0.91 79.15 0.52 0.38 0.44 0.51
MD 82.75 85.71 0.70 50.00 0.25 0.4 0.21 0.34
2D+3D 13.79 85.71 0.37 50.00 0.63 0.64 0.47 0.47
2D+MD 51.72 85.71 0.75 70.85 0.52 0.59 0.42 0.43
3D+MD 75.86 78.57 0.83 87.50 0.35 0.47 0.33 0.47
2D+3D+MD 62.06 78.57 0.91 87.50 0.48 0.55 0.39 0.47

Random 
forest

2D 86.20 85.71 0.50 50.00 0.47 0.47 0.47 0.47
3D 82.75 78.57 0.79 66.65 0.24 0.35 0.32 0.37
MD 55.17 71.42 1.00 83.35 0.44 0.53 0.32 0.38
2D+3D 65.51 57.14 0.77 54.15 0.37 0.43 0.43 0.47
2D+MD 86.20 85.71 0.75 50.00 0.21 0.38 0.17 0.35
3D+MD 89.65 92.85 0.79 75.00 0.17 0.26 0.19 0.31
2D+3D+MD 72.41 85.71 0.91 91.50 0.38 0.42 0.36 0.39
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Modeling Using 2D Descriptors 
The 2D ANN and RF models had an accuracy of 85.71%, 
balanced accuracy of 50.0%, and an AUC value of 0.50. The AUC 
value indicated these models were random predictors and thus 
were not considered for further predictions. 

Modeling Using 3D Descriptors 
The 3D descriptor models had an accuracy, balanced accuracy, 
and AUC value of 64.28%, 79.15%, and 0.91, respectively, for 
the ANN model. In case of RF model, the accuracy, balanced 
accuracy, and AUC values corresponded to 78.57%, 66.65%, and 
0.79. These results indicated that 3D compound descriptors play 
a vital role in the classification of compounds. The ANN model 
correctly predicted the two active compounds 50267423 and 
50215896 and the other inactive compounds predicted as active 
by ANN had compound IDs 50215590, 50215632, 50215692, 

50215782, and 50215859. The RF model gave the correct 
prediction for only one active compound, 50267423. The other 
inactive compounds predicted as active included 50215590 and 
50215632.

Modeling Using MD Descriptors 
The models generated using MD descriptors had an accuracy 
of 85.71% and 71.42%, balanced accuracy of 50.0% and 83.35%, 
and an AUC value of 0.70 and 1.00 for ANN and RF models, 
respectively. The MD models had the most balanced accuracies 
and AUC values compared to the 2D and 3D descriptor models, in 
which either the accuracy was high and AUC value was low or vice 
versa. This clearly indicates the descriptors extracted from MD 
trajectories play a significant role in lead prioritization, resulting 
in most active compounds. The reduction in generalization error 
as compared to training error indicated that MD descriptors can 

FIGURE 2 | The receiver-operating characteristic (ROC) plots generated for artificial neural network (ANN) and random forest (RF) models using 2D, 3D, MD, 
2D+3D, 2D+MD, 3D+MD, and 2D+3D+MD descriptors.
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perform well on new data. The ANN model correctly predicted the 
inactive compounds, but misclassified the compounds categorized 
as active. However, the RF model predicted the active compounds, 
50267423 and 50215896, as active. The other compounds 
predicted as active included compounds corresponding to IDs 
50215632, 50215720, 50215782, and 50267428.

Modeling Using the Two Level 
Combination of 1D, 2D, and MD 
Descriptors 
The models were generated by combining 1D, 2D, and 3D 
descriptors as 2D, 2D+MD, and 3D+MD. The 2D+3D descriptor 
models had an accuracy of 85.71% and 57.14%, balanced 
accuracy of 50.0% and 54.15%, and an AUC value of 0.37 and 
0.77 for ANN and RF models, respectively. The 2D+3D RF model 
predicted one active compound, 50267423, accurately. In the case 
of RF models, the accuracy and balanced accuracy of the models 
remained the same when 2D descriptors were combined with MD 
descriptors. Although the accuracy was same (85.71%) in case of 
ANN models (2D and 3D), there was a significant increase in the 
balanced accuracy (from 50% to 70.85%) and AUC (from 0.37 to 
0.75) upon addition of MD descriptors.

When the 3D descriptors were combined with MD 
descriptors, an increase in accuracy (from 64.28% to 78.57%) 
and balanced accuracy (from 79.15% to 87.50%) was observed in 
case of ANN models; however, there was a slight reduction (from 
0.91 to 0.83) in the AUC value. In the case of models generated 
using the RF algorithm, the accuracy (from 78.57% to 92.85%) 
and balanced accuracy (from 66.65 to 75%) values improved 
while AUC (0.79) value remained the same in case of addition of 
MD+3D descriptors. The results clearly indicate the combination 
of models resulted in greater accuracy with the 3D+MD 
combination models being the most informative. As the 3D+MD 
combination models had the best performance, the compounds 
predicted as active by these models were corresponding to IDs 
50267423, 50215590, and 50215720. 

It was also observed that the models generated using 2D and 
3D descriptors in combination with MD descriptors had low 
mean absolute error (MSE) and root mean squared error (RMSE) 
in comparison to models generated using 2D, 3D, and 2D+3D.

Modeling Using the Combined 1D, 2D, 
and MD Descriptors
The models generated using the combination of all the three 
descriptors—2D, 3D, and MD—had high accuracy (ANN 
78.57%; RF 92.85%) values, balanced accuracies (ANN 87.50%; 
RF 91.50%), and AUC (ANN 0.91; RF 0.87) values. The 
compounds predicted as active by both the models included 
50267423, 50215590, and 50215720. The MD descriptors alone 
and in combination with 2D and 3D descriptors performed 
better in terms of generalization performance.

We also calculated the accuracy of ANN/RF model vis-a-vis 
the accuracy due to the different input. The accuracy obtained 
using different input dataset was higher in comparison to the 
ANN/RF model accuracies, indicating that the ML models 

generated in the present study would be able to predict outcomes 
for new unseen data.

Molecular Dynamics Simulation Analysis 
of the Most Active Compound
Since most of the ANN and RF models were able to accurately 
predict this compound 50267423 as active among all the other 
predicted active compounds, the same was chosen for carrying 
out long MD simulations. The compound, 50267423, having a 
docking score of −9.10 kcal/mol was subjected to a 100ns MD 
simulation for an in depth study of its structural characteristics. 
As apparent from Figure 3A, the unbound caspase-8 protein 
was unstable, but became stable upon binding with compound 
50267423. In both cases, the simulation reached convergence 
between 10–30ns with RMSD around 0.45 and 0.35 nm for 
the unbound caspase-8 and caspase-8_50267423 complex, 
respectively. Next, Rg was calculated to demonstrate the impact 
of compound 50267423 on the compactness of the protein. The 
protein had a compact packing in both unbound and bound 
forms (Figure 3B). Root mean square fluctuation (RMSF) 
analysis was performed to study the fluctuation on residues in 
the presence of the ligand. Figure 3C illustrates the RMSF in 
free caspase-8 and caspase-8_50267423 complex. The residues 
had enormous fluctuations in unbound caspase-8 while RMSF 
values were reasonably low, and the protein was very much stable 
in the presence of the 50267423 compound. Further, SASA was 
calculated, which was higher in the case of unbound caspase-8 
protein in comparison to the SASA in the ligand-bound protein 
(Figure 3D). Thus, it is evident from the aforementioned results 
that the caspase-8 protein was highly stable upon binding with 
compound 50267423. The hydrogen bonding and hydrophobic 
interaction analyses were carried out for the caspase8-50267423 
complex. The ligand formed five hydrogen bonds, which included 
two bonds with Trp420, two hydrogen bonds with Gln423, and 
one bond with Ser424, as demonstrated in Figure 4. The residues 
having hydrophobic interactions included Asp266, Leu315, 
Gln358, Ala404, Thr405, Ser411, Glu417, Gly418, Thr419, 
Tyr421, and Ile422 (Figure 5). The residues having hydrophobic 
interactions Gln358 and Ser411 have been shown to line the 
binding pocket in caspase-8 whereas the aromatic group of 
Ty420 which in the present study is forming two hydrogen bonds 
with the inhibitor has been shown to help to form the part of the 
pocket (Watt et al., 1999).

Identification of Common Pharmacophore 
and Virtual Screening
Pharmacophore search using PharmaGist provided us a high-
scoring pharmacophore containing compound corresponding 
to IDs 50267423 (most active compound) and other active 
compounds, 50215632, 50215590, 50215720, and 50215896. 
The pharmacophore model had a total of nine features 
which included one aromatic ring, one hydrophobic group, 
two hydrogen-bond donors, and three hydrogen-bond 
acceptors. This model will be of substantial help in design 
and development of novel caspase inhibitors. Figures 6A, 
B shows the pharmacophoric features of the most active 
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ligand, 50267423, and alignment of other active ligands to 
the pharmacophore model. A total of 129 hits were obtained 
which matched the pharmacophoric features of the most active 
compound 50267423. The ZINC IDs of the 129 hits have been 
provided in supporting information. The molecular docking 
analysis of the top five leads revealed that the XP scores of the 
compounds ranged between −10.775 and −9.423 (Table 5).

DISCUSSION

AD is a chronic progressive long-term neurodegenerative 
disorder that affects millions of people worldwide and thus needs 
immediate attention. The current drugs available in the market 
can only temporarily improve upon the symptoms and delay the 
progression of the disease but could not stop it from progressing 

FIGURE 3 | (A) Root mean square deviation, (B) radius of gyration, (C) root mean square fluctuation, and (D) solvent accessible surface area plots for 
caspase8-50267423 complex. 

FIGURE 4 | The hydrogen bonding in caspase8-50267423 complex.
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and deteriorating the cognitive functions further. This study 
is based on the hypothesis that incorporating protein-ligand 
interactions for lead prioritization could lead to identification 
of compounds with highest binding affinities. In our previous 
studies, we had used molecular descriptors of chemical 
compounds to generate ML models for the classification of 
biologically active compounds (Jamal et al., 2015; Jamal et al., 
2017). The properties extracted from MD trajectories have not 
been yet used for the classification of active compounds. The 
present work involved generation of ML models based on MD 
trajectories for prioritization of chemical compounds and lead 
optimization. Using Glide, we performed molecular docking 
of caspase-8-associated compounds and performed 10-ns 
MD simulations of top scoring conformation of each ligand 
and caspase-8 protein-ligand complex. Several 2D and 3D 
descriptors were generated, and MD descriptors were obtained 
from MD simulation trajectories. Various feature selection, 
Remove Useless filter, CFS, and relief-based attribute selection 
techniques were used to identify a subset of features having 
high contribution toward classification. The predictive models 
were generated using 2D, 3D, and MD descriptors and their 
combinations, 2D+3D, 2D+MD, 3D+MD, and 2D+3D+MD. 

Two ML algorithms, ANN and RF, were used for model 
building. The results obtained indicated that the MD descriptors 
performed better than 2D and 3D descriptors individually as 
well as in combinations. The MD descriptors clearly improved 
the classification performance of the models thus suggesting 
that the longer simulations as well as the MD descriptors in 
combination with 2D and 3D descriptors could lead to accurate 
and efficient lead optimization and prioritization. Another study 
conducted by Ash and Fourches in 2017 also confirmed the 
hypothesis that the descriptors extracted from MD trajectories 
are highly informative descriptors and could be effectively used 
not only for screening chemical libraries but for drug candidate 
design and prioritization (Ash and Fourches, 2017). Additionally, 
we also used a nine-point pharmacophore model consisting of 
three hydrogen-bond acceptor, two hydrogen-bond donors, one 
hydrophobic group, and one aromatic ring. This pharmacophore 
model was used for virtual screening of ZINC library of chemical 
compounds which led to the identification of 129 hits. The five 
lead compounds were subjected to molecular docking analysis 
which resulted in compounds having docking scores between 
−10.775 and −9.423 indicating that these compounds could be 
used as potential caspase-8 inhibitors. 

FIGURE 5 | The hydrophobic interactions in caspase8-50267423 complex.
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CONTRIBUTION TO THE FIELD 
STATEMENT

Dementia is a syndrome, usually chronic or progressive in nature, 
which leads to decline in cognitive function resulting in loss of ability 
of thinking and performing routine activities and majorly effects 
elderly population. Alzheimer’s is a progressive disease during which 
the symptoms of dementia get worse over time. The current treatment 
regimen can only improve upon the systems for short term causing 

FIGURE 6 | (A) and (B) The pharmacophoric features of the most active ligand, 50267423, and alignment of other active ligands to the pharmacophore model. The 
color classification of the features is hydrogen bond acceptor (red), hydrogen bond donor (blue), hydrophobic (green), and aromatic ring (orange).

TABLE 5 | The molecular docking analysis of the top five ZINC compounds 
obtained after virtual screening using pharmacophore.

ZINC 
database ID

Glide XP 
score

Interacting residues (hydrogen bond)

ZINC38200481 −10.775 Arg260 (2), Gln358 (1), Arg413 (3)
ZINC01576107 −10.775 Arg260 (2), Gln358 (1), Arg413 (3)
ZINC02384806 −10.729 Arg260 (1), Gln358 (1), Arg413 (2)
ZINC38570006 −9.702 Arg260 (2), Gln358 (1), Ser411(1), Arg413 (4)
ZINC38569951 −9.423 Arg260 (2), Gln358 (1), Ser411(1), Arg413 (4)
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a temporary relief though cannot stop the disease from progression. 
Thus, there is a need of better treatment options which can stop the 
development of the disease. The high throughput screening studies 
have resulted in large number of compounds among which many 
compounds are in clinical trials and can be potential drugs against 
AD. However, selection of compounds with huge potential activity 
against Alzheimer’s remains a problem to be addressed. The present 
study involves generation of predictive classification models using 
molecular dynamics descriptors which could lead to the identification 
of bioactive compounds and aid lead optimization and prioritization.
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