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Abstract: Non-invasive imaging biomarkers (IBs) are warranted to enable improved diagnostics and
follow-up monitoring of interstitial lung disease (ILD) including drug-induced ILD (DIILD). Of special
interest are IB, which can characterize and differentiate acute inflammation from fibrosis. The aim
of the present study was to evaluate a PET-tracer specific for Collagen-I, combined with multi-echo
MRI, in a rat model of DIILD. Rats were challenged intratracheally with bleomycin, and subsequently
followed by MRI and PET/CT for four weeks. PET imaging demonstrated a significantly increased
uptake of the collagen tracer in the lungs of challenged rats compared to controls. This was confirmed
by MRI characterization of the lesions as edema or fibrotic tissue. The uptake of tracer did not show
complete spatial overlap with the lesions identified by MRI. Instead, the tracer signal appeared
at the borderline between lesion and healthy tissue. Histological tissue staining, fibrosis scoring,
lysyl oxidase activity measurements, and gene expression markers all confirmed establishing fibrosis
over time. In conclusion, the novel PET tracer for Collagen-I combined with multi-echo MRI,
were successfully able to monitor fibrotic changes in bleomycin-induced lung injury. The translational
approach of using non-invasive imaging techniques show potential also from a clinical perspective.

Keywords: lung imaging; interstitial lung disease (ILD); drug toxicity; Collagen-I; fibrosis;
drug-induced interstitial lung disease (DIILD); magnetic resonance imaging (MRI); positron emission
tomography (PET); animal model; bleomycin

1. Introduction

Fibrotic lung disease is a major health care burden and contributes to enormous morbidity and
mortality globally [1–3]. In many cases, no causative agent can be identified, and idiopathic pulmonary
fibrosis (IPF) is the largest group of patients where progressive lung fibrosis is the major pathological
endpoint [4,5]. In addition, an increasing incidence of drug-induced interstitial lung disease (DIILD)
is observed [6,7], and many different insults and chronic exposures to harming agents have been
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described to contribute to the development of fibrotic disease. Other causes for development of lung
fibrosis can be due to familiar genetic disposition or simply environmental factors such as work-related
exposure or smoking [1,8]. The common scenario for most cases is the presence of an initial phase of
injury or acute inflammation. The repair process is mainly orchestrated by immune cells, initiating
a wound repair mechanism which will restore the lung architecture to normal conditions. However,
in some cases, the balance shifts from normal wound healing towards pathological fibrotic formation
and symptoms like shortness of breath and chest pain start to occur. Severe lung fibrosis, if left
untreated, often leads to death of the patient. Therefore, early diagnosis is very important as patients
can be prescribed anti-fibrotic treatment in order to slow down disease progression before the loss of
lung function, and the disease becomes too severe.

On a molecular level, fibrosis can be considered as scar tissue formation, a state where the tissue
repair process has resulted in an excessive amount of extracellular matrix (ECM) deposition. In order
to repair a wound or resolve the initial injury or the acute inflammatory process, certain markers,
i.e., cells and molecules are known to be present [8–10]. Such key markers, known to play an important
role during the initiation of pro-fibrotic processes, are e.g., TGF-β family members and the integrins [11].
Later on, the ECM proteins such as collagens are the key components of scar formation, and the
enzyme lysyl oxidase (LOX) plays an important role in cross-linking the collagen fibers, making the scar
robust and dense [12,13]. Most often, non-invasive monitoring or diagnosis of lung disease is done by
imaging. Normally, X-ray scans and computed tomography (CT) are employed. These techniques are
valuable in terms of reducing the need for invasive readouts such as bronchoscopy or biopsy sample
collection [14,15]. However, progression of fibrotic lesions may be difficult to detect in CT-images
at an early stage of the disease. Therefore, more sensitive and specific imaging biomarkers (IBs)
are warranted.

Recently, an attempt to develop such specific IBs was presented using the bleomycin animal
model of lung inflammation and fibrosis, where magnetic resonance imaging (MRI) was partially
able to distinguish inflammation from fibrosis [16]. Even though MRI has the potential for promising
IBs, that can be developed further, it lacks a unique signal for specific pathologies such as fibrosis.
To address the specificity, a novel positron emission tomography (PET)-tracer for detection of newly
synthesized and non-cross-linked Collagen-I, was developed and evaluated by the lab of Prof. Caravan
and colleagues [17,18]. The tracer is a small peptide that binds to collagen fibrils. However, the specific
binding site is only available before the collagen fibrils have been cross-linked into larger fibers.
Hence, the primary peptide-binding site, available for the PET-tracer to bind, is not exposed in mature
scar tissue, but only in immature scar active forming sites. Most likely, this active process is not
detectable by CT or MRI. The collagen tracer has previously been employed in mouse studies [17,18],
and also explored for the first time in a human study [19].

Other imaging methods such as MRI have been tested to assess fibrosis in animal models [20–29].
The bleomycin model, when instilled intratracheally (i.t.), is a common model for lung fibrosis.
Investigations in the bleomycin model however are often focused on early time points (day 14–21),
when the fibrosis is still accompanied by substantial inflammation. Also, fibrotic associated events
can be visible later on, as shown previously by a multi-modality approach study where established
fibrosis was mainly evident at day 28 [16]. Imaging in an early stage of the bleomycin model will
involve a mixture of lesions consisting of inflammation, edema as well as simultaneous ECM build-up.
Even in studies where the imaging is performed during the late stage of the bleomycin-induced
pathology, there is a large intrinsic variability and a variation created by resolution or progression of
the disease [16].

The aim of this study was to investigate how the combination of MRI and PET/CT imaging
techniques can be used to monitor the progression of fibrotic disease in a rat model of lung fibrosis
induced by bleomycin. More specifically, a PET-tracer specific for Collagen-I was evaluated for its
ability to detect early formation of fibrotic lesions. Tissue histology and gene expression patterns were
assessed, and analyses for collagen content and cross-linking were performed in an attempt to link the
molecular mechanisms of lung remodeling with the PET-imaging results.
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2. Experimental Section

2.1. Animals and Ethical Permit

Sprague-Dawley male rats (n = 58) were purchased from Janvier Labs (Le Genest-Saint-Isle,
France). The rats were nine weeks old at the start of the experiment and were housed at Lund University
or Medicon Village animal facilities with 12 h light/dark cycles and fed ad libitum. All animal studies
were ethically reviewed and carried out in accordance with European Directive 2010/63/EEC and the
ARRIVE guidelines [30]. The studies were approved by the local ethical committee in Lund/Malmö,
Sweden, before they were initiated (ethical permit number 4003/2017 and 3226/2017).

2.2. Experimental Procedure

The rats were allowed to acclimatize to the housing conditions for at least 5 days, and a general
health check was performed before start of the experiments. The rats were divided into two groups,
(group I) the imaging group (n = 18) and (Group II) the non-imaging group (n = 40) (Figure 1). For the
animals in Group I, a baseline scan by MRI was obtained. After bleomycin challenge, the animals
were longitudinally imaged using a multi-imaging protocol (MRI and PET/CT) on days 7, 14, 21 and
day 28. The animals in Group I were terminated on day 36 post-challenge. One rat per time point
was removed from the longitudinal scan workflow and terminated to enable autoradiography of the
lung. Rats (n = 4–6) from Group II were terminated at the same time points as in Group I followed
by collection of lung tissue. Saline challenged rats were present in both groups as healthy controls.
Additional information of the methodology is described in detail in the Supplementary Data Files.

Figure 1. Study layout of bleomycin-induced lung injury and longitudinal imaging. Study layout
with sampling and endpoints for the imaging group (Group I) and non-imaging group (Group II).
Longitudinal imaging was done by combining MRI, CT, and PET in group I, while termination of
4–5 rats occurred every week, from Group II, for tissue sample collection and analysis of collagen
content by hydroxyproline assay (HXP), lysyl oxidase (LOX) activity, gene expression analyses by
RT-qPCR, and histological assessment by staining of lung tissue sections.

2.3. Bleomycin Challenge

One single i.t. dose of bleomycin (Sigma Aldrich, St. Louis, MO, USA), was administered on
day 0, with a concentration of 1000 iU, dissolved in 200 µL saline. Control animals received the same
volume of saline. The procedure of i.t. administration was performed as previously described [16].

2.4. In Vivo Imaging

Animals were initially anesthetized using isoflurane at 4%, and during imaging isoflurane was
maintained at 1.5–2%, delivered via a nose cone, in a 1:1 mixture of O2 and N2O. Longitudinal imaging
was performed in Group I with PET/CT and MRI at Lund University BioImaging Centre (LBIC).
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Each rat was imaged by all modalities in one workflow before allowed to wake up after the scan session,
which was repeated once per week, over four weeks. After PET-tracer injection, the MRI examination
was performed, followed by the PET/CT examination. The PET imaging was initiated 1 h (+/−5 min)
after the tracer injection. Imaging was performed non-gated. The procedure of multi-modality imaging
has been previously described [16]. Further details are given in Supplementary Data Files.

2.4.1. MRI

Rats were imaged on a preclinical 9.4T MRI Biospec AV III using the software ParaVision 6.0.1
(Bruker, Ettlingen, Germany). The MRI protocol has been described previously [16]. Briefly radial
Ultra Short Echo time (UTE) sequences were used with two different echo times (TE); short (TESHORT)
with 0.324 ms and long (TELONG) with 1 ms. The TESHORT sequence reflects the total MRI signal in
the lung, derived from vessels and lesions with both inflammatory (edema) and fibrotic components.
The TELONG sequence mainly reflects the fluid signal from vessels and inflammatory lesions. The field
of view (FOV) was 58 × 58 mm2, with a matrix size of 192 × 192 and the repetition time (TR) was 8 ms.
Further detailed description of scan parameters is summarized in Supplementary Data File 1.

2.4.2. PET/CT

The radiochemistry was performed at the LBIC laboratory by conjugation of the small collagen
peptide referred to as CBP (Collagen Medical LTD, Boston, MA, USA) using the adjuvant NODOGA,
with the radionuclide Cu64, produced at the Denmark Technical University (DTU) laboratory at Risø,
Denmark. The radiochemistry protocol was employed according to the work by Désogère et al., [17,18]
with minor in-house adjustments, as described in detail in Supplementary File 2. After the labeling
process, purification, and quality validation, the tracer CBP-Cu64 was delivered to the imaging
laboratory with a total activity of approximately 800 MBq, and subsequently diluted in Saline 0.9%.
Each syringe was prepared from the diluted stock just before injection. CBP-Cu64 was injected
intravenously via the rat tail vein at a dose of 35 (±5) MBq in a total volume of 200 µL saline.
Scan protocols and dose were tested initially during a pilot study. Also, acquisition time post-injection
was optimized before the main study. Organ distribution of the tracer was acquired during in vivo
PET imaging and, in addition, organ distribution of the tracer was measured ex vivo, where organs
were collected in tubes and radioactivity was measured as counts on an Automatic Gamma counter
(WIZARD® 1480 RiaCalc WIZ, PerkinElmer, Life and Analytical Sciences, Shelton, CT, USA). The pilot
study data and images are presented in Supplementary File 3.

During the main study, MRI examination was performed before the PET/CT, starting immediately
after PET tracer injection. Directly after the MRI, the animal was transferred and connected to the
PET/CT system; (nanoScan® PET/CT, Mediso, Hungary) for CT and PET imaging. Initially, a first
overview scan (scout-view) with 11 s acquisition was performed to confirm optimal position of the
animal. Once the optimal FOV was obtained covering the lungs, a CT scan was performed at a total
scan time of 9 min, with a voxel size of 0.14 × 0.14 × 0.14 mm3, after reconstruction. PET imaging
was finally performed, 1 h (+/−5) min post-injection. The PET scan acquisition time was 20 min,
thereafter the animal was allowed to wake up from anesthesia. Post-reconstruction of the PET data
was performed using a voxel size of 0.4 × 0.4 × 0.4 mm3 and CT-images were used for attenuation
correction and anatomical registration. Additional CT and PET scan parameters are summarized in
Supplementary File 1.

2.5. Imaging Data Analysis

All acquired images were analyzed using the software VivoQuantTM 3.5 (inviCRO Imaging
Services and Software VivoQuant, Boston, MA, USA). Initially, the acquired images were qualitatively
evaluated and thereafter image analysis was initiated by drawing the regions of interest (ROI) semi
manually for the lung volume in each MRI slice (Lung-ROI). The lesions were extracted according to
a method described previously [16]. Briefly, the lesion ROIs in the MR-images for both echo-times
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respectively, were defined as the high signal area within the Lung-ROI, defined by histogram analysis.
The vessel signal was subtracted in both scans and the high signal from TELONG mainly reflects
the fluid present in the inflammation areas, and hereafter referred to as edema. The “tissue” signal
indicating fibrotic tissue was assessed by the signal remaining from the subtractions of the TESHORT

and TELONG ROIs. The ROIs from the MRI were subsequently transferred to the PET/CT frame of
reference. In the PET images, the signal uptake was measured in the total Lung-ROI as well as the
same ROI as was obtained for the lesions in the MR-images. This enabled the visualization of PET
signal uptake in the mainly inflammatory lung regions (by TELONG) and the PET signal uptake in the
areas including both inflammation and elements of fibrotic streaks (TESHORT). Data extraction was
thereafter performed from these different modalities using the ROIs. A thorough detailed description
of image data processing and Lung-ROI definitions can be found in the Supplementary File 4.

2.6. Termination of Experiment and Sample Collection

The animals from Group I were terminated one week after the final imaging session was completed
(day 35). Rats from the non-imaging group were terminated sequentially during the experiment, at day
3, 7, 14, 21, 28, 35, and 42 post-bleomycin administration (Group II). At termination, an intraperitoneal
overdose of Pentobarbital Sodium (Apotek Produktion & Laboratorier AB, Stockholm, Sweden) was
injected and lungs were harvested. The left lung was insufflated with a 4% paraformaldehyde fixative
solution via the trachea while the right side of the lung was ligated. Thereafter, the remaining lobes
were dissected, weighed, and snap frozen in −80 ◦C until use.

2.7. Hydroxyproline Analysis

Hydroxyproline content of the right middle lung lobe was assessed using the Hydroxyproline
Colorimetric Assay Kit (Bio Vision, K555) according to manufacturer’s protocol. In short, lung tissue
was homogenized in a Bead Mill 24 (Thermo Fisher Scientific, Hampton, New Hampshire, USA),
using seven 2.8 mm ceramic spheres per vial, and hydrolyzed in 6N hydrochloric acid for 3 h at
120 ◦C. Thereafter, 5 µL per hydrolyzed sample was transferred to a clear flat bottomed 96 well plate
and left to evaporate to dryness at 60 ◦C. Samples and standards were submitted to a reaction with
chloramine T and DMAB reagent and absorbance was measured at 560 nm using SpectraMax i3x
(Molecular Devices).

2.8. Lysyl Oxidase (LOX) Activity Assay

LOX activity was measured in the right inferior lung lobe using the fluorometric Lysyl Oxidase
Activity Assay Kit (Abcam, ab112139) according to manufacturer’s protocol. In brief, 1 mg/mL total
protein from homogenized lung tissue (see above for hydroxyproline analysis) was incubated with
LOX reaction mixture for 30 min at 37 ◦C in a black opaque flat bottomed 96 well plate. Recombinant
human LOX homolog 3 protein (R&D systems, 6069-AO) was used as a standard. Fluorescence was
measured at excitation and emission wavelengths 540 and 590 nm respectively using a SpectraMax i3x
(Molecular Devices).

2.9. Autoradiography

Autoradiography was performed for assessment of distribution of radioactivity within the lung.
One rat at each time point was sacrificed directly after the imaging session and lungs were dissected
for autoradiography analysis. Different lung lobes were placed in a mounting-mold and covered
with embedding medium (TissueTek-OCT). The mold was then placed directly upon dry ice, freezing
the lungs with embedding medium. The frozen samples were immediately taken to the cryotome
and sectioned. The sample thickness was adjusted to 20 µm, to obtain sufficient signal from the
radionuclide activity to the autoradiography instrument. Representative sections were collected,
and adjacent sections of 10 µm thickness saved for histology staining with Hematoxylin and Eosin
(H&E). Subsequently, the slide was placed inside the measurement device, a silicon-strip detector-based
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instrument with a 50 µm intrinsic resolution (Biomolex 700 Imager) to assess radioactivity distribution
in the sections, as previously described [31]. Imaging time was prolonged until satisfactory image
quality was reached (18–48 h).

2.10. Histology Staining and Analysis

After fixation and paraffin embedding, the left lung lobe was sectioned into 4 µm thick sections.
The whole left lung was sectioned in the sagittal plane at four positions, to obtain good visualization
of the widespread lesions throughout the whole lobe, section I–IV. The sections were then stained
with H&E and Sirius Red staining, using a staining kit (Picro Sirius Red Stain Kit, ab150681, Abcam).
All sections were evaluated by two observers and scored independently and blindly using modified
Ashcroft score [32]. Total scores were presented graphically, and representative images were presented
for each evaluated time point (day 28, 35, and 42).

The paraffin-embedded and sectioned tissue slices were also immunohistochemically stained
for Collagen-I. The tissue sections were first cleared and rehydrated, followed by antigen retrieval.
Then, peroxidase blocking was performed using a H2O2 and methanol mixture in Tris-based buffer
solution. After washing, the sections were further blocked with 2% serum, following overnight
incubation at 4 ◦C with the primary antibody directed towards Collagen-I (Thermo Fisher Scientific,
Waltham, MA, USA), made in rabbit, at a dilution of 1:200. After rinsing the sections and
incubating with a biotinylated secondary anti-rabbit IgG antibody supplied within the Vectastain kit
(Vectastain® Elite® ABC kit, Vector Laboratories, Peterborough, UK), the staining was visualized with
3,3′-diaminobenzidine (DAB) supplied within the kit (ImmPACT®DAB, Vectastain, Vector Laboratories,
Peterborough, UK) and counterstained with methyl green (Methyl Green Counterstain, H-3402,
Vector Laboratories, Peterborough, UK). Finally, the stained sections were dehydrated and mounted
using Pertex (Histolab Products AB, Askim, Sweden).

2.11. Gene Expression Analysis from Lung Tissue Homogenates

The frozen postcaval lobe was homogenized and gene expression was analyzed. To obtain
approximately 30–40 mg lung tissue homogenates, the gentleMACS™ Dissociator (Miltenyi Biotec,
Auburn, CA, USA) was used with addition of β-mercaptoethanol (Sigma) in lysis buffer supplied
within the RNA extraction kit (RNeasy Mini kit, Qiagen). The RNA was extracted and the concentration
was measured by nanophotometer p330 (IMPLEN, INC. CA, USA), then 2 µg of total RNA, which equal
to 50 ng cDNA per reaction, was reverse transcribed into cDNA using the reverse transcription-kit RT2
from Qiagen. Thereafter, the genes of interest were analyzed by mixing cDNA, Mastermix (Qiagen),
and corresponding forward and reverse primers (Sigma Aldrich) and by using standard thermocycling
on a Bio-Rad system (CFX96TM Real-Time System, C1000TM Thermal Cycler), PCR products
were assessed. Data processing was performed using the CFX ManagerTM Software (Bio-Rad
Laboratories, Inc, Hercules, CA, USA) and exported to Excel (Microsoft Office Professional Plus
2016) for further analysis. The forward and reverse genetic sequences are presented in Table S1,
in the Supplementary File 5. The following genes of interest were analyzed: TGF-β I, TGF-β II,
TGF-β III, integrin-β6, gremlin1, α-SMA, collagen IαII, collagen IIIαI, LOX, TIMP1, serpine1, serpin
H1, IL-1β, Muc1, and periostin. For quantification of gene expression, the ∆∆CT-method was
applied [33]. Genes of interest were calculated in relation to the geometric mean of two reference
genes; β-2-macroglobulin (β2M) and Receptor-like protein 13 (RLP13a). Gene expression was then
normalized to its control sample at each time point. Data was presented as mean ± standard error of
the mean (SEM).

2.12. Statistical Analysis

Data are expressed as mean values and SEM unless otherwise specified. All data was analyzed
using non-parametric tests using the software GraphPad Prism (version 8.4.3 GraphPad Software,
San Diego, CA, USA, (www.graphpad.com) and IBM SPSS (version 23, IBM, Somers, NY, USA).

www.graphpad.com
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To analyze differences between groups, One-way ANOVA test was applied with following post-hoc
Bonferroni’s multiple comparisons test. Mann–Whitney test was used to compare variance between
groups. P-values of less than 0.05 were considered statistically significant. Significance was indicated
by * when p < 0.05; p < 0.01 by **; p < 0.001 by *** and p < 0.0001 by ****, when comparing bleomycin
towards the saline control from the same time point. The comparison of different time points between
bleomycin-challenged groups were expressed as # when p < 0.05; ## when p < 0.01; ### when p < 0.001
and #### when p < 0.0001. For comparison to baseline, within the same group of animals, significance
was indicated by § when p < 0.05; p < 0.01 by §§; p < 0.001 by §§§ and p < 0.0001 by §§§§, as in the case
of longitudinal measures, e.g., total lung volume or MRI signal.

3. Results

3.1. Model Characterization and Health Check Parameters

The bodyweight decreased during the first week for all animals exposed to bleomycin, but increased
for the remaining time of the experiment, and reached a similar bodyweight as the saline control animals
at the end of the experiment (Figure 2A). The total lung volume increased in bleomycin-challenged
animals, mainly during the first week, compared to controls, and continued to increase at a slow
pace throughout the experiment (Figure 2B). This pathological lung volume increase is also evident
when presenting the lung volume to bodyweight ratio, where bleomycin challenged animals showed
a substantial increase compared to controls already during the first week (Supplementary Data File 6
in Figure S1). The lung weight assessed at each termination point increased initially and remained
at a higher level for the bleomycin-exposed animals compared to controls (Figure 2C). Evaluation
by modified Ashcroft score indicate fibrosis up until 42 days post-challenge (Figure 2D). The stained
sections (I–IV) evaluated at each time point indicate a heterogeneous and patchy disease. The scoring
is expressed as minimum to max values of each section and per evaluated time point, expressing
rather low mean score yet indicating high scores in selected areas within the tissue section evaluated.
Representative images from H&E- (Figure 2E) and Sirius Red (Figure 2F) stained lung sections showed
evident fibrotic regions alongside less affected areas, involving minor alveolar wall thickening, for time
points 28, 35, and 42 days post-bleomycin challenge.

Figure 2. Cont.
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Figure 2. Model characterization and measures of basic parameters. (A) Bodyweight changes over
time, (B) Total lung volume over time, assessed by MRI, and (C) right lung lobe weigh at termination
(from Group II). (D) Fibrosis scoring evaluated by the modified Ashcroft score at day 28, 35, and 42
post-bleomycin challenge. Representative images of lung tissue sections stained by (E) H&E and
(F) Sirius Red.
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3.2. Lesion Assessment by CT and MRI

CT-images acquired of the thorax at different time points during the multi-modality imaging,
indicated substantial lesions appearing as fuzzy grey areas within the lungs, and clearly visible
compared to the controls, as shown in Supplementary Data File 6 in Figure S2.

The axial MR-images of the thorax display the lungs as dark areas. The muscle tissue, heart, liver,
vessels, and lesions are depicted as bright objects (Figure 3A). The lung volume originally segmented
for data extraction (Figure 3B), was assessed by histogram analysis. The extracted lesion volume from
the TESHORT and TELONG MR-images resulted in slightly different areas (Figure 3C). MRI measures
expressed a distinct edema peak at day 7 (Figure 3D) and a tissue peak at day 28, indicating mostly
acute inflammation during the first week of this model, while fibrosis appears later (Figure 3E).

Figure 3. Cont.
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Figure 3. Longitudinal magnetic resonance imaging (MRI) in Group I, during 28 days of
bleomycin-induced lung injury. (A) Representative MRI images of lungs from rats challenged
by i.t. administration of bleomycin (or saline as controls), on day 7, 14, 21, and 28 post-challenge.
Yellow arrows point out identified lesions (B) MRI defined Lung-ROIs and (C) UTESHORT and UTELONG

defined regions in yellow and blue, respectively. Quantification of the lesion signal assessed by the
two different MRI sequences was calculated for (D) “edema” signal indicating peak inflammation in
bleomycin challenged rats at day 7, while (E) the calculated “tissue” signal appears to peak at day 28.

3.3. Using the PET-tracer CBP-Cu64 to Assess Non-Cross-linked Collagen-I

Uptake of the novel PET-tracer CBP-Cu64 in lung tissue was assessed at day 7, 14, 21, and 28
post-bleomycin or saline (as control) i.t. administration. Representative PET images of the CBP-Cu64

show uptake in the lungs at all measured time points post-challenge (Figure 4A). There was a higher
total uptake of the tracer in the lungs of bleomycin-exposed animals compared to controls (Figure 4B).
Large variation of the uptake within the bleomycin group was observed, especially at later time
points. From a detailed visual inspection, it was evident that the major PET signal did not overlap
directly with the MRI-identified lesions. Specifically, the PET tracer uptake was often localized at the
border of the lesions identified by MRI. The PET signal evaluation from the various compartments
(lesion regions vs. surrounding healthy appearing tissue), indicated a slowly increasing area of active
fibrosis (Figure 4C,D). This observation was further confirmed in terms of tracer uptake in the tissue
on a microscopic level by autoradiography, showing mainly tracer uptake occurring in dense areas
(i.e., identified as tissue signal by MRI) but also in non-fibrotic areas close to fibrotic foci, as confirmed
by H&E stained sections (Figure 4E).

In addition, correlation plots were achieved comparing PET uptake and MRI signal. Even though,
the MRI-signal and the PET uptake of the tracer did not spatially overlap completely, as presented
from total- and regional signal uptake, there was a positive correlation presented within the total lesion
ROI, Supplementary Data File 6 in Figure S3.
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Figure 4. Cont.
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Figure 4. Longitudinal PET imaging in Group I, during 28 days of bleomycin-induced lung injury,
using the novel PET tracer for assessment of non-cross-linked Collagen-I. (A) Representative PET
images of lungs from rats challenged by i.t. administration of bleomycin (or saline as controls) on day
7, 14, 21, and 28 post-challenge. (B) Quantification of the total lung tissue signal uptake expressed as
fraction uptake (total lung uptake of the injected dose [%ID]). The PET signal was assessed in different
compartments, defined as high signal regions based on the TESHORT and TELONG, sequences from
obtained MRI scans. (C) PET signal uptake from TELONG defined lesions (yellow area) and surrounding
area within the total Lung-ROI. (D) PET signal uptake within the TESHORT defined lesions (blue) and
surrounding area within the total Lung-ROI. (E) Autoradiography was performed in few of the animals
to assess microscopic tracer uptake directly after the PET scan. One time point (day 21) from the
bleomycin-challenged group is presented here. Lungs R1–R4 are Right lung lobes from the top section
and downwards. Left referring to the left lung lobe. Enhanced signal uptake of CBP-Cu64 is indicated
by arrows (in the case of long streaks of signal) or encircled (in the case of focused area), where also
fibrotic tissue is observed in close proximity to healthy tissue and vessel-airway presence.

3.4. Molecular Assessment of Collagen Production and Cross-Linking

The total collagen content assessed by the hydroxyproline assay increased over time, compared
within the bleomycin challenged group, and it was also significantly greater than control at day 14 and
onward (Figure 5A). In addition to the total collagen content, the collagen cross-linking ability was
assessed by measuring the enzyme activity of LOX, known to be involved in cross-linking of collagen.
The LOX levels also increased over time, during the four weeks’ model (Figure 5B), although not
statistically significant. Lung tissue sections stained for Collagen-I indicated higher levels of collagen
in the bleomycin challenged rats compared to controls, at all investigated time points (Figure 5C).
Overall assessment of the stained sections suggests increased collagen content mainly around the larger
airways at day 28. At day 35, the positive collagen stained areas included more regions with small
airways and also being more evenly distributed throughout the parenchyma. At day 42, denser areas
of positive collagen staining were seen, while also large unaffected regions could be observed.
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Figure 5. Collagen content and cross-linking activity. (A) Hydroxyproline content and (B) LOX activity,
both increased in bleomycin challenged lungs compared to controls, and continued to increase over
time. (C) Immunohistochemically stained tissue sections were acquired using Collagen-I antibody and
representative images from three different time points are presented.

3.5. Observed Gene Expression Levels in Bleomycin Challenged Rats from Inflammation to Fibrosis

Several pro-fibrotic markers showed a trend towards upregulated levels in the bleomycin group
compared to control. The findings were not statistically significant, most probably due to the small
sample size n = 4–5. All three TGF-β variants were induced mainly at day 14 and onward (Figure 6A–C).
Integrin β6 was progressively upregulated over time (Figure 6D), peaking on day 28, while gremlin1
(Figure 6E) and α-SMA (Figure 6F) were mainly upregulated at day 14. Several other fibrosis-associated
genes were induced at day 14 e.g., Collagen-I and III, LOX, periostin, serpine1, and serpineH1
(Figure 6G–L). IL-1β and TIMP1 were induced during the first three days (Figure 6M,N), while muc-1
was significantly upregulated over time and peaking at day 28 (Figure 6O).
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Figure 6. Gene expression of markers involved in lung injury and wound healing. (A) TGF-β I,
(B) TGF-β II, and (C) TGF-β III were induced at later time points, similar as (D) integrin β6.
The fibrosis-associated genes (E) gremlin1 and (F) α-SMA were both mainly induced at day 14. The same
appeared for (G) collagen-I and (H) collagen-III, (I) LOX, (J) periostin, (K) serpine1, and (L) serpineH1.
Inflammatory-associated (M) IL-1β was not expressed at late time points. (N) TIMP1 gene expression
was induced early during the first days of the model, while (O) the muc1 gene was significantly
upregulated with time and peaked at day 28. All data are presented as mean ± standard error of the
mean (SEM). All samples from the bleomycin group are related to the mean of control and normalized
to the geometric mean of two different reference genes. Each presented group/time point contains
n = 4–5.
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4. Discussion

The aim of this work was to investigate how the combination of PET/CT and MRI imaging
techniques can be used to monitor the progression of fibrotic disease in a rat model of lung injury
induced by bleomycin. The fibrotic processes in this model were assessed by using a multi-modality
approach including a novel PET-tracer developed for Collagen-I recognition together with multi-echo
MRI identifying inflammatory and fibrotic lesions. In addition to IBs of fibrotic disease, also gene
expression profiling and histological evaluation were performed at multiple time points in order to
confirm fibrosis establishment. The initial characterization of the model showed distinct bodyweight
loss of bleomycin challenged rats and a marked increase in total lung volume during the first weeks,
evident from terminal lung harvest endpoints as well as during longitudinal MRI lung volume
measurements. The increase in total lung volume has previously been shown, particularly in the
bleomycin i.t. challenge model [16,25,26,29,34,35], but it has also been reported in other types of lung
injury models [34–37]. This phenomenon is thought to be a compensatory mechanism to cope with the
acutely induced vascular leak [35,38]. In the bleomycin model, this is mainly occurring during the first
week after one i.t. dose of bleomycin, which results in lesions of edema and enormous cytokine release,
cellular infiltration, and activation, alongside collagenases and proteases being released, causing
further damage locally [16,20,39,40].

In a clinical setting, CT is the most employed imaging modality for assessing lesions in ILD and
fibrosis [41,42]. As CT is mainly available and cost-effective, most diagnostic and prognostic scans
are repeatedly done in patients in this modality. However, from the CT-images, which mainly reflect
the tissue density (electron density), it is difficult to distinguish between inflammation and fibrosis.
In animal models of lung diseases, MRI is often preferred to CT due to its many contrast mechanisms.
In this study, we have explored different imaging modalities, PET/CT and MRI, and combined them
in order to assess inflammatory and fibrotic lesions in the bleomycin-induced lung injury model
in rats. The MRI scans in this study were employed according to previously published work [16],
which indicated a rather clear time course for when the inflammation peaked and when the fibrotic
lesions dominated, i.e., in day 7 and 28, respectively.

From the results of the PET measurements, it was evident that the bleomycin-challenged rats
expressed a larger fraction of tracer uptake in relation to the injected dose, compared to healthy
controls. However, there the accumulated level of CBP-Cu64 was similar over the time period studied.
This tracer is able to detect Collagen-I, while not being cross-linked nor intertwined in larger collagen
fibers [17,18]. To further explore the analysis, the uptake in different compartments of the lung was
performed, over time. For this evaluation, we used MRI to define the lesions (using histogram-based
thresholding) and assessed the PET-signal within the inflammatory lesions, fibrotic lesions, and healthy
areas around the detected lesions. The PET-signal seemed to be detected in close vicinity but mainly
outside the MRI-defined lesions. This pattern increased for later time points post-challenge, indicating
dynamic pro-fibrotic processes mainly in the borderline of the MRI detected lesions. This would be the
active sites of newly synthesized and assembled collagens fibrils, and the area where the Collagen
tracer CBP-Cu64 is mainly accumulating. This is in line with the findings from the human study
published by Montesi et al., [19], exploring the CBP-tracer. In this study, it was evident that the tracer
could be detected in lesions also detected by CT, as well as adjacent areas of seemingly healthy lung
tissue. This indicates early detection of active fibrotic processes by the PET tracer, although not yet
visible by CT imaging. In our study, in addition to the in vivo MRI and PET/CT imaging, the PET
tracer uptake was assessed by autoradiography, in lung sections. A similar observation was made as
from the MRI and PET/CT approach, i.e., the PET signal was mainly located in the borderline of dense
fibrotic lesions next to tissue areas with less damage and alteration, and not only within fibrotic lesions.

The total uptake of CBP-Cu64 tracer in the lungs of bleomycin challenged rats, seemed to increase
slowly with time (mean uptake at day 14-28) while also large individual differences of the total activity
were found. However, already at day 7, the uptake of the collagen tracer was considerably high.
The levels of gene expression of Collagen-I peaked at day 14, which would point towards newly
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synthesized collagen occurring later than day 7. The existing collagen within the lung is normally going
through turnover processes, with a continuous release of enzymes able to break down collagens and
induced cells that could subsequently clear that debris [43,44]. As the acute inflammatory phase occurs
during the first week of the bleomycin model, one could speculate that this leads to excessive release
and activation of catalytic enzymes such as collagenases, peptidases, and Matrix metallopeptidases
(MMPs) to degrade the existing collagens holding up the lung tissue structure [45,46], and thus expose
the CBP peptide binding site. Accordingly, speculating that the CBP-attractive sites become available
for peptide attachment, during destruction of the collagen due to the huge release of proteins and
collagenases in the phase of acute injury, tissue damage and vascular leak occurring initially from
local bleomycin challenge. This might explain the reason for the large, yet clustered presence of
tracer uptake already at day 7 [43–46]. As pro-fibrotic processes are known to be initiated during the
second week and further on, including new collagen synthesis, the ECM excess is building up with
increased collagen along with tissue fibrosis. This was confirmed by the increasingly high collagen
production over time, as indicated by hydroxyproline assessment. In addition, we also investigated
the cross-linking activity of the LOX in our model. These analyses point towards continuous LOX
activity, contributing to the active collagen cross-linking, however indicating large variability within
the bleomycin group at day 28. The large variability of hydroxyproline content and LOX activity
is in line with high variability of PET tracer uptake, indicating active fibrosis in some individuals,
whereas others seem to be resolving the injury.

Additionally, the gene expression analysis confirmed the pro-fibrotic markers being actively
increased during the later time points. Some of the most important ones being the TGF-β family
members as well as the integrins, known to play crucial roles in fibrosis establishment [11].
Also, clinical studies have revealed important novel markers associated with fibrotic disease such as
an increase of periostin, Muc1 and Gremlin [47–49]. Similarly, we have observed a marked increase of
these genes in the present study, which are mainly upregulated in our model after day 14 and onward.
However, Serpine1 (PAI-1) and TIMP1 genes were seen to be upregulated already during the first
week of this model. Both these markers are linked to the ECM degradation process and known to be
involved in the wound healing process after tissue insult, following fibrosis [50,51].

Tissue staining by H&E and Sirius red revealed progression of fibrotic areas with time. Interestingly
enough, the location of the fibrosis seems to be shifting over time. At day 28, fibrotic (as observed
by H&E and Sirius red staining) and collagen stained areas seemed mainly focused around larger
airways, while later in the process, the fibrotic loci increased in size and were located more around the
small airways and peripheral parenchyma. The sections collected at day 42 included dense fibrotic
loci but also rather unharmed alveoli. This is unfortunately not displayed when only presenting the
mean values from the scoring evaluation. Presenting the data from minimum to maximum values
gave a better understanding of how the lesions were distributed and the establishment of the disease.

Limitations to consider in this study is the acute model as such, where locally administrated
bleomycin induces toxic damage and more resembles a response to acute damage rather than the
features of true fibrotic disease. To further improve this physiological lung injury model, it would be
an advantage if bleomycin reached the lung tissue through the vasculature. This could be achieved
by employing a systemic approach as in the case of bleomycin being repeatedly administrated via
the intraperitoneal or subcutaneous route [52,53]. Therefore, a robust chronic exposure model of
established fibrosis in animals should be considered more in the future. Not least, using other
alternative fibrosis-inducing agents may be required to progress the field further. In addition,
employing multi-imaging modality in these models could be a successful approach for development of
non-invasive translational imaging biomarkers. In addition, the Collagen-I tracer would be interesting
to use in combination with the PET tracer 18F-Fludeoxyglucose (FDG), as FDG has recently been
acknowledged for its ability to detect both inflammatory areas and fibrotic lesions [54]. The FDG signal
in fibrotic lesions in PET-studies have been attributed to the so-called Warburg effect recently identified
in active fibrosis [55].
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In summary, this work combines several non-invasive imaging modalities, PET/CT and MRI,
for longitudinal assessment of bleomycin-induced lesions in the lungs over four weeks. The different
examinations performed on the same animal using these modalities enabled unique data extraction
from each modality by combining the information. In addition, terminal samples were collected
from selected animals sequentially throughout the time course as the longitudinal imaging occurred,
allowing for assessment of gene expression as well as collagen content and cross-linking, throughout
the experiment.

5. Conclusions

In conclusion, the combined dual echo MRI and a novel PET tracer for imaging of
Collagen-I demonstrates a successful approach to monitor early and late stage fibrotic changes
in bleomycin-induced lung injury. By using non-invasive imaging techniques and scanning protocols
for lung lesion assessment, our data suggest that IBs have the potential to further improve the
understanding of ongoing pathological processes. Preclinical studies can thus support development of
IBs and their further introduction into clinical use where they can be used to improve diagnoses and
choice of therapeutic.
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Nomenclature

CT computed tomography
DAB 3,3′-diaminobenzidine
DIILD drug-induced interstitial lung disease
ECM extracellular matrix
FDG fludeoxyglucose
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FOV field of view
HRCT high resolution computed tomography
H&E hematoxylin and Eosin
IBs imaging biomarkers
IL interleukin
ILD interstitial lung disease
IPF idiopathic pulmonary fibrosis
i.t. intratracheal
LBIC Lund university BioImaging Centre
LOX Lysyl Oxidase
MMPs Matrix metallopeptidases
MRI magnetic resonance imaging
PET positron emission tomography
ROI region of interest
TGF-β tissue growth factor β
TIMP1 tissue inhibitor of metalloproteinase 1
TRISTAN-IMI Translational Imaging in Drug Safety Assessment—Innovative Medicines Initiative
UTE ultra short echo time
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