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Background: Hepatocellular carcinoma (HCC) is a major cause of cancer mortality and an 

increasing incidence worldwide; however, there are very few effective diagnostic approaches 

and prognostic biomarkers.

Materials and methods: One hundred forty-nine pairs of HCC samples from Gene Expres-

sion Omnibus (GEO) were obtained to screen differentially expressed genes (DEGs) between 

HCC and normal samples. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, 

Gene ontology enrichment analyses, and protein–protein interaction network were used. Cox 

proportional hazards regression analysis was used to identify significant prognostic  DEGs, with 

which a gene expression signature prognostic prediction model was identified in The Cancer 

Genome Atlas (TCGA) project discovery cohort. The robustness of this panel was assessed in 

the GSE14520 cohort. We verified details of the gene expression level of the key molecules 

through TCGA, GEO, and qPCR and used immunohistochemistry for substantiation in HCC 

tissues. The methylation states of these genes were also explored.

Results: Ninety-eight genes, consisting of 13 upregulated and 85 downregulated genes, were 

screened out in three datasets. KEGG and Gene ontology analysis for the DEGs revealed 

important biological features of each subtype. Protein–protein interaction network analysis was 

constructed, consisting of 64 nodes and 115 edges. A subset of four genes (SPINK1, TXNRD1, 

LCAT, and PZP) that formed a prognostic gene expression signature was established from 

TCGA and validated in GSE14520. Next, the expression details of the four genes were validated 

with TCGA, GEO, and clinical samples. The expression panels of the four genes were closely 

related to methylation states.

Conclusion: This study identified a novel four-gene signature biomarker for predicting the 

prognosis of HCC. The biomarkers may also reveal molecular mechanisms underlying develop-

ment of the disease and provide new insights into interventional strategies.

Keywords: hepatocellular carcinoma, GEO, TCGA, biomarker, differentially expressed genes

Introduction
Hepatocellular carcinoma (HCC) is the second leading cause of cancer mortality world-

wide and the fourth highest cancer-related death in Chinese males, with a steady rise 

in the incidence every year.1–3 In recent years, the development of modern medicine 

and the combined use of various therapeutic strategies (surgical resection, ablation, 

or liver transplantation) have improved the HCC patient’s outcomes,4 but the overall 

5-year survival rate is still unsatisfactory.5,6 Therefore, there is an urgent need to better 

understand the pathogenesis and progression in HCC and to find useful biomarkers 

for diagnosis and prognosis.
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Tumorigenesis and cancer development are closely asso-

ciated with genomic instability.7 Like other cancers, HCC 

is considered as a heterogeneous disease with various gene 

aberrations and complex altered multipathways.8 However, 

the precise molecular mechanisms underlying HCC progres-

sion are not thoroughly elucidated. Therefore, it is necessary 

to investigate the abnormal target molecules and new molecu-

lar mechanisms based on genomic instability, which could 

help in developing individualized strategies for the diagnosis 

and therapy of HCC. Genomic instability can be categorized 

into chromosomal instability, microsatellite instability, or 

significantly heightened levels of mutations at the nucleo-

tide level, all of which can contribute to the development 

of cancer.9 With the advances in next-generation sequenc-

ing technology, numerous genetic alterations have been 

revealed, following understanding of the well-characterized 

chromosomal instability pathway. Furthermore, a variety of 

pathways are related to the progression and metastasis of 

HCC, such as the RalA signaling pathway,10 FGFR4 signaling 

pathway,11 and Rac signaling pathway,12,13 has been reported. 

Meanwhile, several biomarkers for diagnosis and treatment 

have been revealed.14–16 Some of the biomarkers contribute 

to understanding the pathogenesis of HCC17 or prognosticate 

the patients’ survival time.16,18 However, HCC is a heteroge-

neous disease with complex molecular mechanisms; thus, 

the occurrence and development of HCC are the result of 

mutations in multiple genes.19 Gene expression analysis can 

be used for profiling tumors and predicting their prognosis. 

Dysregulated genes in the genome between tumors and 

normal tissues have been verified as promising tool to clas-

sify diagnostic and prognostic biomarkers, as well as being 

therapeutic targets. With limited success achieved when 

focusing on a single protein or gene mutation, a multigene 

combination analysis may be more accurate to describe the 

molecular mechanisms of HCC.

Emerging information has shifted emphasis from specific 

gene sequences to mRNA and ultimately to proteins – the 

“central dogma of molecular biology.” RNA modifications 

are important mechanisms for controlling multiple aspects of 

RNA biochemistry and cellular function.20 The level of gene 

expression is associated with high DNA methylation,21 and 

methylation of genes is an important cause of human pheno-

typic variation. Genomic alterations are hallmarks of many 

types of diseases, and DNA methylation is an epigenetic 

modification that is important in cancer development.22,23 In 

the past two decades, the potential use of DNA methylation 

as biomarkers for cancer diagnosis has received attention.24

In general, disease-free survival or relapse-free survival 

has been used to determine the validity of putative biomark-

ers of prognosis. However, because the overall survival 

(OS) is considered to be the ultimate detection standard of 

therapeutic benefits, a more accurate prognostic assessment 

model based on patients’ OS is needed. Our findings provided 

a valid indicator for predicting the prognosis using datasets 

and bioinformatics analysis.

In this study, we performed univariate and multivariate 

survival analyses to identify a prognostic signature for OS 

of HCC based on the intersection of differentially expressed 

genes (DEGs) and clinical data from The Cancer Genome 

Atlas (TCGA). A four-gene signature was established by 

building a reliable likelihood-based survival model. Impor-

tantly, the prognostic value of this four-gene signature was 

evaluated and verified by another HCC gene expression 

dataset from Gene Expression Omnibus (GEO).

Materials and methods
Patients
One hundred HCC patients were recruited in this study that 

was approved by the Institutional Ethical Committee of the 

First Affiliated Hospital of Zhengzhou University, China, 

and is in accordance with the precepts established by the 

Declaration of Helsinki. All patients gave written informed 

consent. Fifty fresh tissues and adjacent normal liver tissues 

were collected from patients with untreated stage I to stage 

IV HCC between September 2016 and April 2018. Fifty 

formalin-fixed paraffin-embedded HCC tissue samples from 

the same institution were collected between November 2012 

and September 2014 to examine SPINK1, TXNRD1, LCAT, 

and PZP expression at protein level.

Data study
Three mRNA expression datasets were downloaded from the 

GEO (https://www.ncbi.nlm.nih.gov/geo/), with the acces-

sion number of GSE57957, GSE64041, and GSE76427, 

including 37, 60, and 52 paired HCC tissue samples, respec-

tively, used for discovering DEGs. Unpaired samples were 

removed.

Another transcriptional level data of HCC samples with 

clinical data for the screening of prognostic signature were 

obtained from TCGA (https://tcga-data.nci.nih.gov/). We 

used GEO (https://www.ncbi.nlm.nih.gov/geo/) with the 

accession number of GSE14520 (242 HCC samples with 

detailed clinical data) to verify the risk model. Methylation 

data were downloaded from the TCGA website.
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All the tumor tissue samples and nontumor tissue samples 

were analyzed by the following methods.

Identification of differential expression 
genes
To identify DEGs between HCC and adjacent normal tissues, 

R (version 3.5.1, Auckland, New Zealand) was used to apply 

significance analysis of microarray with limma version 3.34.8 

(http://www.bioconductor.org/packages/release/bioc/html/

limma.html) package25 in these three GEO datasets consist-

ing of GSE57957, GSE64041, and GSE76427. The DEGs in 

HCC samples compared with adjacent normal tissues were 

obtained with the thresholds of absolute log2-based fold 

change (log2FC)>1 and adjusted P-value <0.05. We also 

analyzed the DEGs in these datasets by Venn analysis and 

found the intersection genes screened out in all three datasets.

annotation of Degs
We used gene oncology and KEGG pathway enrichment 

(https://www.kegg.jp/) methods to analyze the overlapping 

upregulated and downregulated differential expression genes, 

respectively. The online tool DAVID (http://david.abcc.ncif-

crf.gov/)26 was used to analyze and annotate the genes. All 

biological characteristics were listed. P<0.05 was considered 

the level of statistical significance.

Protein–protein interaction (PPi) 
network
We used an online database (http://string.embl.de/) to con-

struct a PPI network of DEGs and analyze the functional 

interactions between proteins. Confidence score >0.7 was 

considered of great significance. Subsequently, we used 

Cytoscape software (3.5.1) to visualize the results done by 

the tool online.27

survival analysis
To analyze the correlation between OS and gene expression, 

we used the Kaplan–Meier method. The statistical signifi-

cance of OS was determined with the log-rank test based on 

the χ2 distribution. Survival analysis and the survival curve 

were performed with R. The samples with top and bottom 

expression levels were grouped high and low according to 

the cutoff point, respectively.

Prognostic index model
Multivariate Cox survival analysis was used to create the 

prognostic index model for HCC patients. This analytical 

method is based on the importance of score assigned to each 

gene. To create the Cox regression model, we calculated 

the risk score for each patient based on the individual gene 

expression levels of the screened genes. Then, the formula of 

this prognostic index model was completed, as follow, prog-

nostic index (PI)=0.06324 × relative expression of SPINK1 

+ 0.18856 × relative expression of TXNRD1 + (−0.15727) × 

relative expression of LCAT + (−0.098) × relative expression 

of PZP. The relative expression value was defined as follows: 

score 1, < cutoff value; score 2, > cutoff value.

Rna isolation and quantitative real-time 
PCR
Total mRNA from HCC tissues was extracted with TRIzol 

reagent (Takara Bio, Kusatsu, Japan), and RNA was reverse 

transcribed with PrimeScript RT Reagent Kit (Takara Bio, 

Otsu, Shiga, Japan). Subsequently, expression levels of genes 

were quantified by qRT-PCR with SYBR Green qPCR Master 

Mix (Roche, Mannheim, Germany), with the housekeeping 

gene GAPDH used to normalize gene expression. The 2−ΔΔCt 

method was used to calculate the gene expression changes. The 

sequence of PCR primers used in this study is given in Table S1.

immunohistochemistry (ihC)
Detection of SPINK1, TXNRD1, LCAT, and PZP protein 

expression was carried out on human HCC sections with IHC 

staining as described. Results of IHC staining were evaluated 

and scored by two individuals. Proportion of stained tumor cells 

was graded as follows: 0 (no positive tumor cells), 1 (<25% 

positive tumor cells), 2 (26%–50% positive tumor cells), 3 

(51%–75% positive tumor cells), and 4 (>76% positive tumor 

cells). Scores for the intensity of staining were shown as follows: 

0 (negative), 1 (weak), 2 (moderate), and 3 (strong). Staining 

index (SI) was calculated as staining intensity × proportion of 

positive tumor cells, resulting in scores of 0, 1, 2, 3, 4, 6, 8, 9, 

and 12. When SI score was ≥6, the tissue was considered high 

expression, and an SI score ≤4 was considered low expression.

statistical analysis
All data analyses were carried out with Prism 6.0 (Graph-

Pad, San Diego, CA, USA) or R (version 3.5.1). Data were 

expressed as mean ± SD, and univariate and multivariate 

analyses were performed with the Cox proportional hazards 

regression model. Student’s t-test was performed to analyze 

the differences between two groups. The Kaplan–Meier 

method was used to establish survival curves, and the survival 

differences were compared using the log-rank test. Differ-

ences were considered statistically significant for P<0.05 

(*P<0.05; **P<0.01; ***P<0.001; ****P<0.0001).
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Results
Flow chart of this work
Significance and Venn analysis were performed with R to 

identify DEGs. We categorized 98 DEGs (13 upregulated 

genes and 85 downregulated genes) in gene oncology, KEGG, 

and PPI analyses by using Kaplan–Meier method and Cox 

regression to identify a four-gene signature that could predict 

OS for HCC patients according to clinical data from TCGA 

database. To further evaluate the performance of this gene 

signature, another GEO cohort (GSE14520) was validated. 

Finally, we analyzed the key four-gene expression in TCGA, 

GSE14520, and clinical samples. Methylation analysis, which 

might display the potential mechanism of regulating expres-

sion of those genes, was used (Figure 1).

Identification of differential expression 
genes
The genes significantly dysregulated in HCC were identified 

based on the three GEO datasets, with unpaired samples 

removed. Based on analysis of these three independent 

cohorts, 397, 298, and 482 DEGs were demonstrated from 

GSE57957, GSE64041, and GSE76427 datasets, respectively 

(Figure 2A). In addition, we identified all the DEGs that 

could differentiate HCC from the adjacent normal tissues 

in each independent dataset, using hierarchical clustering 

(Figure 2B).

gene oncology and Kegg pathway 
enrichment analysis for the intersection 
genes
Given the abundant DEGs and the muddled data, we wished 

to find common rules in the three different datasets. First, in 

GSE57957, GSE64041, and GSE76427 datasets, we divided 

all the DEGs into upregulated genes and downregulated genes 

compared with genes in adjacent normal tissues. We then 

overlapped the upregulated DEGs from the three different 

datasets and found that there were 13 upregulated genes in 

all datasets; 85 genes were screened out in the downregulated 

Figure 1 Flowchart of bioinformatics analysis.
Abbreviations:  Degs, differentially expressed genes; geO, gene expression Omnibus; Kegg, Kyoto encyclopedia of genes and genomes; PPi, protein–protein 
interaction; TCga, The Cancer genome atlas project.
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Figure 2 Identification of DEGs in HCC-mRNA expression profiling datasets.
Notes: (A) Volcano plot of Degs in datasets gse57957, gse64041, and gse76427. (B) Cluster analysis of Degs in these three geO datasets.
Abbreviations: Degs, differentially expressed genes; FC, fold change;  geO, gene expression Omnibus; hCC, hepatocellular carcinoma.
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DEGs (Figure 3A). To further investigate the characteristics 

of identified DEGs, we used gene oncology and KEGG 

pathway enrichment methods to analyze the intersection 

DEGs. No terms were obtained from upregulated genes for 

the limited numbers of genes. While we observed that the 85 

downregulated genes mainly enriched in biological processes 

associated with the oxidation–reduction process (Figure 3B) 

and most of the genes were located in extracellular region 

(Figure S1). Moreover, we had some different findings when 

performing KEGG pathway enrichment analysis; the 13 

upregulated DEGs were mainly related to oocyte meiosis 

(Figure 3C), and the downregulated DEGs were most strongly 

correlated with metabolic pathways. And retinol metabolism, 

tryptophan metabolism, and chemical carcinogenesis also had 

great significance, which were consistency with analyzing 

by gene oncology annotation (Figure 3B, C). With the help 

of KEGG pathway enrichment (https://www.kegg.jp/), we 

mapped the regulatory network of genes with significant 

differences (Figure S2).

PPi network analysis
To find the correlation between the corresponding proteins 

encoded by DEGs, we constructed a PPI network of DEGs, 

including 85 downregulated genes and 13 upregulated genes 

(Figure 4). We found that there were 64 nodes and 115 edges 

in the PPI network (average node degree of 3.58 and aver-

age local clustering coefficient = 0.285), and the functional 

enrichment in this kind of PPI network was similar to gene 

oncology and KEGG pathway enrichment analysis, which 

indicates that these genes may play a role not only at the 

mRNA level but also at the protein level.

Construction of the Deg-based 
prognostic signature
To further investigate these differential expression genes in 

identification value and the risk implications of HCC and to 

guide the subsequent effective treatment for patients as well, 

we sought to determine which genes could differentiate high-

risk from low-risk HCC patients. Most of the previous studies 

suffered from a lack of systematical evaluation because a 

single biomarker gene for prognosis may lack sensitivity and 

specificity. None of the genes or proteins function alone but 

form a network through interaction. Therefore, we used Cox 

regression analysis to search for a model that could predict 

the risk of HCC accurately.

First, we performed univariate Cox regression analysis 

of the DEGs individually to find which genes were associ-

ated with survival. Twenty-nine genes were correlated with 

prognosis (Table 1). Furthermore, to better understand which 

of the 29 candidate genes are more critical in evaluation of 

clinical outcome, multivariate Cox regression analysis was 

performed using a forward conditional method based on the 

results of univariate analysis. Only four genes were identified 

(Table 2): serine peptidase inhibitor Kazal type 1 (SPINK1), 

thioredoxin reductase 1 (TXNRD1), lecithin-cholesterol acyl-

transferase (LCAT), and alpha-2-macroglobulin like (PZP). 

Based on the estimated Cox regression coefficient, we then 

established a prognostic risk model. The risk score formula 

was as follows: risk score = 0.06324 × relative expression 

of SPINK1 + 0.18856 × relative expression of TXNRD1 + 

(−0.15727) × relative expression of LCAT + (−0.098) × rela-

tive expression of PZP.

Next, we used Kaplan–Meier survival analysis to 

evaluate the prognostic impact of model on both the low-

risk and high-risk groups. We found that the association 

between risk score and survival time of HCC patients was 

statistically significant, with the low-score patients (n=150) 

showing a substantial advantage in OS time compared 

with the high-score group patients (n=180) (Figure 5A, 

B). Patients with a high-risk score had a significantly 

increased risk of death. To explore the relationship among 

these survival-related genes with the risk scores and the 

true contributions of these genes to the HCC, we performed 

cluster analysis of every patient’s genes according to their 

risk scores, as the heat map shown in Figure 5A. Results 

indicated that SPINK1 and TXNRD1 were augmented in 

the high-risk score group. While LCAT and PZP mainly 

contributed to the low-risk scores. It is very easy to verify 

this conclusion from the risk prediction formula. These 

results independently predicted the oncogene role of 

SPINK1 and TXNRD1. In contrast, LCAT and PZP may 

serve as cancer suppressor gene.

Validation of the four-gene risk prediction 
model in geO dataset
To verify the risk prediction model, we tested this model 

in the validation cohort. Another microarray dataset 

GSE1452028 was acquired, which included detailed gene 

expression information and survival time of HCC patients 

from the GEO database. The visual diagram and the heat map 

of the contribution of each gene are illustrated in Figure 6A. 

The risk scores of every patient were calculated, and the high-

risk scores predicted by our model (n=152) were significantly 

worse than those of low-risk scores (n=69) (Figure 6B). These 

results were further evidence that we had established a risk 

prediction model.
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Figure 3 gene oncology and Kegg pathway enrichment analysis of intersection mRnas.
Notes: (A) Venn diagram analysis of Degs in comparison groups (a) upregulated Degs and (b) downregulated Degs. (B) gene oncology analysis of downregulated 
intersection Degs. (C) Kegg pathway enrichment analysis of upregulated and downregulated intersection Degs.
Abbreviations: Degs, differentially expressed genes; Kegg, Kyoto encyclopedia of genes and genomes.
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Identification of target genes expression
To confirm that the expression trends of SPINK1, TXNRD1, 

LCAT, and PZP were of identical in TCGA, GEO (GSE14520) 

databases and tumor tissues of HCC patients. We detected the 

differential expression of the four genes in tumor tissues and 

adjacent tissues. We found that SPINK1 and TXNRD1 were 

highly expressed in tumor tissues, whereas the expression of 

LCAT and PZP was significantly decreased in tumor tissues 

of HCC patients compared with nontumor tissues (Figure 

7A). These results were further verified by IHC analysis in 

HCC patients’ samples, which revealed that SPINK1 and 

TXNRD1 protein are highly expressed, whereas LCAT and 

PZP are expressed at low levels in primary tumor cells of 

HCC patients (Figure 7B). In a set of 50 HCC patients for 

whom OS data were available, patients with higher SPINK1 

or TXNRD1 protein expression had shorter OS than did those 

with lower expression. And in tumor tissues, the higher LCAT 

or PZP protein expression had longer OS (Figure 7C). Taken 

together, these data suggest that SPINK1 and TXNRD1 are 

upregulated, while LCAT and PZP are reduced in tumor 

tissues. The expression of SPINK1 or TXNRD1 protein is 

negatively correlated with prognosis, and LCAT or PZP is 

positively correlated with prognosis.

Methylation of the four prognostic genes
As previous copious literature published, aberrant DNA 

methylation in gene promoter regions plays a crucial role 

in the pathogenesis of cancer.29,30 To better understand this 

concept, we analyzed the relationship between the four prog-

nostic genes and methylation. We found that the expression 

Figure 4 PPi network of Degs. Red means upregulated genes and green indicates downregulated genes.
Abbreviations: Degs, differentially expressed genes; PPi, protein–protein interaction.
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of the genes was significantly negatively correlated with their 

methylation (Figure 8A, C, D) except for TXNRD1, which 

had only a trend toward negative correlation (Figure 8B). As 

methylation is important in hepatocellular carcinogenesis, 

we want to determine which characteristics of the HCC are 

associated with the four key genes. Thus, we analyzed these 

data in MEXPRESS (http://mexpress.be/)31 and found that the 

methylation of SPINK1 correlated with sample type (Figure 

S3A). Therefore, we divided the HCC into three sample types: 

primary solid tumor, normal solid tissue, and recurrent solid 

tumor. And we found that the methylation of SPINK1 had the 

strongest correlation with normal solid tissue and recurrent 

solid tumor, which had higher degree of malignancy than did 

primary solid tumor. We then analyzed the other three genes 

in the same way. The methylation of TXNRD1 was mainly 

correlated with patients’ ages at the time of diagnosis of HCC 

and Ishak fibrosis score (Figure S3B), and the methylation of 

PZP also had strong relation with sample type (Figure S3D). 

As we had documented above, this kind of oncogene was 

mainly associated with the less malignant type, ie, primary 

solid tumor, while the methylation of LACT contributes to 

the pathological stage (Figure S3C). These data confirmed 

that methylation was of great importance in hepatocellular 

carcinogenesis in different ways.

Discussion
HCC is a major contributor to both cancer incidence and 

mortality, with >700,000 new cases per year.32 Surgical 

resection, liver transplantation, and ablation by radiofre-

quency or ethanol injection are now conventional therapies 

at early disease stages. With these options, survival at 5 years 

ranges between 50% and 70%.33 The 5-year survival rates 

for patients with HCC undergoing surgery are low because 

Table 1 Univariate Cox regression analysis: P<0.05

Gene HR Lower 95 Upper 95 Z P-value

lCaT 0.811728 0.733575 0.898208 –4.03836 5.38e-05
Dnase1l3 0.864043 0.797649 0.935963 –3.58228 0.000341
aDh4 0.919282 0.875911 0.964801 –3.41318 0.000642
TXnRD1 1.331018 1.127551 1.571201 3.378257 0.000729
ghR 0.83189 0.74635 0.927234 –3.32462 0.000885
sPP2 0.922382 0.875121 0.972195 –3.01077 0.002606
OgDhl 0.894082 0.829937 0.963185 –2.94746 0.003204
ViPR1 0.86216 0.779078 0.954103 –2.86874 0.004121
gnMT 0.916177 0.856286 0.980257 –2.53808 0.011146
DBh 0.887677 0.809629 0.973249 –2.53743 0.011167
PZP 0.905334 0.836303 0.980064 –2.45758 0.013988
nCaPg 1.187426 1.034772 1.362601 2.446808 0.014413
slC22a1 0.938677 0.891022 0.98888 –2.38062 0.017284
hsD17B13 0.947347 0.90534 0.991302 –2.33746 0.019415
aFM 0.930186 0.875356 0.98845 –2.33475 0.019556
hgFaC 0.950178 0.909429 0.992754 –2.28515 0.022304
CRhBP 0.904797 0.830087 0.986231 –2.27529 0.022888
BhMT 0.931342 0.875872 0.990325 –2.27026 0.023192
sPinK1 1.05466 1.007185 1.104374 2.2646 0.023537
FBP1 0.902531 0.823336 0.989343 –2.18863 0.028624
aKR1B10 1.058233 1.005805 1.113393 2.183238 0.029018
glYaTl1 0.920972 0.855042 0.991987 –2.17226 0.029836
KlKB1 0.873496 0.772047 0.988275 –2.14721 0.031776
RDh16 0.930802 0.869635 0.996271 –2.0677 0.038669
ChsT4 1.063659 1.00287 1.128132 2.055421 0.039838
PglYRP2 0.931641 0.870801 0.996731 –2.05499 0.03988
PROZ 0.920421 0.850359 0.996256 –2.05282 0.04009
ePhX2 0.876151 0.770006 0.996927 –2.00667 0.044784
alDh8a1 0.919521 0.846973 0.998282 –2.00098 0.045395

Table 2 Coefficients of the four-gene signature for the risk score

Gene Coef Exp  
(coef)

SE  
(coef)

Z P(>|Z|)

sPinK1 0.06324 1.06528 0.02429 2.603 0.00923 **
TXnRD1 0.18856 1.20751 0.08532 2.21 0.02711 *
lCaT –0.15727 0.85448 0.05384 –2.921 0.00349 **
PZP –0.098 0.90665 0.04257 –2.302 0.02133 *

Note: *P<0.05, **P<0.01.
Abbreviation: coef, coefficients.
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Figure 5 Four-gene signature prognostic risk scoring model analysis of hCC patients’ prognosis in TCga dataset.
Notes: (A) Distribution of patients’ survival status and four prognostic Degs’ expression heat map in low-risk and high-risk groups. (B) Kaplan–Meier survival curves for 
low-risk and high-risk groups.
Abbreviations: Degs, differentially expressed genes; hCC, hepatocellular carcinoma; TCga, The Cancer genome atlas project.
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a large proportion of tumors are unresectable or have already 

metastasized before diagnosis. This study achieved its goal 

of finding a valid indicator for predicting the prognosis of 

HCC, using bioinformatics analysis.

Biomarkers not only serve as accurate tools in cancer 

prognostication but also have implications for measuring 

treatment responses, surveilling tumor recurrence, and guid-

ing clinical decision making.34 For selecting suitable therapies 

and improving prognosis, it is important to find accurate 

targets that can predict survival. Over the past decades, 

in-depth analysis of databases to find potential genes for 

prognosis prediction has been widely used in the manage-

ment of tumors, such as colon cancer,35,36 lung cancer,37,38 

and glioma.39 In HCC, gene expression-based signatures for 

prognosis prediction have been investigated in many studies, 

and numerous genetic alterations have been revealed. In this 

article, a six-gene-based prognostic signature for HCC OS 

prediction had been demonstrated.32 By performing bioinfor-

matics analysis, 106 DEGs and 21 differentially expressed 

miRNAs were identified in HCC.40 Based on TCGA database, 

a three-gene prognostic signature composing of three genes 

UPB1, SOCS2, and RTN3 had been reported.41 Reuse data 

have the potential to predict treatment response and disease 

progression and facilitate the development of precise thera-

pies.42 However, the advantage of this study was that mRNA 

expression profiles were performed in numerous paired HCC 

Figure 7 The expression of sPinK1, TXnRD1, lCaT, and PZP in gene and protein levels.
Notes: (A) Relative mRna levels of sPinK1, TXnRD1, lCaT, and PZP expression in TCga, gse14520 dataset, and human liver tumor tissues and adjacent normal tissues 
in patients (n=50). (B) Immunohistochemistry staining of HCC specimens with antibodies specific for SPINK1, TXNRD1, LCAT, or PZP. Original magnification, ×200. (C) 
Kaplan–Meier analysis of overall survival was stratified by expression levels of SPINK1, TXNRD1, LCAT, and PZP protein expression. **P<0.01, ***P<0.001, ****P<0.0001.
Abbreviations: geO, gene expression Omnibus; hCC, hepatocellular carcinoma; TCga, The Cancer genome atlas project.
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Figure 8 Correlation analysis between the expression of sPinK1, TXnRD1, lCaT, and PZP and their methylation.
Notes: (A) The correlation analysis between sPinK1 and methylation. (B) The correlation analysis between TXnRD1 and methylation. (C) The correlation analysis 
between lCaT and methylation. (D) The correlation analysis between PZP and methylation.
Abbreviations: Cor, correlation; TCga, The Cancer genome atlas project.

15

Cor=–0.303 (P-value=3.029e-10)A B

10

5

0

0.1 0.2 0.3 0.4

S
P

IN
K

1 
ex

pr
es

si
on

SPINK1 methylation

15

16
Cor=–0.114 (P-value=2.069e-02)

13

14

12

10

11

0.15 0.250.20 0.30 0.35 0.40

TX
N

R
D

1 
ex

pr
es

si
on

TXNRD1 methylation

14

Cor=–0.704 (P-value=1.803e-63)C

10

12

8

6

0.5 0.6 0.7 0.8

LC
AT

1 
ex

pr
es

si
on

LCAT1 methylation

12

14

Cor=–0.632 (P-value=9.849e-48)D

8

10

6

2

4

0.2 0.40.3 0.5 0.6 0.7

P
ZP

 e
xp

re
ss

io
n

PZP methylation

samples from three GEO datasets; more precise DEGs were 

discovered. Next, by establishing gene oncology, KEGG, 

and PPI analysis, we provided detailed and comprehensive 

descriptions of the functional enrichment analysis of these 

DEGs. Then, according to clinical data from TCGA, the 

optimum combination of four prognostic genes was inves-

tigated. Furthermore, we used another GEO dataset to test 

the SPINK1, TXNRD1, LCAT, and PZP expression-based 

prognostic signature to predict HCC clinical outcome. We 

constructed a more accurate four-gene signature prognos-

tic model and conducted a comprehensive and complete 

validation. Moreover, because there are few published 

 bioinformatics analyses combining gene expression and 

methylation profile, we examined the relationship of changes 

in screened DEG expression and DNA methylation. Finding 

changes in those genes’ methylation profile influenced the 

development of HCC. More precise targets and comprehen-

sively annotated possible mechanisms for regulating these 

biomarkers are given in this article. Therefore, the four-gene 

signature is promising therapeutic targets and biomarkers 

that could enhance the clinical responses and the accurate 

judgment of HCC prognosis.

In this study, three GEO datasets about HCC tissues 

were used and 98 DEGs were identified by bioinformatics 
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analysis, consisting of 13 upregulated genes and 85 down-

regulated genes. By performing KEGG analysis, results 

showed that the upregulated genes were mainly involved 

in biological processes associated with oocyte meiosis and 

selenocompound metabolism processes, while the downregu-

lated genes were primarily enriched in metabolic pathways, 

retinol metabolism, and tryptophan metabolism. The gene 

oncology term enrichment showed that the downregulated 

DGEs were involved in those biological processes such as 

oxidation–reduction process and P450 epoxygenase pathway. 

And most of the genes were located in extracellular regions. 

We constructed a PPI to find the correlation between the cor-

responding proteins encoded by DEGs. Through varieties in 

analytical methods and means, we have more fully annotated 

the function of these differential genes, which may help to 

understand the development of liver cancer.

Currently, age and TNM stage, especially TNM stage, are 

considered important predictors of survival in HCC patients. 

However, during clinical treatment, we can find that patients 

with the same TNM stage may have different prognosis. 

Therefore, we are committed to pursuing the biomarkers 

that more precisely predict the prognosis of HCC and con-

sequently improved personalized cancer treatment. For this 

purpose, we further narrowed down the gene size among 

these meaningful DEGs and selected an optimal four-gene 

signature (SPINK1, TXNRD1, LCAT, and PZP) for prog-

nosis prediction. High SPINK1 expression in HCC tumor 

tissue was significantly associated with increasing risk of 

death.43 Similar results were also validated by other research-

ers and concluded that SPINK1 may be a novel prognostic 

biomarker of HCC.44 TXNRD1 was overexpressed in HCC 

tissues and cells, and its level was increased with increasing 

clinical stage.45,46 LACT plays an important role in many 

cancers, such as Hodgkin lymphoma,47 ovarian cancer,48 

and breast cancer.49 Plasma LCAT activity was associated 

with nonalcoholic fatty liver disease,50 whereas in the tissues 

PZP was downregulated.51 Others have reported that PZP 

impacts methylation of H3K79,52 chromatin dynamics, and 

acetylation.53 However, none of studies on liver cancer has 

reported the function of LCAT and PZP genes previously. We 

first combined these four genes to analyze finding that they 

might be oncogenes or tumor suppressor genes. It has been 

reported that the potential use of DNA methylation marks as 

biomarkers for cancer diagnosis. We found that differential 

expression of SPINK1, TXNRD1, LCAT, and PZP among 

patients was related to methylation of the gene. Therefore, 

this four-gene signature is a promising therapeutic target and 

biomarker that could enhance the clinical responses and the 

accuracy of HCC prognosis prediction. We have developed 

an accurate risk score model for HCC prognosis prediction 

based on the expression of four genes, and their functions 

need further investigation.

In this work, the predictive signature that comprises 

SPINK1, TXNRD1, LCAT, and PZP was validated in another 

independent datasets on a different platform and showed that 

it has more accurate prediction of survival. Although this 

model performs well in HCC prognosis prediction, due to 

the limitation of the number of cohorts, our finding needs to 

be evaluated against larger datasets. We established a prog-

nostic signature for HCC OS prediction through combined 

analysis of gene expression datasets from TCGA and GEO. 

It is more accurate to predict the prognosis of HCC patients. 

The methods used in this study may be also suitable for other 

types of cancers.

Conclusion
Overall, based on network and module analysis of mRNA 

expression data, we constructed a novel four-gene expression 

signature for prediction of prognosis in HCC. These findings 

could advance the accuracy of diagnosis and prognosis and 

might aid in the development of targeted therapy for HCC.
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Supplementary materials

Table S1 The sequence of PCR primers

Gene Forward 5′-3′ Reverse 5′-3′

human gaPDh ggagCCaaaagggTCaTCaCTC gaggggCCaTCCaCagTCTTCT
human sPinK1 TCTaTCTggTaaCaCTggagCTg aCaCgCaTTCaTTgggaTaagT
human TXnRD1 aTaTggCaagaaggTgaTggTCC gggCTTgTCCTaaCaaagCTg
human lCaT aCCTggTCaaCaaTggCTaCg TagagCaagTgTagaCagCCg
human PZP ggagaaggaCTTaTTCCaCTgTg aTCTTgCgTaggCCCCTTTaT

Figure S1 gene ontology enrichment terms for Degs.
Abbreviations: Degs, differentially expressed genes; FC, fold change; gO, gene ontology.
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Figure S2 Kegg network analysis.
Abbreviation: Kegg, Kyoto encyclopedia of genes and genomes.
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Figure S3 Detailed methylation information of (A) sPinK1, (B) TXnRD1, (C) lCaT, and (D) PZP.
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