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Brain microvascular endothelial cells (BMECs) separate the peripheral blood from the
brain. These cells, which are surrounded by basal lamina, pericytes and glial cells,
are highly interconnected through tight and gap junctions. Their permeability properties
restrict the transfer of potentially useful therapeutic agents. In such a hermetic system,
the gap junctional exchange of small molecules between cerebral endothelial and non-
endothelial cells is crucial for maintaining tissue homeostasis. MicroRNA were shown
to cross gap junction channels, thereby modulating gene expression and function of
the recipient cell. It was also shown that, when altered, BMEC could be regenerated
by endothelial cells derived from pluripotent stem cells. Here, we discuss the transfer
of microRNA through gap junctions between BMEC, the regeneration of BMEC from
induced pluripotent stem cells that could be engineered to express specific microRNA,
and how such an innovative approach could benefit to the treatment of glioblastoma
and other neurological diseases.

Keywords: targeted therapy, microRNA, gap junction, blood capillary, connexin43, neurological disorders,
glioblastoma

INTRODUCTION

Human brain microvascular endothelial cells (BMECs) interact with astrocytes and pericytes to
form a functional “neurovascular unit” called the blood–brain barrier (BBB), which protects the
central nervous system by preventing the transfer of circulating molecules from the bloodstream
to the brain parenchyma. A drawback of this efficient barricade is its ability to restrict the transfer
of potentially useful neurotherapeutic agents. In the recent years, microvascular endothelial cells
derived from induced pluripotent stem cells (iPSC) were used to further explore BBB development
and maintenance by co-culture with neural cells. These iPSC appeared also as a biological tools
to screen neuropharmaceuticals (Lippmann et al., 2013, 2014a; Cecchelli et al., 2014; Minami
et al., 2015; Katt et al., 2016; Appelt-Menzel et al., 2017; Yamamizu et al., 2017). Meanwhile,
analysis of gap junction channels between heterotypic cells suggested promising applications by
blocking or promoting microRNA transfer and delivery (Valiunas et al., 2005; Lemcke et al., 2015).
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This short review focuses on how we could deal with these specific
aspects of the BBB biology to transfer therapeutic microRNAs to
the brain.

BMEC AS A GATEWAY FOR DRUG
DELIVERY TO THE BRAIN

As compared to other endothelial cells, the highly polarized
BMEC demonstrate specific features. They form circumferential
tight junction complexes, establishing a high-resistance
paracellular barrier to small hydrophilic molecules and ions. The
rate of transcytosis is low, although this remains the preferred
pathway for the selective transport of plasma macromolecules.
The expression of selective influx/efflux transporters such as ATP
binding cassette (ABC) efflux transporters against concentration
gradients is another characteristic aspect of these cells. Finally,
the absence of leukocyte adhesion molecules, together with
tight junctions, prevents the entry of peripheral immune cells
in the absence of trauma or disease (Abbott et al., 2006; Chow
and Gu, 2015). These BMEC specific features are a physical
challenge and rate-limiting step for therapeutically targeting
brain cells (Joshi et al., 2017). Importantly, the microvascular
network of the brain is dense and so intricate that every neuron
or glial cell is less than 20 µm from a blood capillary. In other
words, a molecule that would cross the BBB will be immediately
delivered to every neuron within the brain (Pardridge, 2002). The
protective function of the BBB can be severely impaired during
neurodegenerative and neuroinflammatory disorders, ischemic
stroke and central nervous system (CNS) tumor development.
An altered BBB may influence the treatment efficacy of these
diseases with drugs that may not traverse the BBB to reach
their target in the diseased brain while the delivery of others
is hampered by disturbed transport mechanisms (Schenk and
de Vries, 2016; Reinhold and Rittner, 2017). In brain tumors,
vasogenic edema, elevated intracranial pressure, hypoxia, and
neo-angiogenesis also contribute to create a chaotic situation
that affects drug bioavailability (Saunus et al., 2017).

Small, lipophilic compounds and some hydrophobic
molecules can cross the BBB. In contrast, biologic drugs such as
nucleic acids, recombinant proteins, antibodies, and peptides are
usually too large to be transferred through the BBB. This delivery
could be promoted by re-engineering these large molecules into
brain-penetrating neuropharmaceuticals (Pardridge, 2015a,b).
Their delivery to the brain after intravenous injection could be
also slightly improved by co-administration of low doses of a
hyperosmolar solution (Gray et al., 2010; Kwon et al., 2010) or
by disrupting the BBB with microbubble-enhanced ultrasound
(Tan et al., 2016). Gene vectors have been injected directly into
the brain to circumvent the BBB (Do Thi et al., 2004; Yang
et al., 2013) but the innate difficulty of the method and the risks
induced by such an approach make it hardly applicable over
long-term clinical trials (Joshi et al., 2017).

Another strategy would be to control the functions of BMEC
into the intact endothelium. These cells have a short time
life when compared to other cerebral cell types (i.e., of about
2 months) and this life time could be further reduced by

inflammation. The renewal of BMEC is ensured within few hours,
either by cell division of neighboring endothelial cells or by the
cell differentiation of circulating blood cells. Embryonic stem
cells can differentiate into any cell type including endothelial
cells (Levenberg et al., 2002; Wang et al., 2007; Kane et al., 2010;
Nourse et al., 2010) and their properties are recapitulated by iPSC,
which hold great promise for regenerative medicine (Kane et al.,
2011; Kimbrel and Lanza, 2016). Such iPSC-derived endothelial
cells have been combined with cardiomyocytes, and smooth
muscle cells to improve cardiac function after acute myocardial
infarction in a porcine model (Ye et al., 2014). It remains to be
determined if they could modify the BBB composition, which
would allow to engineer these cells, e.g., to express a specific
microRNA or small silencing RNA (siRNA), before using them
to repair an altered BBB while introducing new functions that
facilitate drug delivery to the brain.

GAP JUNCTIONAL INTERCELLULAR
COMMUNICATIONS

The renewal of microvascular endothelial cells is followed by
the rapid re-establishment of intercellular junctions. The gap
junctional intercellular communication (GJIC) can only be
established if the cells are closely joined by tight junctions [and
especially express adhesion proteins such as zonulae occludens
ZO-1 (Zhang et al., 2003; Sin et al., 2012; Lippmann et al.,
2014b; Minami et al., 2015)]. For instance, adhesion of cells to
an endothelial monolayer is usually achieved in less than 1 h,
cell–cell communication is established in 1–2 h and the gap
junctional shuttling of microRNA observed within 3 h in vitro
(Thuringer et al., 2015b, 2016a). The gap junction proteins,
namely connexins (Cx) Cx37, Cx40, and Cx43 are expressed
in BMEC (Vis et al., 1998; De Bock et al., 2011, 2017; Kaneko
et al., 2015; Bader et al., 2017) as well as in iPSC which display
intercellular dye transfer as expected for GJIC (see below).
Interestingly, the glioblastoma microenvironment up-regulates
the gene expression of tight junction proteins in iPSC-derived
BMEC (Minami et al., 2015). Healthy and diseased glial cells
separated by 3–4 nm also form functional gap junctions (Baker
et al., 2014; Stamatovic et al., 2016), mostly composed of Cx30
and Cx43 (Wallraff et al., 2006; De Bock et al., 2017). In
all cases, remodeling of gap junctions occurs constantly with
a high turnover rate; i.e., Cx typically have short half-life of
about 1.5–6 h in mammalian cells (Laird, 2006; Herve et al.,
2007). Heterocellular gap junctions formed by Cx43 are largely
described between BMEC and glial cells in vitro, and induce
barrier properties in non-brain blood vessels in transplantation
studies (Janzer and Raff, 1987; Abbott et al., 2006). In vivo,
the basal lamina may limit the formation of gap junctions in
most of the brain vasculature but pathological situations such as
glioblastoma cell invasion that degrade the basal lamina, increase
the probability of developing such communications (Bart et al.,
2000; Vajkoczy and Menger, 2004; Alves et al., 2011).

The GJIC established between cancer and healthy cells permits
the direct transfer of cytosolic messengers, including single
strand of 22-nucleotide non-coding RNA that modify gene
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expression and functions of recipient cells (Valiunas et al.,
2005; Lemcke et al., 2015). The GJIC-mediated intercellular
transfer of mature microRNA was reported to be Cx-dependent
(Zong et al., 2016). The permeability of Cx-formed gap
junctions to microRNAs, responds to the following order:
Cx43 > Cx26/30 > Cx26 > Cx31 > Cx30 = Cx-null with Cx43
having high permeability and Cx30 being poorly permeable to
microRNAs (Zong et al., 2016). This is consistent with previous
reports that Cx30 channels are impermeable to negatively
charged molecules; i.e., all nucleotides including microRNA
being anionic at physiological pH. We have detected in vitro
microRNA exchanges between human microvascular endothelial
(HMEC) and colon cancer cells through Cx43-formed gap
junctions (Thuringer et al., 2016b). More specifically, the transfer
of miR-145 from HMECs to tumor cells was observed to inhibit
angiogenesis and tumor growth. Similar exchanges were observed
between HMECs and glioblastoma cells, highlighting the crucial
role of Cx43-formed gap junctions in the regulation of BBB genes
(Thuringer et al., 2016a).

The opening of gap junction channels can also lead to
the transfer of pathologic microRNAs such as miR-5096 that
promotes glioblastoma cell invasion (Hong et al., 2015; Thuringer
et al., 2016a, 2017). We evidenced such a transfer between
HMEC and glioblastoma cell lines, indicating that microRNAs
have to be carefully selected and evaluated for their ability to
favor tumor regression. Of note, miR-5096 was shown to down-
regulate Cx43 expression in glioma cells. More specifically, in
co-culture experiments, membrane GJIC plaques disappeared in
glioma cells while they drastically increased in HMEC (Thuringer
et al., 2016a), maybe explaining why BBB remains hermetic to
glioma metastasis (Blecharz et al., 2015; Steeg, 2016; Saunus
et al., 2017). Despite of the absence of GJIC, glioma cells were
still able to transfer miR-5096 to HMEC through the release of
exosomes (Thuringer et al., 2017). Whether other microRNAs
could be transferred from glioma cells to BMEC or reciprocally
and how it could interfere with invasion process remains to be
determined. Additionally to forming GJIC, hemichannels also
participate in cell–cell communication (De Bock et al., 2017):
firstly, by behaving as docking sites for exosomes, allowing
therefore direct transfer of exosomal microRNA to neighboring
cells (Soares et al., 2015); and secondly, by secreting microRNA
into the intercellular spaces, compensating therefore the loss of
glial endfeet of proliferating cancer cells and the increase in
the perivascular space observed in tumor satellites (Noell et al.,
2012).

Thus, the GJIC could be used to transfer therapeutic
microRNA from the iPSC to neighboring cells in order to block
the invasiveness and clinical aggravation of different forms of
cancer.

THE USE OF GAP JUNCTIONAL
SHUTTLING FOR GLIOBLASTOMA
THERAPY

Glioblastomas are the most prevalent and aggressive brain
cancer and arise from glial cells. The diffuse invasive nature

of glioblastoma precludes its complete surgical resection,
which inevitably leads to tumor recurrence and patient death.
Since the first histological observations of Hans Scherer
(Scherer, 1940), the occurrence of perivascular invasion has
been described in multiple experimental tumor models (Farin
et al., 2006; Winkler et al., 2009). This invasion is more
important in vascular endothelial growth factor (VEGF)-
deficient glioblastoma cells (Blouw et al., 2003; Du et al.,
2008) and brain tumor xenografts treated with anti-VEGF
blocking antibodies such as bevacizumab (Rubenstein et al.,
2000; Kunkel et al., 2001; de Groot et al., 2010; Carbonell
et al., 2013; Baker et al., 2014). Clinical glioblastomas resistant
to the anti-VEGF bevacizumab therapy also show a tendency
toward increased perivascular invasion (Clark et al., 2012).
Altogether, neoangiogenesis is dispensable for brain tumor
progression and antiangiogenic drugs fail to meaningfully
extend survival of patients with a glioblastoma. Conversely,
this perivascular invasion could offer an opportunity to deliver
effective drugs to cancer cells and our hypothesis is that
engineered BMEC could be used for that purpose and deliver
microRNA that limit cancer cell invasion and tumor growth
(Figure 1).

Biocompatibility
To develop such a therapeutic strategy, the first parameter
to deal with is biocompatibility. A first approach consists of
isolating and culturing primary BMEC collected from patient
tissue samples. Adult BMEC have been cultured successfully
by many laboratories but rapidly lose their phenotype (Kniesel
and Wolburg, 2000; Roux and Couraud, 2005; Lyck et al.,
2009). In addition, given that brain vasculature comprises
only 0.1% of the brain by volume, such techniques require a
significant amount of brain material to achieve a reasonable
yield of BMEC, limiting high throughput applications. A scalable
alternative is the use of immortalized brain endothelial
cell lines such as the hCMEC/D3 human brain endothelial
cell line (Weksler et al., 2005). While these cells maintain
many aspects of their primary BMEC counterparts and
represent very useful tools for certain applications, they lack
significant barrier function (Ogunshola, 2011; Naik and Cucullo,
2012).

Induced pluripotent stem cells may be another alternative.
These cells are currently explored in the treatment of a wide
variety of diseases, given their ability to differentiate into every
cell type (Kimbrel and Lanza, 2016). Lippmann colleagues have
established the method to generate BMEC from human iPSC
by co-differentiation with neural cells and retinoic acid, leading
to differentiated cells which exhibit properties similar to those
of tissue-derived BMEC (Lippmann et al., 2012, 2013, 2014a;
Hollmann et al., 2017). Some projects aim to use iPSC to
recapitulate 3D human neuron/neurovasculature interactions ‘on
a chip’ in vitro and reconstitute the neurovascular unit, allowing
pharmacological drug testing on cells derived from patients of
different ages, metabolic conditions or neuro-pathologies (Brown
et al., 2015; Walter et al., 2016).

Undifferentiated human embryonic stem cells express mRNA
for almost all known Cx subtypes and display intercellular dye
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FIGURE 1 | Hypothetical cell based therapeutic intervention in glioblastoma. (A) Induced pluripotent stem cells (iPSC) of human origin (i.e., umbilical cord, bone
marrow, biopsied tissue sample from diseased patient, or the immortalized cell line hBMEC/D3) are pre-differentiated with neural cells and retinoic acid in vitro
(Lippmann et al., 2013, 2014a). After 2 days in co-culture, cells sorting with anti-von Willebrand Factor (vWF) antibody are iPSC-derived BMEC. These cells can be
sub-cultured as a pure monolayer expressing typical endothelial and BBB markers. (B) In the following day, iPSC-derived BMEC are loaded with the microRNA
(miRNA) of interest, using the lipofectamine transfection procedure as previously described (Thuringer et al., 2016a). (C) After 12 h in culture, transfected cells are
dissociated and suspended in a conventional infusion medium then injected directly into the patient’s carotid artery. (D) Schematic diagrams of the GJ-mediated
shuttling of microRNA at the microvascular level in situ. The blue box areas are enlarged in the scheme below. Note the expected diffusion of miRNA from the
iPSC-derived BMEC (yellow) to a large number of cells (bystander effect). Two modes of miRNA transfer from BMEC to glioblastoma cells are proposed: direct via
gap-junction channels (upper panel), and indirect via the release of miRNA either free or contained in exosomes, to the intercellular space (lower panel). In the two
modes, the Cx43 expression is required at the plasma membrane of cells, forming gap junction or hemichannel (Soares et al., 2015; De Bock et al., 2017).

transfer, which is characteristic of GJIC (Huettner et al., 2006).
iPSC obtained through reprogramming somatic fibroblasts cells
also express most Cx subtypes (Oyamada et al., 2013) and
stem cells of various sources express Cx43 (Kar et al., 2012).
In undifferentiated cord-blood-derived iPSC, the gap junction
plaques mostly contain Cx43 (Beckmann et al., 2016). Cx43
is upregulated during the reprogramming process and Cx43
knockdown via short interfering RNA significantly impairs

reprogramming efficiency (Sharovskaya et al., 2012; Ke et al.,
2013).

The expression of Cx43 in reprogrammed cells suggests that
circulating iPSC may adhere and form Cx43 gap junction plaques
with BMEC, then integrate the microvascular endothelium.
We have reported that dissociated HMEC (donor), pre-loaded
with a fluorescent dye, then plated onto unlabeled HMEC
monolayer (acceptor), were rapidly integrated into the monolayer
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and formed functional gap junctions with HMEC within 2 h
(Thuringer et al., 2016a). Actually, all the cells expressing
Cx43 proteins, such as SW480 colon cancer cells and human
monocytes, communicate with the microvascular endothelium
and may pass through the monolayer (Thuringer et al., 2015a,b).
Of note, glioma cells also establish Cx43 gap junction with
HMEC, thereby reinforcing the barrier (Thuringer et al., 2016a).

Route of Administration
Another question regarding the delivering of iPSC to reconstitute
BMEC is the route of administration. Until now, gene vectors
have been injected directly into the brain to circumvent the
BBB (Do Thi et al., 2004; Yang et al., 2013); but the innate
risk due to direct intra-brain administration makes this method
hardly applicable in clinics. Convection-enhanced delivery, in
which one or more catheters are carefully placed in the brain
parenchyma for therapeutic delivery, may be a solution, this
technology is currently tested in phase III clinical trial in patients
with a glioblastoma (Debinski and Tatter, 2009). If validated, this
approach could be used also for future iPSC-based therapies.
A less complex although still tricky strategy would be to inject
iPSC directly into the carotid artery, knowing that the arterial
pressure is strong enough to prevent the cell adhesion in its
duct.

What Should We Transfer?
A third question is the identification of the microRNA to transfer
to diseased cells through iPSC-derived BMEC (Lopez-Ramirez
et al., 2016; Shea et al., 2016). The transfer of mature miR-
4519 and miR-5096 from glioma cells to astrocytes enhance
the glioma pro-invasive potential (Hong et al., 2015), e.g.,
several microRNAs associated with survival and chemotherapy
resistance passed through gap junctions formed between
astrocytes and lung tumor cells in vitro (Menachem et al., 2016).
Conversely, the transfer of miR-124-3p between transfected and
non-transfected glioma cells has anti-proliferative effects (Suzhi
et al., 2015), and the transfer of miR-145-5p to glioma cells has
anti-tumor properties (Thuringer et al., 2016a,b). Additionally,
some microRNAs regulate expression and/or function of Cx for
several types of cancer (Calderon and Retamal, 2016). These
observations suggest that iPSC will have to be engineered to
express and transfer not only selected microRNA with antitumor
effects but also inhibitors of specific pro-tumorigenic microRNAs
(anti-miRs) (Gurwitz, 2016).

Efficacy
Finally, the mode of transfer between engineered iPSC and tumor
cells will have to be determined as GJIC-mediated microRNA

transfer may be more efficient than microvesicle/exosome-
based intercellular transport (Zong et al., 2016). As indicated
above, Cx43, which is highly expressed in many cell types, is
involved in both GJIC-mediated and exosome-mediated transfer
of microRNA. The bystander effect described with suicide
gene therapeutic approaches involves both GJIC formation and
exosome delivery (Yamasaki and Katoh, 1988a,b; Elshami et al.,
1996; Mesnil et al., 1996; Dilber and Smith, 1997; Vrionis et al.,
1997; Duflot-Dancer et al., 1998; Touraine et al., 1998; Yang et al.,
1998). The GJIC-mediated bystander effect can be amplified by
treatments, such as intraperitoneal injection of retinoic acid, that
increase GJIC (Stahl and Sies, 1998; Touraine et al., 1998; Bertram
and Vine, 2005; Kong et al., 2016). Strategies that promote the
formation of GIJC between iPSC-derived BMEC and target cells
in the brain may therefore increase the efficacy of this therapeutic
approach.

CONCLUSION

The use of iPSC is an emerging strategy that remains to be
validated in the treatment of various diseases. Because the
BBB is a limitation to the treatment of neurological diseases
including brain cancer, iPSC-derived BMEC engineered to
transfer microRNA, anti-miR or siRNA to target cells could
be one of these new therapeutic applications. The transfer
of selected single strand RNA through Cx43-containing gap
junction channels between iPSC-derived BMEC and neuronal
target cells could potentially improve the control of neurological
diseases through modulation of gene expression and function in
target cells. An unresolved issue is the best small RNA to transfer
via GJIC, as it has to respect Cx43 expression and limit target cell
development. Several practical issues have now to be solved to
develop this approach to treat glioblastoma and potentially other
neurological diseases.
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