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Abstract

In [18F]-FEPPA positron emission topography (PET) imaging, automatic blood

sampling system (ABSS) is currently the gold standard to obtain the blood time

activity curve (TAC) required to extract the input function (IF). Here, we compare the

performance of two image-based methods of IF extraction to the ABSS gold

standard method for the quantification of translocator protein (TSPO) in the human

brain. The IFs were obtained from a direct delineation of the internal carotid signal

(CS) and a new concept of independent component analysis (ICA). PET scans

were obtained from 18 healthy volunteers. The estimated total distribution volume

(VT) by CS-IF and ICA-IF were compared to the reference VT obtained by ABSS-IF

in the frontal and temporal cortex, cerebellum, striatum and thalamus regions. The

VT values estimated using ICA-IF were more reliable than CS-IF for all brain

regions. Specifically, the slope regression in the frontal cortex with ICA-IF was

r250.91 (p,0.05), and r250.71 (p,0.05) using CS-IF.

Introduction

Neuroinflammation has been implicated to play a role in the pathogenesis of

various conditions including Alzheimer’s disease [1], stroke [2], Parkinson’s

disease [3, 4] and epilepsy [5]. In general, neuroinflammation is characterized by

OPEN ACCESS

Citation: Mabrouk R, Rusjan PM, Mizrahi R,
Jacobs MF, Koshimori Y, et al. (2014) Image
Derived Input Function for [18F]-FEPPA: Application
to Quantify Translocator Protein (18 kDa) in the
Human Brain. PLoS ONE 9(12): e115768. doi:10.
1371/journal.pone.0115768

Editor: Karl Herholz, University of Manchester,
United Kingdom

Received: July 24, 2014

Accepted: November 27, 2014

Published: December 30, 2014

Copyright: � 2014 Mabrouk et al. This is an
open-access article distributed under the terms of
the Creative Commons Attribution License, which
permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author
and source are credited.

Data Availability: The authors confirm that, for
approved reasons, some access restrictions apply
to the data underlying the findings. All relevant data
are within the paper and its Supporting Information
files.

Funding: This work was supported by the
Canadian Institutes of Health Research (INE
117891) to AS; Canadian Institutes of Health
Research to YK. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

PLOS ONE | DOI:10.1371/journal.pone.0115768 December 30, 2014 1 / 20

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0115768&domain=pdf
http://creativecommons.org/licenses/by/4.0/


an overexpression of the translocator protein 18 kDa (TSPO) in activated

microglia [6]. Using radioligands that bind to TSPO, positron emission

tomography (PET) is able to measure neuroinflammation in the human brain

in vivo by quantifying TSPO density. The most commonly used radioligand over

the last decade has been [11C] (R)-PK 11195 [7]. However, [11C] (R)-PK 11195

has several disadvantages including low penetration into brain tissue and poor

specificity [8]. These limitations triggered interest for the development of new

radioligands to overcome the issues above, such as [18F]-FEPPA [9], [11C]-PBR28

[10], [18F]-PBR06 [11], [18F]-PBR111 [12], [11C]-DAA1106 [13], [11C]-DPA-713

[14], and [11C]-AC-5216 [15]. Of particular interest, [18F]-FEPPA rapidly

penetrates brain tissue and has a high affinity and selectivity to TSPO [16] and is,

therefore, a favorable radiotracer to quantify TSPO in the human brain.

The quantification of TSPO in dynamic PET data requires an input function

(IF) that estimates the arterial plasma radioactivity. For [18F]-FEPPA PET

imaging, an automatic blood sampling system (ABSS) is currently the gold

standard to obtain the blood time activity curve (TAC) required to extract the IF.

The blood sampling for [18F]-FEPPA PET analysis is often taken at a continuous

rate of 2.5 mL/min for the first 22.5 minutes. The main advantage of ABSS is the

accurate peak-detection of the IF, which is subsequently used in the kinetic

modeling. However, the large volume of blood sampled and the arterial

catheterization could induce a physiological effect, infection and/or occlusion

[17]. Moreover, ABSS is a costly and time-consuming protocol. Over the years,

many researchers have proposed alternative methods to derive the IF in order to

minimize the need for repeated blood sampling. One technique extracts the IF

directly from PET image data in order to estimate the whole-blood and plasma

TACs. Using this method, investigators have successfully obtained the IF from

image sources such as the left ventricle to estimate myocardial metabolic rate of

glucose (MRGlu) [18, 19] and femoral arteries data from PET imaging to estimate

perfusion index in the femoral muscle [20]. In the human brain, the internal

carotid artery signal (CS) has been used to extract blood TAC [21, 22]. However,

the poor spatial resolution of PET relative to the size of the artery and motion

effect which is mostly not easily addressed causes estimation errors [23].

Alternatively, the IF can be obtained from a blind-source separation technique,

such as independent component analysis (ICA) [24]. This objective method

identifies cranial blood pools and extracts the blood activity signal without the

need for manual segmentation of arteries. Further, ICA decreases the noise effect

in the blood activity by keeping the principal component and minimizes the noise

component corresponding to the lowest eigenvalues (for review, see [24]).

Importantly, the success of the ICA approach largely depends on tracer

characteristics such as kinetics, washout, tissue distribution, and metabolite

formation. Thus, each radiotracer may require an optimized method for ICA. For

example, the EPICA algorithm has been demonstrated to accurately describe the

FDG tracer in PET imaging [24]. Given the unique tracer kinetics of [18F]-FEPPA,

the tracer is very likely to require an optimized ICA algorithm.
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Although a few studies with [11C]-(R)-PK11195 has employed reference tissue

model thanks to its low affinity [25, 26] no suitable reference region with

negligible binding has been identified for the high affinity 2nd generation TSPO

radiotracers such as [18F]-FEPPA. Therefore arterial IF must be obtained to

quantify receptor binding. Two common analytic approaches are the graphical

plot [27] and compartment model. Our group has previously shown that the two-

tissue compartment model (2-TCM) accurately describes the [18F]-FEPPA tissue

TACs and produces a total distribution volume (VT) estimation [16]. In this

previous work, ABSS together with manual arterial blood samples were used to

generate the IF. In the current study, we aim to find an alternative to ABSS in

[18F]-FEPPA PET imaging for reasons stated above, namely practicality. For this

purpose, we compare the performance of the ABSS with two methods of IF

extraction; a) direct delineation of the CS and b) a modified ICA algorithm. We

introduce a new concept for the ICA algorithm based on an Asymmetric Laplace

distribution (ALD) [28] to improve compatibility with blood region activity

features. To test for the interchangeability of the two methods with the ABSS gold

standard, we first compared the shape and the area under curve (AUC) of the IFs

generated by each method. Subsequently, the linear regression analysis and the

Bland-Altman plot were used to test the interchangeability and reliability of the

VT estimation given by each method. To further support our modified ICA

method for [18F]-FEPPA modelling, the proposed ALDICA algorithm is

compared to two other known, published ICA methods; EPICA and GGD-ICA. In

order to demonstrate the practical applications of the proposed approaches, the

estimated VT of each method was compared group-wise between subjects

categorized as mixed affinity binders (MABs) and high affinity binders (HABs)

[29, 30].

Materials and Methods

1 Human subjects

Eighteen healthy volunteers (7 males, 11 females; aged 24 to 73 years) completed

this study. Participants were classified into two groups according to their TSPO

polymorphism genotyping (see section below). Nine subjects were classified as

MABs and nine subjects as HABs. All procedures were fully explained and subjects

provided written informed consent and were approved by the Centre for

Addiction and Mental Health Ethics Review Board and conformed to the

Declaration of Helsinke.

2 Polymorphism genotyping

Genomic DNA was obtained from peripheral leukocytes using high salt extraction

methods [31]. The polymorphism rs6971 was genotyped variously using a

TaqMan assay on demand C_2512465_20 (AppliedBiosystems, CA, USA). The

allele T147 was linked to Vic and the allele A147 was linked FAM. PCR reactions
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were performed in a 96-well microtiter-plate on a GeneAmp PCR System 9700

(Applied Biosystems, CA, USA). After PCR amplification, endpoint plate read and

allele calling was performed using an ABI 7900 HT (Applied Biosystems, CA,

USA) and the corresponding SDS software (v2.2.2). Individuals with genotype

Ala147/Ala147 were classified as high affinity binders (HAB), Ala147/Thr147 as

mixed affinity binders (MAB), and Thr147/Thr147 as low affinity binders (LAB)

[32].

3 Positron emission tomography

All experiments were performed on a 3D high-resolution research tomograph

(HRRT) PET scanner (CPS/Siemens, Knoxville, TN, USA). The scanner is made

of eight planar detector heads containing LSO/LYSO phoswich detectors, with

each crystal element measuring 2.262.2610 mm3 and produces 207 image

planes. The field of view (FOV) measures 25 cm in axial direction and 35 cm in

transaxial direction. The HRRT is characterized by an isotropic spatial resolution

of ,2.5 mm in all 3 directions at the center of the FOV [33]. Each subject was

scanned for 120 minutes of dynamic acquisitions in list-mode on the HRRT

scanner and images were reconstructed into 25662566207 cubic voxels

measuring 1.2261.2261.22 mm3 as scheduled below using two algorithms:

filtered back projection (FBP) [34] and ordered subset expectation maximization

with point spread function (OSEM+PSF) reconstruction [35]. The first frames

were of variable length depended on the time between the start of acquisition and

the signal recorded in the FOV in both reconstruction algorithms. The subsequent

FBP reconstructed image frames were defined as 5630, 1645, 2660, 1690,

16120, 16210, and 226300 seconds. The subsequent OSEM reconstructed

image frames were defined as 267, 268, 3610, 2615, 2630, 1645, 2660,

1690, 16120, 16210, and 226300 seconds.

4 Magnetic resonance imaging

Magnetic resonance imaging (MRI) scans were acquired for subjects using a

General Electric (Milwaukee, WI, USA) Sigma 1.5 T MRI scanner. The slice

thickness measured 2 mm and the repetition time was greater than 5.300

milliseconds. The echo time513 milliseconds and the flip angle590u. The

acquisition matrix measures 2566256, and the FOV measures 22 cm. 2D axial

proton density (PD) MRI images were utilized for anatomic delineation of the

cerebellum, the frontal and temporal cortex, striatum, and thalamus regions using

in-house software, ROMI [36]. A discrete cosine transform (DCT) was used to

wrap the standard template of ROIs to each subject.

5 Blood sampling

Approximately 185¡20 MBq (5¡0.5 mCi) of [18F]-FEPPA was administered

intravenously as a bolus injection. During PET acquisition, the whole-blood

radioactivity was continuously measured via a cannulation to the radial artery and
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using ABSS (Model #PBS-101 from Veenstra Instruments, Joure, Netherlands) at

a rate of 2.5 ml/min for the first 22.5 min. Manual arterial blood samples of 4–

10 ml were taken at 1.5, 2.5, 7, 15, 30, 45, 60, and 90 minutes in order to assess the

concentration ratio of radioactivity in whole blood to the plasma and to calculate

the metabolite composition in the plasma. The blood-to-plasma ratio was fitted

by a bi-exponential. Plasma composition was determined using Hilton method

[37] and the fraction of the un-metabolized radioligand was fitted by a Hill

function H tð Þ~ a|tb

tbzc
in order to correct plasma TACs for metabolite. The

correction for delay and dispersion of the radioligand was performed as follows:

the delay between the manual plasma activity and the activity recorded over

50 seconds in the FOV was fitted to an irreversible 1-compartment model with

whole-blood activity as an input function. The dispersion effect in the ABSS line

was modeled as CABSS tð Þ~ 1
t
:e{t

t6Cw tð Þ [38], where Cw is the concentration of

tracer in the whole-blood at time t and t as taken equal to 16 seconds. The ABSS

whole-blood radioactivity corrected for the dispersion and delay effects was used

to build the input function as follows:

IF~
Cw|metabolite correction

Blood-to-plasma ratio
ð1Þ

The tissue TACs were generated using in-house software ROMI. A standard

template of ROIs was fitted to each subject’s MRI. The MRI was co-registered

(SPM2, Department of Cognitive Neurology, London) to a time-average of the

dynamic PET images and the transformation was subsequently applied to the ROI

map. TACs were extracted from each ROI placed in the dynamic PET images.

6 Internal carotid signal delineation

The carotid ROIs were automatically delineated over the PET images. The binary

masks were created by thresholding the mean image of the first 10 frames

(2 minutes of scan) at 0.486maximum intensity in which the optimal shape of

the carotid artery was clearly displayed in the image series (N.B. The threshold has

been determined empirically). For [18F]-FEPPA, the whole-blood TAC was

extracted from the carotid ROIs as a mean of the ten highest pixel activities per

plane, as explained elsewhere [22]. Only those voxels located within the lowest 36

planes (43.9 mm) were considered as carotid signal (Fig. 1).

7 Independent component analysis

The same intensity threshold (0.486maximum) was used to segment blood

region ROIs of the brain as described in the CS methodology. The blood ROIs

were applied to include the whole vascular system in brain constitute of arterial

and venous activity for the ICA algorithm in order to enhance the presence of two
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different spatial distributions. Additionally, a 3D cubic Gaussian filter with

FWHM53 mm was used to smooth activity within the blood ROIs (Fig. 2).

Masks were applied to the rest of the dynamic image series to select the time

activity of voxels within the blood ROIs. The 4D data were rearranged into a 2D

matrix (M2D). The first dimension (T) is the time course and the second

dimension Npxð Þ is the spatial distribution of pixels in each ROI. Specifically,

arterial and venous activity was largely identified in addition to the undesired

signal. The dimension of M2D was reduced from T|Npxton|Npx (where n is the

number of independent components of interest e.g. arterial and venous activity)

using the principal component analysis algorithm. This technique determines the

Eigenvectors (Eeve) and Eigenvalues (Eeva) of the covariance matrix E M2DM2D
T

� �

and uses them as a basis for the reduction. A flow diagram of the overall process is

illustrated (Fig. 3). Specifically, the matrix of the mixture of the n independent

sources X was computed as a product Eeve:M2D and used as the input data in the

ICA algorithm [39].

Fig. 1. Internal carotid segmentation performed on OSEM-PSF images using automatic thresholding for one subject. The red lines illustrate the
lowest 36 planes containing the internal carotid artery. The black line surrounding the carotid artery represents the automatic binary mask.

doi:10.1371/journal.pone.0115768.g001
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The matrix X is then defined as:

X~AS, ð2Þ

where the matrices S and A are unknown and X is the mixed activity. The ICA

algorithm allows for estimation of S through a de-mixing matrix W~A{1.

Hence, the source matrix S is approximated by an estimate ~S given by:

~S~W X : ð3Þ

In this work, we used the maximum likelihood estimation to determine W. For

this purpose, we defined the negative of the log likelihood as a cost function, as

defined by the Amiri algorithm [40]:

Fig. 2. ROIs extracted for the ICA algorithm for the same subject in Fig. 1. Binary masks were created
from the time-averaged image (first 10 frames) and applied onto each plane to automatically select the whole-
brain blood regions over all planes. A) depict the arterial activity. B) depict the superior sagittal sinus.

doi:10.1371/journal.pone.0115768.g002
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l Wð Þ~{log det Wð Þj j{
XNpx

j~1

log P ~S; h
� �

, ð4Þ

where P ~S; h
� �

represents the distribution of the sources. Further detail on the

calculation of W and the ADL parameters estimation are given in Appendix A and

B in S1 File. A Summarize of ICA algorithm is given in appendix C in File S1.

8 Whole-blood calibration and input function generation

The whole-blood curves extracted from the ROIs by CS and ICA were calibrated

to the ABSS-IF. Both curves were calibrated with one manual arterial blood

sample taken at 15 minutes post-injection. In addition, a single inversion point at

1.5 minutes post-injection generated by the algorithm was corrected using one

blood sample. The IFs were calculated using the derived whole-blood curves and

the Hill function and bi-exponential function. The parameters of the two

functions were calculated using an in-house software (Pharmacokinetic

Fig. 3. Illustration of the ICA algorithm process steps. (1) the dynamic PET images derived from sequential measurement of the radioactivity are re-
arranged into 2D matrix, the first dimension refers to time acquisition fames and the second dimension refers to the spatial distribution. (2) the principal
component analysis reduce matrix dimension in order to keep the most significant activity (if columns of a mixture have relatively similar TACs, then, the
corresponding columns tends to be estimated as one components). (3) update the de-mixing matrix until found convergence in separation between the two
components.

doi:10.1371/journal.pone.0115768.g003
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Estimation for Radioligand Images (P.E.L.I)) which gives the possibility to model

manual samples with different pre-defined function such as linear interpolation,

mono-exponential, bi-exponential and Hill functions. Unlike ABSS-IF, the IDIFs

were free from delay and dispersion effects.

9 Kinetic modelling

The total VT which represents the ratio at the equilibrium of the concentration of

radioligand in tissue to that in plasma (i.e. including the specific binding,

nonspecific binding and free radioligand in tissue) was assessed. For the 2-TCM,

VT was defined as DV~K1=k2 1zk3=k4ð Þ where ki i~1 . . . 4ð Þ were the

independent variables estimated by the compartmental model, as described

elsewhere [41]. The weighted nonlinear fitting was performed with the Levenberg-

Marquardt algorithm using an implemented trust-region. The cerebral blood

volume was assumed in the trust-region function as 5% of the gray matter tissue

[42]. The fitting curve and the brain data for each frame were weighted to the

other frames using the trues Tri in the FOV, where i is the frame index as

described by:

wi~
te
i {ts

i

� �2

dc2Tri
: ð5Þ

where ts
i and te

i are the start and end time of the frame, respectively, and dc is the

decay correction coefficient given by: dc~lc te
i {ts

i

� �
=e{lcte

i {e{lcts
i with

lc56.361022 per minute, that is the decay of 18F.

10 Statistical analysis

The IFs derived by CS and ICA were compared to the ABSS-IF using the AUC

ratio. Pearson correlation coefficients were used to evaluate the strength of the

relationship between CS-IF, ICA-IF and ABSS-IF. Bland-Altman plot were

performed to test the interchangeability of the VT calculated by different methods

in the temporal and frontal cortex, cerebellum, striatum, and the thalamus. The

regression coefficients were tested using a one-sample t-test with statistical

significance set to a value of p,0.05. Repeated-measures ANOVA (RMANOVA)

was performed using VT values calculated using the IF from each method and

according to their genotype (i.e. HAB and MAB subjects).

Results

1. Input Functions

The ABSS-IFs, CS-IF and ICA-IF curves demonstrated a substantial similarity in

terms of shape for each individual subject. The peak activity of the CS-IF was

reached at the same time as the ABSS-IF curve, but was notably smaller in

amplitude. In contrast, the peak of the ICA-IF curve was reached slightly later

Image Derived Input Function for [18F]-FEPPA Quantification
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(,5 sec) and was much sharper than the ABSS-IF curve. Over the course of

15 minutes, the ABSS-IF and the two image-derived curves were similar (see

Fig. 4).

Within each individual, the peak (blood activity in the first 180 seconds) and

the tail (blood activity in the remaining time of scan) AUCs were calculated for

the ABSS-IF, CS-IF and ICA-IF curves. The AUCs (mean ¡ SD) for the CS-IF

peak were underestimated compared to the AUCs of the ABSS-IF peak

(ratio50.74¡0.12). In contrast, the AUCs for ICA-IF peak were overestimated

compared to the AUCs of the ABSS-IF peak (ratio51.07¡0.18). However, the

ICA-IF and ABSS-IF tail AUCs ratio were very similar (ratio 1.03¡0.10), whereas

the CS-IF and ABSS-IF tail AUCs ratio were slightly overestimated

(ratio51.12¡0.14).

2. Reliability of VT Estimations

2.1 Group-wise comparisons between HAB vs. MAB

A group comparison for the frontal cortex is depicted in Fig. 5 (for the

cerebellum, temporal cortex, striatum and thalamus see S1.1, S1.2, S1.3, and S1.4

Figs in S2 File). Within each group, the RMANOVA revealed no significant

difference in VT estimations from the ICA, CS and ABSS methods for HABs (F (2,

16)50.2, p50.82) and MABs (F (2, 16)51.22, p50.32), respectively.

Fig. 4. A typical double logarithmic scale of the input function estimated by CS and ICA plotted against the ABSS-IF. Two arterial blood samples
were used to correct for a small inversion at 1.5 minutes (green point) and to calibrate curves at 15 minutes post injection (blue point).

doi:10.1371/journal.pone.0115768.g004
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Fig. 5. Bland Altman plot of total distribution volume (VT) in the frontal cortex comparing (A) ABSS-IF versus CS-IF, and (B) ABSS-IF versus ICA-IF.
All candidates were within the 95% of limits agreed for VCS{IF

T and VICA{IF
T , with the exception of one subject for VCS{IF

T .

doi:10.1371/journal.pone.0115768.g005

Image Derived Input Function for [18F]-FEPPA Quantification

PLOS ONE | DOI:10.1371/journal.pone.0115768 December 30, 2014 11 / 20



2.2 Linear Regression

We first conducted a simple linear regression analysis of the data (n518) for

frontal and temporal cortex, cerebellum, striatum and thalamus regions. Results

of regression analysis comparing VTs calculated using ICA-IF and VT calculated

using ABSS-IF are shown in Table 1. Overall, VT using ICA-IF provided a more

reliable estimation of gold standard VT using ABSS-IF (r2.50.88) than VT using

CS-IF (r2,0.88).

2.3 Bland Altman plot

The bias of the measurements between VT using ABSS-IF (VABSS{IF
T ) and VT using

CS-IF (VCS{IF
T ) calculated in the frontal cortex was 1.33 mL/cm3 and the width of

95% of limits agreement was 12.17 mL/cm3 containing 17/18 of difference scores

(Fig. 6A) (for the cerebellum, temporal cortex, striatum, and thalamus see S2.1A,

S2.2A, S2.3A, and S2.4A Figs, respectively, in S2 File). In contrast, the bias of the

measurements between VABSS{IF
T and VT using ICA-IF (VICA{IF

T ) in the same

region was 21.27 mL/cm3 and the width of 95% of limits agreement was

7.54 mL/cm3 containing all difference scores (18/18) (Fig. 6B) (for the

cerebellum, the temporal cortex, the striatum, and the thalamus (see S2.1B, S2.2B,

S2.3B, and S2.4B Figs, respectively, in File S2). Therefore, the magnitude of bias

was smaller in VICA{IF
T than (VCS{IF

T ).

Discussion

In this study, we developed a new algorithm for the ICA method to extract the IF

necessary for TSPO quantification in addition to the CS method used in other

studies [22]. The extracted TACs from PET data include signals from both the

parent and the metabolized radiotracers. Therefore, the blood TACs extracted

from PET data need to be corrected to the blood-to-plasma ratio and, parent

fraction of the radiotracer, which can be achieved by calibrating with one arterial

or venous sample [18, 22, 43]. In this work, the whole-blood-to-plasma ratio was

determined by fitting manual sample by a bi-exponential function, and the un-

metabolized [18F]-FEPPA activity was modeled by a Hill function because of the

fast metabolism of this tracer as previously demonstrated [9, 16].

Table 1. Results based on Regression Analysis VT calculated using CS-IF versus using ABSS-IF and VT calculated using ICA-IF versus using ABSS-IF.

VT calculated using CS-IF vs VT using ABSS-IF VT calculated using ICA-IF vs VT using ABSS-IF

r2 b0 b1 t p r2 b0 b1 t p

Frontal cortex 0.71 1.13 0.85 4.01 0.0009 0.91 0.03 1.09 6.04 1.1E-04

Temporal cortex 0.70 0.34 0.95 5.19 8.8E-05 0.88 2.24 1.14 3.21 0.0053

Striatum 0.78 0.04 1.01 5.5 4.0E-05 0.89 1.64 1.05 3.74 0.0017

Thalamus 0.87 1.76 0.83 3.52 0.0027 0.92 -0.43 1.17 7.54 1.1E-06

Cerebellum 0.84 1.17 0.84 3.60 0.0023 0.90 0.98 1.01 4.37 0.0004

r2: coefficient of determination, b0: Intercept, b1: Slope, t: t-test value, p: p-value.

doi:10.1371/journal.pone.0115768.t001
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The CS method was based on the segmentation of the carotid to extract blood

activity. However, the identification of the internal carotid arteries requires high-

resolution dynamic PET images or a co-registration with the subject MRI [23].

Due to the small size of the carotid and its elasticity (i.e. the artery can be

stretched or bent during the MRI or PET scans), co-registration leads to an

alignment error which requires further correction using a simple rigid body co-

registration [23]. Therefore, the segmentation of the carotid in this study was

carried out directly on OSEM+PSF [18F]-FEPPA PET which has been

demonstrated to be robust against the partial volume effect [44]. The left and the

right internal carotid were easily recognized in the early summed frames of a

dynamic PET scan. Then, only a number of highest pixels (ten highest pixels) per

plan were selected within the carotid ROIs to minimize the spill-in and spill-out

effects. The number of pixels was established by experiment as performed

elsewhere [22] and according to the spatial resolution of the scanner (in [22],

Mourik et al used four highest pixels for [11C]-flumazenil PET data acquired

using an ECAT EXACT HR+ scanner with spatial resolution54.3mm at the center

of FOV). The CS-IFs obtained are marginally compared to the ABSS-IFs and the

AUCs ratio between CS-IF and the gold standard IF is low for the peak and high

for the tail. In addition the inter-subject variation is high for both peak and tail

Fig. 6. Group comparison of total distribution volume (VT) in the frontal cortex for high affinity binders
(HABs) and mixed affinity binders (MABs) calculated respectively with ABSS-IF, CS-IF and ICA-IF.

doi:10.1371/journal.pone.0115768.g006
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(0.12 and 0.14 respectively) although the scaling of the IF by a manual arterial

sample to compensate the underestimation as suggested by Zanotti-Fregonara et

al [23]. Despite the fact that the use of the highest pixels is simple, largely

automatic and fully reproducible; this method is very sensitive to the motion

effect and depends of the number of the selected high intensity volumes. Given

that pixels ROI was defined on the average image over the two first minutes of

scan, participant may move from its first location and, thus, leads to an inaccuracy

in the blood TAC. Moreover, the tail of the IF plays an important role in VT

variation when scans are long (120 to 180 minutes) and the metabolism is fast as

in the case of FEPPA PET. As a result, the agreement between estimated VTs using

CS-IF and ABSS-IF was only marginally significant (0.70# r2#0.87) and the

Bland Altman plot showed qualitative difference between VABSS{IF
T and VCS{IF

T
which appear as a wide width of agreement limits (12.17 mL/cm3). The source of

this discrepancy includes potential contributors such as patient movement during

the scans and the remaining partial volume effect, although it has been reduced by

OSEM+PSF reconstruction algorithm.

The ICA method was used to derive the IF directly through a source signal de-

mixing process. Unlike deterministic blind source separation (BSS) such as the

non-negative matrix factorization (NMF), the ICA is more flexible and, therefore,

able to model initial sources by different probabilistic distributions that accurately

adapt to physical and physiological characteristics. The ICA algorithm was applied

on a priori determined automatic anatomical segmentation of the brain vessel

system. The advantage of collecting the activity from regions where the radiotracer

activity in the blood is highly recognizable is to increase the number of samples

and satisfy the Central Limit Theorem [43]. The segmentation was performed on

PET data reconstructed with OSEM algorithm where the number of subsets56

and the number of iterations512, allowing for clear recognition of the high signal

contrast of cerebral vessel activity to background noise. In doing so, however,

there was some loss in precision of the tissue time activity. Especially, the

application of ICA on the carotid region ROIs, fails to extract the IF. This is

mainly due to the fact that the statistical property of mixture in segmented ROIs is

violated (at least two distinct independent distributions built the mixture).

Indeed, the segmented carotid ROIs is a mixture of arterial activity distribution

and a random background noise distribution which led to the extraction of noisy

curves (see.S3 Fig. in S2 File). In contrast, the activity within the whole-brain

ROIs was assumed to be mixture of radiotracer activity in venous and the artery.

The spatial distributions of these sources were slightly different because of several

reasons. 1) the field of view of the scanner covers more voxels in venous than

artery vessels; 2) the size of the venous cerebral vessels is large compared to the

arterial ones which cause less partial volume error; 3) and likely due to the tracer

binding to the vessel walls (i.e. the endothelium and smooth wall muscles).

Previously, researchers have used several different measures to calculate the

independence from the mixed signal (i.e. kurtosis, entropy, mutual information,

and the likelihood) [43]. In this study, we modeled the spatial distribution of

blood activity through the PET acquisition time by an ALD. The choice of this

Image Derived Input Function for [18F]-FEPPA Quantification
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distribution is supported by the fact that the tracer is uniformly distributed in the

venous vessels and arterial ones. In terms of voxel intensity, the histogram of the

spatial distribution of both components was close to a Laplace distribution, which

can be skewed to the left or right. The ALD was flexible through its skew

parameter to fit this distribution (i.e. The two components were extracted as a

first and a second independent source relative to the first and second principal

components correspond to the highest eigenvalue). The first source closely

resembled the ABSS-IF according to the peaked time and was visually identified as

the desired arterial blood activity. It was subsequently used to generate the IF.

In further support of the ALDICA algorithm for [18F]-FEPPA PET data, it was

compared to a non-parametric ICA based on the fast fixed-point EPICA

algorithm, explained in detail elsewhere [24] (source code is freely available at

http://home.att.ne.jp/lemon/mikan/EPICA.html), and a parametric ICA based on

two distributions; a) ICA based on a Gaussian cost function and; b) an ICA based

on maximum likelihood estimate and the general Gaussian distribution (GGD)

[39]. The EPICA algorithm successfully extracts TAC from FDG PET data [23]. In

case of [18F]-FEPPA PET data, however, this algorithm failed to extract the IF for

several reasons. In the case of FDG PET, the blood-tissue histogram differentiates

blood and tissue signal components and EPICA successfully emphasizes each

component independently. In [18F]-FEPPA, however, this no longer the case as

the histogram consists of two close distributions; venous and arterial blood signal

in selected ROIs. EPICA failed in the separation of the two distributions in the

selected ROIs because of their similarity with the applied cost function. The

EPICA method works well with FDG due to its equal distribution in brain tissues,

resulting in very similar tissue TAC scales and can be estimated as one

component. In contrast, [18F]-FEPPA is not as equally distributed across tissues

and hence, is difficult to separate blood from different tissue TAC scales. In the

standardization process, the EPICA algorithm increased undesired signal (e.g.

tissue component and noise). Moreover, the parameters of the cost function are

fixed in the equation by the user and not by estimation from the data. For FDG

PET data, as shown by Naganawa et al (2005), changing these parameters within a

specified range (10, l ,100; 0.1, m,0.5) did not influence the result. However,

the parameters l and m applied to [18F]-FEPPA PET data revealed a dependency

on the selected values for the parameters. Further, we compared the ALD to other

parametric spatial distribution models which, in general, are more flexible with

manipulation of the data distribution. However, the Gaussian distribution was

unappropriated to extract independent components because of the assumption

made on the mixture (the mixture of independent components is more Gaussian

than the independent components [43]). The GGD, in contrast, is more adaptable

through its third parameter (shape parameter (SP)) and covers many distributions

(SP,2, super-Gaussian distribution; SP52, Gaussian distribution; SP.2, sub-

Gaussian). The asymmetric distribution of ALDICA function allows for a good fit

to the data compared to EPICA and the parametric models, as highlighted in

Fig. 7. In summary, these comparisons support ALDICA as the spatial

distribution function of choice in dynamic [18F]-FEPPA imaging.
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The obtained IFs, using ADLICA were similar to the ABSS-IF in shape, but not

in magnitude. This was due to two ambiguities in the ICA algorithm: magnitude

and permutation. To solve the magnitude issue, one manual blood sample was

used to scale the extracted IFs at 15 minutes post-injection to calibrate the peak

and the tail. The post-injection sample at 15 minutes was chosen due to the fact

that, for [18F]-FEPPA, this represents the near end of the tracer delivery to the

tissue and the beginning of the blood clearance. Hence, at this time, the used

plasma sample might be more accurate for calibration. The identification of the

first and the second extracted components as arterial blood activity and venous or

tissue activity was a sensitive task due to the permutation ambiguity of ICA. For

the majority of the subjects (14/18), the magnitude of the second component,

inspected visually, was higher than the first and peaked approximately 5seconds

later than the first component, which represent venous activity for reasons cited

above (see.S4 Fig. in S2 File). For the remaining subjects (4/18), the second

component appeared as a tissue activity shape which is explained by strong signal

contamination of the blood region by surrounding tissue activity. In addition, for

2 of 18 subjects, the arterial blood activity was identified as the second

component. Finally, a small single inversion point in the curve was created by the

algorithm at ,1.5 minutes following tracer injection. Importantly, this inversion

did not affect the estimated total VT values using IF. After correcting for

calibration concerns, the peak AUCs and the tail AUCs calculated with ICA

represent an promising estimation compared to those obtained with ABSS (peak

Fig. 7. Illustration of the normalized histogram of the first source, ADL, GGD, and Gaussian distributions respectively. The plot describes the data fit
by three different distributions. The Gaussian distribution does not show a good model to represent data. The GGD fit better the sharper features of the
histogram. However, it fails to fit well the asymmetry of data. The ADL is more appropriate to model the sharper feature of the histogram and, moreover,
follows the asymmetric distribution of data through its skew parameter.

doi:10.1371/journal.pone.0115768.g007
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ratio51.07¡0.18, tail ratio51.03¡0.10). These estimations fall within an

acceptable range of variation. Notably, the inter-subject variation is largely due to

the threshold used to create the ROIs. We chose to keep this threshold constant

(48% of maximum intensity) across all subjects. However, it is possible to reduce

the variance by selecting a subject-specific threshold. In addition, the inter-frame

motion is a hidden issue which is difficult to correct and contribute to the high

variation of the tail ratios. In order to determine if the slight difference in peak

activity timing between ICA-IF and ABSS-IF curves, we shifted the ICA-IF curve

to the left to match the peaks. There was a negligible influence on the estimated

VT (,1% difference between VT estimated with ICA-IF and the shifted ICA-IF).

Moreover, VT estimations obtained with ICA-IF were highly correlated (0.88#

r2#0.92) with ABSS-IF. The RMANOVA revealed no significant difference

between VABSS{IF
T and VCA{IF

T Further, the Bland-Altman plot revealed only a

negligible difference between VABSS-IF
T and VCS-IF

T which appear as a small width of

agreement limits (7.54 mL/cm3).

Although the possibility of avoiding the use of ABSS to extract IF from PET

data, arterial samples are usually needed to calculate the blood-to-plasma ratio

and the un-metabolized radioligand. This issue should be addressed in further

studies either by venous substitute [44] or by population base correction. Two

other issues worthy to be addressed in this work. First the visual identification of

the arterial blood activity and second the manual correction of the small

inversion. Finally, a new methodology using clustering to extract a grey matter

tissue reference region should be subject to future studies to quantify microglia

activation using [18F]-FEPPA as applied to [11C]-(R)-PK11195 tracer [45].

Conclusion

This study supports ICA from OSEM [18F]-FEPPA PET as an interchangeable

method to the gold standard ABSS to quantify TSPO in the human brain. The CS

method produces slightly less accurate VT and may, therefore, not be a reliable

candidate as an alternative method to ABSS. The major advantage of these

techniques is the extraction of IFs with low blood sampling and rapid processing

time. Both ICA and CS methods were performed solely on PET image data,

eliminating the need for MRI-based segmentation of blood regions. However,

manual blood sampling was still required to calculate the metabolite and blood-

to-plasma ratio, in addition to calibration. This limitation needs to be improved

with future work.

Supporting Information

S1 File. Appendix A, B and C.

doi:10.1371/journal.pone.0115768.s001 (DOCX)
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S2 File. This file contains the supporting information figures. S1.1 Fig: Direct

comparison of total distribution volume (VT) in the cerebellum for high affinity

binders (HABs) and mixed affinity binders (MABs) calculated respectively with

ABSS-IF, CS-IF and ICA-IF. S1.2 Fig: Direct comparison of total distribution

volume (VT) in the temporal cortex for high affinity binders (HABs) and mixed

affinity binders (MABs) calculated respectively with ABSS-IF, CS-IF and ICA-IF.

S1.3 Fig: Direct comparison of total distribution volume (VT) in the striatum for

high affinity binders (HABs) and mixed affinity binders (MABs) calculated

respectively with ABSS-IF, CS-IF and ICA-IF. S1.4 Fig: Direct comparison of total

distribution volume (VT) in the thalamus for high affinity binders (HABs) and

mixed affinity binders (MABs) calculated respectively with ABSS-IF, CS-IF and

ICA-IF. S2.1 Fig: Bland-Altman plot of total distribution volume (VT) in

cerebellum region. S2.2 Fig: Bland-Altman plot of total distribution volume (VT)

in temporal cortex region. S2.3 Fig: Bland-Altman plot of total distribution

volume (VT) in striatum region. S2.4 Fig: Bland-Altman plot of total distribution

volume (VT) in thalamus region. S3 Fig: Log-Log scale plot of ABSS-IF and ICA-

IF performed on carotid region. S4 Fig: Log-Log scale plot of the first and the

second independent components.

doi:10.1371/journal.pone.0115768.s002 (DOC)
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