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Abstract

Background: DNA-binding proteins (DBPs) play fundamental roles in many biological processes. Therefore, the
developing of effective computational tools for identifying DBPs is becoming highly desirable.

Results: In this study, we proposed an accurate method for the prediction of DBPs. Firstly, we focused on the
challenge of improving DBP prediction accuracy with information solely from the sequence. Secondly, we used
multiple informative features to encode the protein. These features included evolutionary conservation profile,
secondary structure motifs, and physicochemical properties. Thirdly, we introduced a novel improved Binary
Firefly Algorithm (BFA) to remove redundant or noisy features as well as select optimal parameters for the
classifier. The experimental results of our predictor on two benchmark datasets outperformed many state-of-

the-art predictors, which revealed the effectiveness of our method. The promising prediction performance on a
new-compiled independent testing dataset from PDB and a large-scale dataset from UniProt proved the good

generalization ability of our method. In addition, the BFA forged in this research would be of great potential in
practical applications in optimization fields, especially in feature selection problems.

Conclusions: A highly accurate method was proposed for the identification of DBPs. A user-friendly web-server

named iDbP (identification of DNA-binding Proteins) was constructed and provided for academic use.
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Background

DNA-binding proteins (DBPs) are fundamental in many
biological processes, such as recognition of specific nu-
cleotide sequence, regulation of gene, transcription and
translation, and DNA replication and repair [1, 2]. Thus,
it is highly desirable to develop effective DBP identifica-
tion methods. Traditionally, experimental techniques,
which include filter binding assays [3], X-ray crystallog-
raphy [4] and genetic analysis [5], are used to identify
DBPs. Although these techniques can produce detailed
information and provide confident assertion of the
DBPs, they are both expensive and time-consuming.
This spurred the development of computational
methods to tackle this problem.
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These computational methods can be divided into two
categories: structure-based methods [6-8] and sequence-
based methods [9-15]. Many of the early methods are
structure based. Gao et al. [6] developed a knowledge-
based method named DNA-binding Domain Hunter for
identifying DBPs and associated binding sites using
structural comparison. Zhao et al. [7] proposed a
template-based prediction method by employing both
structural similarity and binding affinity. Nimrod et al.
[8] recruited random forests to identify DBPs by detect-
ing evolutionarily conserved regions and using electro-
static features. However, the number of proteins with
well annotation and good resolution structure are very
limited. The structure-based methods may break down
when homogeneous structures of a query protein is not
available. Hence, many sequence-based methods had
been proposed to deal with this problem. Kumar et al.
[9] utilized various SVM modules and evolutionary
information to forge the DNA-binder method. Kumar
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et al. [10] employed random forest to predict DBPs. Lin
et al. [11] proposed the iDNA-Prot predictor by in-
corporating the features into the general form of
pseudo amino acid composition that were extracted
from protein sequence via the grey model and adopt-
ing the random forest operation engine. Song et al.
[12] and Xu et al. [13] both applied the ensemble
learning technique combined with hybrid features to
predict DBPs. Zou et al. [14] conducted a comprehen-
sive feature analysis of four categories of protein prop-
erties and three different feature transformation
methods to find an optimal prediction model. Lou et
al. [15] predicted DBPs by performing feature ranking
with random forest and feature selection with forward
best-first strategy. The features comprised properties from
primary sequence, predicted structures and sequence
alignment.

Although many efforts were put on the computa-
tional identification of DBPs, the prediction perform-
ance was still far from satisfactory. There are some
possible reasons: (i) structure-based methods can pro-
vide reliable results in recognizing specific proteins.
However, the insufficiency in known DBP structures
leads to limited applications of these methods.
Sequence-based methods are featured by their widely
application, while the performance of these predictors
are usually not as good as expected; (ii) the complexity
of DBPs. The DBPs span over many protein families
from enzymes to transcription factors [16], which
makes it very difficult to describe DBPs discrimina-
tively using mathematical models; (iii) A common
approach to describe a protein in DBP prediction is by
forming a feature vector, but the redundancy and
contradiction among these features may seriously de-
teriorate the predication and generalization ability of
the model.

In light of the aforementioned problems, we pro-
posed a novel sequence-based predictor, named iDbP
(identification of DNA-binding Proteins), to identify
DBPs in this study. Firstly, instead of developing a
narrow-application structured-based method, we fo-
cused on the challenge of sequenced-based methods.
Secondly, a number of discriminative features, includ-
ing evolutionary conservation, secondary structure
motifs and physicochemical properties, were con-
structed to encode the proteins. These informative fea-
tures have been proved to be associated with DNA
binding interactions. Thirdly, a novel improved binary
firefly algorithm (BFA) was introduced to remove redun-
dant and noisy features as well as select optimal param-
eters for the classifier. In the proposed BFA, we used
normalized Hamming distance to calculate attractive-
ness for fireflies, which greatly improved the conver-
ging rate. We also added a dynamic mutation operator
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to increase the diversity of fireflies. Based on the effect-
ive BFA, our predictor produced promising perform-
ance on the main dataset and two benchmark datasets.
Tests on an independent testing dataset collected from
PDB and a large-scale DBP dataset collected from Uni-
Prot database demonstrated the good generalization
ability of iDbP.

Methods

Datasets

In this study, experimentally verified DBPs were col-
lected from the Protein Data Bank (PDB, http://
www.rcsb.org) by specifying keyword “DNA binding
protein” and release date “before 2015-05-01” through
“Advanced Search”, and 1248 sequences were ob-
tained. Then, these sequences were pre-processed
through the following procedures: (1) Sequences which
contained unknown residues were discarded. (2) Se-
quences with less than 50 amino acid residues or
belonged to fragments were removed [17]. (3) Se-
quences with multi-bindings were removed to avoid
other influences. (4) Sequence similarity among the
dataset was reduced to less than 30 % by using PISCES
[18]. As a result, 455 experimentally verified DBPs were
obtained as positive samples. Similarly, 455 experimen-
tally verified non-binding proteins were also extracted
from PDB with “Does not contain: DNA binding pro-
tein” as key words with less than 30 % identity. Finally,
a main dataset was obtained by combining the 455
DBPs and 455 non-DBPs. This main dataset was used
to find the optimal feature subset and train the iDbP
prediction model. To construct the training dataset,
355 sequences were randomly picked from positive and
negative samples of the main dataset, respectively. The
remaining positive and negative samples were used for
testing. In order to ensure unbiased and objective re-
sults, the process of under-sampling was performed 20
times. The final performance was the average predic-
tion results of 20 experiments on different training and
testing datasets.

To evaluate the effectiveness of the proposed
method as well as to perform fair comparisons with
previous methods [9-15], two benchmark training
and testing datasets were adopted: (i) PDB594 and
PDB186 [15]. The training dataset PDB594 contained
297 DBPs and 297 non-DBPs, and the testing dataset
PDB186 contained 93 DBPs and 93 non-DBPs. Both
PDB594 and PDB186 shared sequence similarity of
less than 25 %; (ii) DNAdset and DNAiset [14].
DNAdset included 231 DBPs and 231 non-DBPs, and
DNAiset contained 80 DBPs and 192 non-DBPs. The
sequence similarity in DNAdset and DNAiset was
less than 30 %.
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In real life, the number of DBPs is much less than
that of non-DBPs. To further test the generalization
ability of our method, a new-compiled independent
testing dataset (named DBP189) was introduced in
this work. All the predictors that we compared with
in this research were built before May 2015. There-
fore, proteins released in PBD after May 2015 would
be less likely to be used to train these models.
DBP189 contained 21 DBPs and 167 non-DBPs,
which were deposited in PDB between 2015-05-01
and 2016-05-01. None of these proteins shared more
than 30 % sequence similarity with the main dataset.
The main dataset and DBP189 were provided in
Additional file 1.

Feature vector

Evolutionary conservation profile

Highly conserved regions are often required for basic
cellular function, stability or reproduction. Thus, evo-
lutionary conservation analysis are often indicative of
structural or functional importance [19, 20]. The pos-
ition specific scoring matrix (PSSM), which carries
evolutionary information of proteins, was widely used
in various bioinformatics researches. In this study, the
PSSM of each protein was generated by using PSI-
BLAST [21] to search against the non-redundant data-
base (ftp://ftp.ncbinlm.nih.gov/blast/db/nr.tar.gz) through
3 iterations with E-value of 0.0001. A L x20 PSSM was
generated for each protein, where L was the length of the
sequence.

PSSM = [ E1y  Epy E10 (1)
Eyy Ejp Ej 20
Ern Epp Er0

Each score in PSSM represents whether the related
substitution exceed or beneath expected frequency, and
indicates whether this substitution would be favored in
the process of evolution. Here, these preferences are
statistical classified and analyzed by using the following
formula:

L =1, R, =a,
Prn =2 ey B > 6{ =0, Ry= ay @

where R,, indicates the m-th (m {1,2,...,L}) residue in
the protein sequence, and a, (n {1,2,...,20}) indicates
the type of amino acid. To eliminate the influences of
sequence length, P, ,, is normalized into the [0, 1] inter-
val by using logistic function:
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ER—a, = (3)

Finally, feature vector {Eg_.,|Re[1,L],i{1,2,...,20}}
was generated to construct the features of evolutionary
conservation profile.

Secondary structure motifs
Secondary structure plays an important role in the func-
tion of DBPs [22]. Many DBPs show obvious preference
of certain secondary structure motifs, such as helix-
turn-helix and coil-helix-coil. These structures are usu-
ally solvent exposed and hydrophilic, which grant high
probabilities in interaction with DNA segments [23].
Shown in Fig. 1 are the examples of DBP complexes.
The secondary structure motifs repeat regularly in DBPs,
and this phenomenon could be utilized to discriminate
DBPs from non-binding proteins. Figure 2 shows the
distributions of the secondary structure motifs on the
main dataset. The over-expression of “CXC”, “HCX” and
“ECX” confirms the experimental observation of enrich-
ments of a series of helices or strands in DBPs.

To obtain secondary structure motifs, firstly, the
predicted secondary structure for each residue was
calculated as a probability matrix using PSIPRED [24]

(Eq. (4)).

Py Pig Pioc| (4)

PZHH P2—>E PZHC

ss probMarix =

PLHH PL—)E PLHC

where P; , yypic (i {1,2,...,L}) is the probability of the
i-th residue to be part of a helix (H), strand (E) or coil
(C). Next, max(P; _, yyr/c) for each position would be se-
lected as the corresponding secondary structure, and
secondary structure segments were generated to repre-
sent the secondary structure distribution for the protein.
Then, the secondary structure motifs were obtained
from the segments:

ss motif = Z{segasegﬂsegy} (5)

where seg,z/, indicates continuous secondary structure
segments of the same type and «, 5, y € {H, E, C}. Finally,
a protein was encoded by a 12-dimentional feature
vector.
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Protein: 1AIS:B

Protein: 1AIS:A

Fig. 1 An example that illustrates the preferences of certain secondary structure motifs of a protein complex. Panel (a) is a TATA-binding
protein (PDB ID: 1AIS_A). The binding surface is composed of strands (red) while the outer region is composed of helices (green). The
general secondary structure pattern of this protein is strand-helix-strand-helix-strand-helix-strand-helix. Panel (b) is a transcription initialization protein

(PDB ID: 1AIS_B) that is mainly composed of helices (green) and turns (blue)

Physicochemical properties

Physiochemical properties reveal macroscopic phe-
nomena among atoms and molecules such as mo-
tions, energy, force and dynamics [25]. For instance,
Surendra et al. [26] pointed out that hydrophobic
and polar residues contributed the bonds across the

correlated with exposed surface area. Solvation free
energy [27] and transfer free energy [28], which
helped to form small paths, were vital free energy to
the hot spots. In addition, graph shape also played
an important role in deciding the functional sites on
the protein surface [29]. In this study, fourteen

interfaces and binding residues were strongly physiochemical properties, namely net charge [30],
<
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Fig. 2 The distribution of secondary structure motifs
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hydrophobicity [31], hydrophilicity [27], polarity [32],
polarizability [33], solvation free energy [27], graph
shape index [34], transfer free energy [28], amino
acid composition [35], correlation coefficient in re-
gression analysis [36], residue accessible surface area
[37], partition coefficient [38], entropy of formation
[39], and pKa values of side chain [40], were col-
lected and used. In this encoding scheme, each prop-
erty were first calculated by taking the sum of its
value over the residues on the whole sequence.
Then, the summarized value of each property was
divided by the length of the sequence [41].

Support vector machine

Support vector machine (SVM) is a machine learning
technique derived from statistical learning theory
first proposed by Vapnik [42]. It was successfully ap-
plied in many bioinformatics problems and yielded
promising results. In this study, we utilized the
LIBSVM toolset [43] and chose Radial Basis Func-
tion (RBF) as the kernel function. Two parameters c
and y of SVM were optimized using BFA. All feature
descriptors were normalized into the [0, 1] interval
by using logistic function.

The proposed binary firefly algorithm

Continuous firefly algorithm

The continuous Firefly Algorithm (FA) is a swarm-
intelligence and meta-heuristic optimization algorithm de-
veloped by Xin-She Yang in 2007 [44]. FA is based on the
idealized behavior of the flashing characteristics of the
fireflies. It is featured by its efficiency as well as robust-
ness. As a novel meta-heuristic algorithm, FA has been
proved to be able to find almost optima in continuous
problems [45]. In essence, the idea of FA can be abstracted
into the following three rules [46]:

(i) Every firefly has its own lightness and could
be attracted by other fireflies;

(ii) The brightness and distance determine the
attractiveness. That is, a brighter firefly will always
attract its adjacent less bright ones. The
attractiveness will decline if the distance between
two fireflies increases. If a firefly cannot find a
brighter firefly within the designated distance,
it will make random movements;

(iii) The brightness of a firefly is referred as light
intensity (Z), which is defined as:

I=F(f(x),B) (6)

where f(x) is the objective function. The attractiveness 3
is proportional to I, and is defined as:
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B=pBoe" (7)

where /3, is the attractiveness at r = 0; y denotes the light
absorption coefficient; and r represents the distance be-
tween any two fireflies. The movement of a firefly x;
attracted to another firefly x; is defined as:

X = x; +/J’(x,»—x,») + ag; (8)

where a is the randomization parameter, and ¢; is an
element of a vector drawn from random Gaussian or
uniform distributions.

Binary firefly algorithm

The original FA is designed for continuous problems,
which means that the outcome of the objective func-
tion (i.e. the brightness of a firefly) must lie in a
continuous interval. Recently, several BFA were
developed to solve discrete problems, such as sched-
uling, timetabling and combination. Compared with
the original FA, BFA obeyed similar fundamental
principles while redefined distance, attractiveness, or
movement of the firefly [47-49]. Palit et al. [47] ap-
plied BFA to discover the plaintext from the cipher
text. Sayadi et al. [48] defined a new firefly position
and applied BFA to manufacture cell formation.
Poursalehi et al. [49] introduced a new form of
movement of fireflies to global best in each iteration,
and applied BFA on fuel reload design of nuclear re-
actors. In this study, a novel improved BFA was pro-
posed for feature selection as well as parameter
optimization.

The feature selection task is a typical combination
problem in essence. That is, to select an optimal
combination of features from a given feature space.
By using this optimal subset, the machine learning
algorithm could produce the best predictive perform-
ance. Every feature must be either in or not in this
subset. Theoretically, for an n-dimensional feature
space, there will be 2" possible solutions (NP-hard
problem). Empirically, meta-heuristic algorithms will
perform better than traditional filter or wrapper
methods [50]. In BFA, every firefly represents a sub-
set of the feature space and a group of parameters
(i.e., a possible solution for the problem). The effect-
iveness of BFA is determined by two factors: the
ability to converge to the potential global optimum
rapidly and the capability of jumping out of local
optima. In this work, normalized Hamming distance
was used to calculate attractiveness and improve
converging rate in feature selection; dynamic muta-
tion operator was introduced to increase the diver-
sity of fireflies. The pseudo code of BFA is provided
in Algorithm 1.
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Algorithm 1 The pseudo code of the BFA.
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Begin

Initialize the population P; Initialize the algorithm parameters.

While stop criteria is not met do
Evaluate the lights of the population
Find the brightest as the current best
For i=1 to population size

For j=1 to population size

If firefly j is brighter than firefly i then
Determine the similarity parameter r

Determine the [

For each bit in firefly i and j

If nwo bits are different then
The bit in i changes to bit in j with probability of B

End if
If rand(0,1)< a
Mutate the bit in i
End if
End for
End if
End for
End for
Update the population
End while
End

a. Firefly representation

In BFA, a binary string is used to encode a firefly.
Every element in the string is either 0 or 1, the length
and interpretation for the string are both problem spe-
cific. That is, a firefly X is defined as the following:

X = x1%x9%3...%, where x;€{0,1} 9)

Figure 3 shows an instance of the definition of a firefly
X with a length of n. The string is divided into three
parts. The first part (¢ elements) and second part (¢ ele-
ments) are used to represent the values of parameters ¢
and y of SVM, respectively. The third part represents
the features. Its length w is the same as the dimension of
the feature space. In this part, 1 denotes the correspond-
ing feature is selected, and 0 indicates the opposite.

b. The attractiveness of a firefly

Similar to FA, a firefly in BFA is also attracted by
brighter fireflies. However, the attractiveness is not only
determined by the brightness but also greatly affected by
the similarity between fireflies. In BFA, the attractiveness
S between a pair of fireflies is defined as S = ﬁoe’}"z.
Here, y controls the impact of 8 in the movement func-
tion; r determines the stride of the firefly movement. For
two fireflies X; and Xj, r is defined based on the similar-
ity ratio of the two fireflies (or the normalized Hamming
distance of two vectors) as follows:

X1 X2 Xt Xt+1 Xt+2 X2t X2t+1 X2t+2 Xn

g |le | . laly |y | .. |yl fi b e | S
parameter ¢ parameter y selected features

Fig. 3 The coding scheme for a firefly
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n k k

Zk:l’Xi 69X/’ ‘

=== ‘1
n

r (10)

where @ denotes the XOR operation, 7 is the length of
X. Mathematically, the less identical bits two fireflies
share, the greater stride a firefly would take and the
more likely it would move towards the brighter one. 3
is the probability of a hetero-bit in the moving firefly
changes to the corresponding bit in the brighter firefly
(0—1 or 1—0). Compared with Cartesian distance
and Euclidean distance, the normalized Hamming dis-
tance performs best in keeping good feature as well as
removing bad ones, and also made the algorithm con-
verge fast. Figure 4 demonstrates an example of calcu-
lating parameter r.

c. The movement of a firefly

When a firefly moves, every bit in its representation
string will make a decision to move (change its value) or
not. The decision is determined after two actions: the at-
traction, which is regulated by the attractiveness (f); and
the mutation, which is controlled by a parameter (a).
The movement of a bit Xf in firefly X; moving towards
the corresponding bit X,k in firefly X; is defined as
follows:

Xf( :g<f<Xi‘(’X/]‘(’ﬁ)’a) (11)

Firefly X: 7
[1{ofoft[1[1]1[0]0T 0]

Firefly Y: D _
[ 1jo]1[1]o]1[1]1]0]0]

[OL0[1[o[i[0[0[1]0]0]

.

r=1-3/10=0.7

Fig. 4 An Example of calculating parameter r. Firefly X={1 001 11
1000}, Firefly Y={1 01101110 0}. The distance or difference is
calculated by X @ Y operation and equals {00 10100 10 0}.
Finally, the similarity ratio of between X and Y'is r. -(3/10)= 0.7
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X5 if X2 XK and rand(0,1) <
f(Xf,Xf,ﬁ):{ 5 if Xi=X] and rand(0,1) <

Xk, otherwise
(12)
oy 1-XK if rand(0,1) < a
Xy a) = {X{.‘, otherwise (13)
o — 05— 0.5 x Iteration (14)

Max Iteration

where the inner function flx,yx) of (Eq.11) regulates the
attracted movement of bit Xf‘ to X,"‘, and the outer func-
tion g(x, a) regulates the random moving behavior (mu-
tation) of X~ It should be noted that an attracted
movement would incur only when the two correspond-
ing bits are different, while the mutation might occur on
every bit with the same probability. The introduction of
dynamic mutation operator grants the firefly the ability
to escape from a local optimum and check nearby re-
gions while flying. In this work, parameter & controls the
probability of mutation. The mutation probability is high
in initial iterations, which makes BFA focus on explor-
ation. As the number of iteration increases, the mutation
probability will decrease, and BFA will accelerate its con-
verging pace gradually. Figure 5 demonstrates an ex-
ample of firefly movement. If a firefly is attracted by
another, each different bit in the attracted firefly would
change with probability B. Then each bit in the new fire-
fly mutates with probability «.

Statistic inference and performance evaluation

Five indices were employed to measure the performance
of our method. These indices included sensitivity (SN),
specificity (SP), accuracy (ACC), and Matthews’s correl-
ation coefficient (MCC):

TP
N—— " 1
SN =757 EN (15)

TN
po_ N 1
SP = TN TP (16)
TP+ TN

ACC = 17
CC= TP INTEPTEN (17)

TP x TN-EN x EP

MCC = X X

TP+ EN) x (TP + FP) x (TN + EP) x (IN + FN)
(18)

where TP, FP, TN, and FN were the abbreviations of true
positive, false positive, true negative, and false negative,
respectively. The area under the receiver operating char-
acteristic curve (ROC-AUC) was carried out when we
assessed our method with other feature selection
methods. The performance was evaluated by using
leave-one-out cross-validation on the main dataset and
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Firefly X moves

towards Y

I . \
Firefly X: 1[1lo]o] ‘ ! f;ll:)i?r?gX after
. I

_______________

Firefly X after
mutation

Firefly X- |1|0|1|1|1|1.1!0|0|‘i

Fig. 5 An example of movement and mutation for a firefly

selected optimal feature subset and parameters. Finally,
the workflow of our method is shown in Fig. 6.

Results and discussion
The performance of the proposed method
The proposed method was implemented by combining
informative features and optimizing parameters using
BFA based on SVM. The settings of BFA were tuned as
the following: the number of fireflies was set to 30; the
visibility y was set to 1; and the maximum iterations was
set to 500. The light intensity was defined as follows:
I = x MCC+ (1-0) x (1—%) (19)
where 7 was the number of selected features, N was the
total number of features, and w was the weighting coeffi-
cient that controlled the trade-off between the predic-
tion accuracy and the selected features. Usually, the
weighting coefficients of an algorithm are determined
empirically. In our research, o was set as 0.55. Here,
MCC was used as the key criterion to evaluate the per-
formance of a feature subset, as it could provide bal-
anced and unbiased measurement of the prediction
ability of the model. {; was used to assess the number of
selected features. This experiment was repeated 20
times. The final performance was the average of the 20
results. The experiment with the medium value of MCC
were chosen and the corresponding optimal feature sub-
set and parameters were used to build the iDbP predic-
tion model. The following experiments were all based on
the selected optimal feature subset and parameters.
Finally, the proposed method achieved a promising per-
formance with the mean MCC of 0.595, ACC of 0.795,
SN of 0.863, SP of 0.726 on the main dataset.

Comparison with other feature selection techniques
Feature selection is an important technique in predictive
modeling. By removing redundant features, it can con-
siderably improve the prediction accuracy. In this sec-
tion, we compared BFA with several popular feature
selection techniques: binary particle swarm optimization
(BPSO) [50], genetic algorithm (GA) [51], minimum re-
dundancy maximum relevance [52] combined with in-
cremental feature selection (mRMR +IFS) [41], the
original FA [44], and the straightforward method with all
features.

PSO is a meta-heuristic algorithm that optimizes a
problem by searching optimal particle (candidate solu-
tion). The position and velocity of the particle vary in
each iteration to approach the best position (global
optimum). BPSO is the binary version of PSO. GA is a
classic intelligent algorithm that emulates genetic evolu-
tion. It uses binary representation in nature and is good
at discrete optimizations. mRMR + IFS is a combined
feature selection scheme. It firstly sorts the features with
criteria of minimum redundancy maximum relevance.
Then, it iteratively uses the first # ranked features to
build models to find the best feature subset. For the ori-
ginal FA, which should only be used in continuous prob-
lems, the binary string of the feature vector was
transferred to decimal values. All these methods were
embedded with SVM and run 20 times on the main
dataset using exactly the same procedure. The final per-
formance for each method were the average perform-
ance of 20 results.

Table 1 lists the detailed results of five feature selec-
tion methods and the straightforward method with all
features. Compared with simple feature fusion or filter
feature selection, the meta-heuristic algorithms were
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Fig. 6 The flowchart of proposed method
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Table 1 Comparison of BFA with different feature selection

methods

Method SN SP ACC McCC
BFA 0.863 0.726 0.795 0.595
BPSO 0.830 0.710 0.770 0.544
GA 0.840 0.680 0.760 0.527
FA 0.720 0610 0.665 0332
mRMR + IFS 0.790 0.640 0.715 0435
All features 0.680 0.760 0.600 0.365

more effective in selecting the optimal feature subsets.
In addition, the FA produced an unsatisfactory perform-
ance, which proved that it was not suitable for discrete
problem. Among the three meta-heuristic algorithms,
BFA outperformed other methods with the highest MCC
of 0.595.

To assess the robustness of our BFA, we further drawn
ROC curves for each method using the leave-one-out
cross-validation on the main dataset. With all features,
the predictor gave an AUC of 0.727. The mRMR + IFS
scheme gave an AUC of 0.767. Additionally, the heuristic
feature selection algorithms achieved better perform-
ance, an AUC of 0.747 for FA, an AUC of 0.768 for GA
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and an AUC of 0.779 for BPSO (Fig. 7). The newly pro-
posed BFA produced an AUC values of 0.791, which was
the highest among these feature selection methods. In
our research, the BFA takes about 90 min to complete
one entire experiment on a PC with a 3.20 GHz Intel
Xeon CPU and 8GB RAM. Further improvement can be
achieved by parallel computation, which is almost 4
times faster by computing 6 fireflies concurrently.

Comparison with existing methods

Comparison with other predictors on benchmark datasets
In recent years, several methods were proposed to iden-
tify DBPs. These methods included DNAbinder [9],
iDNA-Prot [11], enDNA-Prot [13], nDNA-Prot [12],
DBPPred [15], DBD-Threader [53] and Zou’s method
[14]. Among these methods, DNAbinder, iDNA-Prot,
enDNA-Prot, nDNA-Prot, DBPPred and Zou’s method
were sequence-based methods. To ensure a fair com-
parison with previous studies, the training dataset
PDB594 of DBPPred was adopted to train iDbP and the
independent testing dataset PDB186 was used to evalu-
ate our predictor and compare with previous studies.
Listed in Table 2 are the results of the comparison. Our
iDbP achieved the highest SN of 0.894, ACC of 0.809
and MCC of 0.625. Additionally, we also compared the
AUC value of iDbP with these predictors. As the AUC
scores for iDNA-Prot, DNA-Prot, enDNA-Prot, nDNA-
Prot, and DBD-Threader were unavailable, the compari-
sons were performed among DBPPred, DNAbinder,
DNABIND and iDbP. The DBPPred, DNAbinder, DNA-
BIND produced the AUC scores of 0.791, 0.607 and
0.694. Our iDbP yielded the highest AUC score of 0.803,
which was slightly better than DBPPred.

———BFA(0.791)

—— BPS0(0.779)

True positive rate
o
W

——— GA(0.768)
———FA(0.767)

mRMRAIFS(0.747)

All features(0.727)

0 0.2 0.4 0.6 0.8 1

False positive rate

Fig. 7 ROC curves of different feature selection methods
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Table 2 Comparison of iDbP with existing methods on dataset

PDB186

Method SN SP ACC MCC
iDbP 0.894 0.722 0.809 0.625
DBPPred 0.796 0.742 0.769 0.538
iDNA-Prot 0677 0.667 0672 0.344
nDNA-Prot 0.710 0623 0.667 0.335
enDNA-Prot 0.602 0.699 0651 0.303
DNA-Prot 0.699 0.538 0618 0.240
DNAbinder 0.570 0.645 0.608 0.216
DBD-Threader 0.237 0.957 0.597 0.279

Similarly, the training dataset DNAdset from Zou’s
method was adopted to train iDbP and the independent
testing dataset DNAiset was used to evaluate iDbP and
compare with previous studies. As the services of
DBPPred and DBDThreader were not availiable. The
comparison on Zou’s benchmark dataset was performed
among iDNA-Prot, DNAbinder, enDNA-Prot, nDNA-
Prot, Zou’s method and our iDbP. As shown in Table 3,
the iDbP yielded the best performance with the SN of
0.908, SP of 0.911, ACC of 0.910 and MCC of 0.803.

Theoretically, protein structures could provide more
information than primary sequences. However, our ex-
periments showed that the sequence-based method
could produce approximate or even better results. In
general, the sequence-based methods are significant sup-
plements for the structure-based methods, especially
when the high-resolution 3D structures or the homology
templates of the query proteins are hard to obtain.

Comparison with other predictors on DBP189 dataset

To demonstrate the generalization ability of our iDbP,
we performed further comparisons with previous
methods on DBP189. Three DBP prediction tools,
namely DNA-Prot, iDNA-Prot and DNAbinder, still pro-
vided online or local prediction services. The prediction
results (shown in Table 4) on the DBP189 dataset indi-
cated that our method still characterized by good pre-
dictive performance on imbalanced testing dataset.
Among these methods, our iDbP achieved the highest

Table 3 Comparison of iDbP with existing methods on dataset

DNAiset

Method SN SP ACC MCC
iDbP 0.908 0911 0910 0.803
Zou's method 0.890 0.828 0.900 0.753
iDNA-Prot 0.875 0.798 0.837 0.709
nDNA-Prot 0.779 0.887 0.851 0.664
enDNA-Prot 0.760 0.868 0.832 0623
DNAbinder 0.717 0.642 0.863 0473
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Table 4 Comparison of predictive quality on the DBP189 dataset

Method SN SP ACC MCC

iDbP 0.7619 0.9162 0.8989 0.5996
DNA-Prot 0.7143 0.9042 0.8830 0.5415
iDNA-Prot 0.6190 0.8563 0.8298 0.3960
DNAbinder 05714 0.8263 0.7979 0.3234

MCC of 0.5996, which was about 5 % more than the sec-
ond highest method DNA-Prot.

Application to large-scale DBP prediction

In real-life application, computational tools are often
used to identify possible candidate proteins in large
scale. To simulate this scenario, we collected 15,413
DBPs from five most popular organisms (human, A.
thaliana, mouse, S. cerevisiae and fruit fly) in UniProt
database. After removing incomplete segments and
unannotated proteins, we finally obtained a large-scale
testing dataset with 2859 DBPs (Provided in Additional
file 2). As shown in Table 5, by using our iDbP, nearly
59 % of human proteins, 53 % of A. thaliana proteins,
54 % of Mouse proteins, 61 % of S. cerevisiae proteins,
and 59 % of Fruit fly proteins were successfully predicted
as DBPs. In summary, about 56 % proteins were success-
fully recognized. The results showed that iDbP could be
a reliable tool in large-scale applications.

Conclusion

In this work, we proposed a new method, named iDbP,
to predict DBPs from primary sequence. Multiple
informative features, which derived from evolutionary
conservation profile, secondary structure motifs and
physiochemical properties, were used to discriminate
DBPs from non-binding proteins. Next, a novel im-
proved BFA was forged to perform feature selection
and parameter optimization. The experimental results
of our predictor on two benchmark datasets outper-
formed many state-of-the-art predictors, which re-
vealed the effectiveness of our method. Moreover, the
promising performance on an independent testing

Table 5 Number of annotated and recognized DBPs in UniProt

database
Category Number of  Proteins with Number of SN
proteins complete DNA predicted
binding annotations DBPs

Human 6,813 1,049 613 58 %
A. thaliana 3378 929 489 53 %
Mouse 2514 424 232 54 %
S. cerevisiae 1,545 314 191 61 %
Fruit fly 1,163 143 84 59 %
Summary 15413 2,859 1609 56 %
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dataset and large-scale proteins from UniProt database
proved the good generalization ability of our method.
In addition, the novel improved BFA would be of a
powerful algorithm which could find widely applica-
tions in discrete optimization problems. The web-
server is available for academic research at http://
59.73.198.144:8080/iDbP/.

Additional files

Additional file 1: The main dataset and DBP189 used in this study.
(PDF 751 kb)

Additional file 2: The large-scale testing dataset compiled from UniProt.
(PDF 477 kb)
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