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Training instance segmentation neural network
with synthetic datasets for crop seed phenotyping
Yosuke Toda 1,2✉, Fumio Okura1,3, Jun Ito4, Satoshi Okada5, Toshinori Kinoshita 2, Hiroyuki Tsuji4 &

Daisuke Saisho5

In order to train the neural network for plant phenotyping, a sufficient amount of training data

must be prepared, which requires time-consuming manual data annotation process that often

becomes the limiting step. Here, we show that an instance segmentation neural network

aimed to phenotype the barley seed morphology of various cultivars, can be sufficiently

trained purely by a synthetically generated dataset. Our attempt is based on the concept of

domain randomization, where a large amount of image is generated by randomly orienting

the seed object to a virtual canvas. The trained model showed 96% recall and 95% average

Precision against the real-world test dataset. We show that our approach is effective also for

various crops including rice, lettuce, oat, and wheat. Constructing and utilizing such synthetic

data can be a powerful method to alleviate human labor costs for deploying deep learning-

based analysis in the agricultural domain.
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Deep learning1 has gathered wide attraction in both the
scientific and industrial communities. In computer vision
field, deep-learning-based techniques using convolutional

neural network (CNN) are actively applied to various tasks, such
as image classification2, object detection3,4, and semantic/instance
segmentation5–7. Such techniques have also been influencing the
field of agriculture. This involves image-based phenotyping,
including weed detection8, crop disease diagnosis9,10, fruit
detection11, and many other applications as listed in the recent
review12. Meanwhile, not only features from images but also with
that of environmental variables, functionalized a neural network
to predict plant water stress for automated control of greenhouse
tomato irrigation13. Utilizing the numerous and high-context
data generated in the relevant field seems to have high affinity
with deep learning.

However, one of the drawbacks of using deep learning is the
need to prepare a large amount of labeled data. The ImageNet
dataset as of 2012 consists of 1.2 million and 150,000 manually
classified images in the training dataset and validation/test data-
set, respectively14. Meanwhile, the COCO 2014 Object Detection
Task constitutes of 328,000 images containing 2.5 million labeled
object instances of 91 categories15. This order of annotated
dataset is generally difficult to prepare for an individual or a
research group. In the agricultural domain, it has been reported
that sorghum head detection network can be trained with a
dataset consisting of 52 images with an average of 400 objects per
image16, while a crop stem detection network was trained starting
from 822 images17. These case studies imply that the amount of
data required in a specialized task may be less compared with a
relatively generalized task, such as ImageNet classification and
COCO detection challenges. Nonetheless, the necessary and
sufficient amount of annotation data to train a neural network is
generally unknown. Although many techniques to decrease the
labor cost, such as domain adaptation or active learning, are
widely used in plant/bio science applications18–20, the annotation
process is highly stressful for researchers, as it is like running a
marathon without knowing the goal.

A traditional way to minimize the number of manual anno-
tations is to learn from synthetic images, which is occasionally
referred to as the sim2real transfer. One of the important
advantages of using a synthetic dataset for training is that the
ground-truth annotations can be automatically obtained without
the need for human labor. A successful example can be found in
person image analysis method that uses the image dataset with
synthetic human models21 for various uses such as person pose
estimation22. Similar approaches have also been used for the
preparation of training data for plant image analysis. Isokane
et al.23 used the synthetic plant models for the estimation of
branching pattern, while Ward et al. generated artificial images of
Arabidopsis rendered from 3D models and utilized them for
neural network training in leaf segmentation24.

One drawback of the sim2real approach are the gaps between
the synthesized images and the real scenes, e.g., nonrealistic
appearances. To counter this problem, many studies attempt to
generate realistic images from synthetic datasets, such as by using
generative adversarial networks (GAN)25,26. In the plant image
analysis field, Giuffrida et al.27 used GAN-generated images to
train a neural network for Arabidopsis leaf counting. Similarly,
Arsenovic et al. used StyleGAN28 to create training images for the
plant disease image classification29.

On the other hand, an advantage of sim2real approach is the
capability of creating (nearly) infinite number of training data.
Approaches that are bridging the sim2real gap by leveraging the
advantage is domain randomization, which trains the deep net-
works using large variations of synthetic images with randomly
sampled physical parameters. Although domain randomization is

somewhat related to data augmentation (e.g., randomly flipping
and rotating the images), the synthetic environment enables the
representation of variations under many conditions, which is
generally difficult to attain by straightforward data augmentation
techniques for real images. An early attempt at domain rando-
mization was made by generating the images using different
camera positions, object location, and lighting conditions, which
is similar to the technique applied to control robots30. For object
recognition tasks, Tremblay et al.31 proposed a method to gen-
erate images with a randomized texture on synthetic data. In the
plant-phenotyping field, recently, Kuznichov et al. proposed a
method to segment and count leaves of not only Arabidopsis, but
also that of avocado and banana, by using a synthetic leaf texture
located with various size/angles, so as to mimic images that were
acquired in real agricultural scenes32. Collectively, the use of
synthetic images has a huge potential in the plant-phenotyping
research field.

Seed shape, along with seed size, is an important agricultural
phenotype. It consists of yield components of crops, which are
affected by environmental condition in the later developmental
stage. The seed size and shape can be predictive on germination
rates and subsequent development of plants33,34. Genetic altera-
tion of seed size contributed a significant increase in thousand-
grain weight in contemporary barley-cultivated germplasm35.
Several studies report the enhancement of rice yield by utilizing
seed width as a metric36,37. Moreover, others utilized elliptic
Fourier descriptors that enable to handle the seed shape as
variables representing a closed contour, successfully characteriz-
ing the characters of various species38–41. Focusing on morpho-
logical parameters of seeds seems to be a powerful metric for both
crop-yield improvement and for biological studies. However,
including the said reports, many of the previous studies have
evaluated the seed shape by qualitative metrics (e.g., whether the
seeds are similar to the parental phenotype), by vernier caliper, or
by manual annotation using an image- processing software. The
phenotyping is generally labor-intensive and cannot completely
exclude the possibility of quantification errors that differ by the
annotator. To execute a precise and large-scale analysis, auto-
mation of the seed-phenotyping step was preferred.

In recent years, several studies have been reported to system-
atically analyze the morphology of plant seeds by image analysis.
Ayoub et al. focused on barley seed characterization in terms of
area, perimeter, length, width, F circle, and F shape based on
digital camera-captured images42. Herridge et al. utilized a par-
ticle analysis function of ImageJ (https://imagej.nih.gov/ij/) to
quantify and differentiate the seed size of Arabidopsis mutants
from the background population43. SmartGrain software has been
developed to realize the high-throughput phenotyping of crop
seeds, successfully identifying the QTL that is responsible for seed
length of rice44. Miller et al. reported a high-throughput image
analysis to measure morphological traits of maize ears, cobs, and
kernels45. Wen et al. developed an image analysis software that
can measure seed shape parameters such as width, length, and
projected area, as well as the color features of maize seeds: they
found a correlation between these physical characteristics with
seed vigor46. Moreover, commercially available products such as
Germination Scanalyzer (Lemnatec, Germany) and PT portable
tablet tester (Greenpheno, China) also aim or have the ability to
quantify the morphological shape of seeds. However, the afore-
mentioned approaches require the seeds to be sparsely oriented
for efficient segmentation. When seeds are densely sampled and
physically touching each other, they are often detected as a uni-
fied region, leading to an abnormal seed shape output. This
requires the user to manually reorient the seeds in a sparse
manner, which is a potential bar to secure sufficient amount of
biological replicate in the course of high-throughput analysis. In
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such situations, deep-learning-based instance segmentation can be
used to overcome such a problem by segmenting the respective seed
regions regardless of their orientation. Nonetheless, the annotation
process as described previously was thought to be the potential
limiting step.

In this paper, we show that utilizing a synthetic dataset that the
combination and orientation of seeds are artificially rendered, is
sufficient to train an instance segmentation of a deep neural
network to process real-world images. Moreover, applying our
pipeline enables us to extract morphological parameters at a large
scale with precise characterization of barley natural variation at a
multivariate perspective. The proposed method can alleviate the
labor-intensive annotation process to realize the rapid develop-
ment of deep-learning-based image analysis pipeline in the
agricultural domain as illustrated in Fig. 1. Our method is largely
related to the sim2real approaches with the domain randomiza-
tion, where we generate a number of training images by randomly
locating the synthetic seeds with actual textures by changing its
orientation and location.

The contribution of this study is twofold. First, this is the first
attempt to utilize a synthetic dataset (i.e., a sim2real approach)
with domain randomization for the crop seed phenotyping, which
can significantly decrease the manual labor for data creation
(Fig. 1). Second, we propose a first method that can be used
against the densely sampled (e.g., physically touching) seeds using
instance segmentation.

Results
Preparation of barley seed synthetic dataset. Examples of seed
images captured by the scanner are shown in Fig. 2a. The mor-
phology of barley seeds is highly variable between cultivars, in
terms of size, shape, color, and texture. Moreover, the seeds
randomly come in contact with or partially overlap each other.
Determination of the optimal threshold for binarization may
enable isolation of the seed region from the background; however,
conventional segmentation methods such as watershed require
extensive search for suitable parameters per cultivar to efficiently
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Fig. 1 Overview of the proposed training process of crop seed instance segmentation. Conventional method requires manual labeling of images to
generate the training dataset, while our proposed method can substitute such step by using a synthetic dataset for crop seed instance segmentation model.

Real World Images Seed Image Pool

Synthetic Dataset

Im
ag

e
M

as
k

Background Image Pool

a b

Fig. 2 Data prepared in this study. a Images of barley seeds scanned from 20 cultivars. Cultivar names are described in white text in each image. These
images were also used as a real-world test dataset in Table 1. b Scheme of generating synthetic images. Images are generated by combining actual scanned
seed images over the background images onto the virtual canvas. Simultaneously generated ground-truth label (mask) is shown at the bottom, in which
each seed area is marked with a unique color.
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segment the single-seed area for morphological quantification.
Establishment of such pipeline requires an extensive effort of an
expert. Employing a sophisticated segmentation method (in our
case, instance segmentation using Mask R-CNN7) is indeed a
choice for successful separation of the individual seeds. However,
Mask R-CNN requires annotations of bounding boxes—which
circumscribe the seed—and mask images that necessarily and
sufficiently cover the seed area (Supplementary Fig. 1). Given that
the numbers of seeds per image are abundant (Fig. 2a), the
annotation process has been predicted to be labor-intensive.

Figure 2b shows the seed image pool and synthesized dataset
obtained using the proposed method (see “Methods” for details).
Instead of labeling real-world images for use as a training dataset,
Mask R-CNN was trained using the synthetic dataset (examples
shown at the bottom of Fig. 2b), which is generated from the seed
and background image pool (Fig. 2b top) using a domain
randomization technique.

Model evaluation. We show herein the visual results and a
quantitative evaluation of object detection and instance segmen-
tation by Mask R-CNN. The trained Mask R-CNN model outputs
a set of bounding box coordinates and masks images of seed
regions (raw output) (Fig. 3a, top row). Examples of visualized
raw output obtained from the real-world images show that the
network can accurately locate and segment the seeds regardless of
their orientation (Fig. 3b; Supplementary Fig. 2). Table 1 sum-
marizes the quantitative evaluation using the recall and AP
measures (see “Methods” for details). The efficacy of seed
detection was evaluated using the recall values computed for
bounding box coordinates at 50% Intersection of Union (IoU)
threshold (Recall50). The model achieved an average of 95 and
96% on the synthetic and real-world test datasets, respectively.
This indicates that the trained model can locate the position of
seeds with very low false-negative rate. From the average preci-
sion (AP) values, which were computed based on mask regions at
varying mask IoU thresholds, comparable AP50 values were
achieved between the synthetic (96%) and real-world (95%)
datasets. For higher IoU threshold (AP@ [.5:.95] and AP75),
the values of the synthetic test dataset (73%) exceeded that of the
real-world test dataset (59%). These results suggest that the
model’s ability to segment the seed region is better in the case of
the synthetic than the real-world images. The higher values in
the synthetic dataset possibly derive from data leak, which the
same seed images appear as in the training dataset, but even the
orientation and combination of seeds area are different. However,
considering the visual output interpretation (Fig. 3b) and the
values of AP50 (95%) in the real-world test dataset, we judged that
seed morphology can be sufficiently determined from real-world
images. The relatively low AP in high IoU in the real-world test
dataset is possibly derived from the subtle variation in the manual
annotation of seed mask regions. It is noteworthy that when the
Mask R-CNN model was trained with the manually annotated
seeds, the network showed poor performance in segmenting the
seed regions (Supplementary Fig. 3). This was especially apparent
when the seeds were physically touching each other and forming
a dense cluster, which further supports the efficiency of domain
randomization.

Post processing. As described in the Methods section, we
introduced a post-processing step to the raw output to eliminate
detections that are not suitable for further analysis. This process
removes seed occlusion due to physical overlap, incomplete seg-
mentation by the neural network, non-seed objects such as dirt or
awn debris, or the seeds that were partly hidden due to the
location being outside the scanned area (Fig. 3c). Figure 3d shows

the distribution of the seed area before and after post processing.
Even though the seed area itself was not used as a filtering cri-
terion, the area values in the respective cultivars shift from a long-
tailed to a normal distribution, which well reflects the char-
acteristics of a homogenous population (Fig. 3d). A comparison
of the filtered output (inferenced seed area) and hand-measured
(ground-truth area) values displays a strong correlation, where
the Pearson correlation value is 0.97 (Fig. 3e). These results
suggest that the filtered output values obtained from our pipeline
are reliable for further phenotypic analyses.

Morphological characterization of barley natural variation.
Our pipeline learns from synthetic images, which ease the
training dataset preparation process. This pipeline enables large-
scale analysis across multiple cultivars or species. To highlight the
important advantages of the proposed pipeline, we herein
demonstrate an array of analyses to morphologically characterize
the natural variation of barley seeds, which highlights the crucial
biological features that will provide guidance for further investi-
gation. We selected 19 out of 20 cultivars that were used to train
the neural network; however, we have acquired a new image that
was not used for training or testing in further analysis. One
accession, H602, was excluded from the analysis because
the rachis could hardly be removed by husk threshing; therefore,
the detected area did not reflect the true seed shape. From the
pipeline, we obtained 4464 segmented seed images in total
(average of 235 seeds per cultivar).

As simple and commonly used morphological features, the
seed area, width, length, and length-to-width ratio per cultivar
were extracted from the respective images and are summarized in
Fig. 4a–d. With a sufficient number of biological replicates, we
can not only compare the inter-cultivar difference (e.g., median
or average) but also consider the intra-cultivar variance. We
applied the analysis of variance (ANOVA) with Tukey’s post hoc
test to calculate the statistical difference between cultivars. Many
cultivars that visually display similar distribution patterns or
medians were grouped into statistically different clusters (e.g.,
K735 and K692 in Fig. 4a). To gain further insight into the
morphology of barley cultivars characterized by various descrip-
tors, we performed a multivariate analysis.

First, we show the results of a principal component analysis
(PCA) using eight predefined descriptors (area, width, length,
length-to-width ratio, eccentricity, solidity, perimeter length, and
circularity). The first two principal components (PC) could
explain 88.5% of the total variation (Fig. 5a, b). Although there
were no discrete boundaries, the data points tended to form a
cluster unique to the cultivar in the latent space, indicating that
cultivars can be classified to a certain extent according to the
said descriptors (Fig. 5a). Variables such as seed length (L) and
perimeter length (PL) mainly constituted the first PC, with
seed circularity (CS) oriented toward the opposite direction, while
seed width (W) and length-to-width ratio had a major influence
on PC2 (Fig. 5b). This is exemplified by the distribution of the
slenderest B669 and the circular-shaped J647 at the far-right and
far-left orientation in the latent space. Notably, while width (W)
mainly constituted PC2, the direction of its eigenvector differs
from that of length (L). The moderate value of Pearson’s
correlation between length and width (0.5, p < 0.01) (Supplemen-
tary Fig. 4), also implies that genes that control both or either of
size and length may coexist in the determination of barley seed
shape, as reported in rice47.

Next, we extracted the contour shapes of seeds using elliptic
Fourier descriptors (EFDs) followed by PCA (Fig. 5b, c), which is
also used in other studies for seed morphological analysis38,39.
Compared with the PCA based on the eight morphological
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descriptors in Fig. 5a, the distributions of the respective seeds
were relatively condensed, while the clusters by cultivars were
intermixed (Fig. 5c), possibly because the size information is lost
upon normalization; therefore, EFD can utilize only the contour
shape. Interpolating the latent space in the PC1 axis direction

clearly highlights the difference in slenderness of the seed (Fig. 5d;
Fig. Supplementary Fig. 5a). PC2 did not show an obvious change
in shape when compared with PC1 (Fig. 5d); however, it seemed
to be involved in the sharpness of the edge shape in the
longitudinal direction (Supplementary Fig. 5a). Although further
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Fig. 3 Image analysis pipeline. a Summary of the image analysis pipeline. b Examples of the graphical output of the trained Mask R-CNN on real-world
images. Different colors indicate an individual segmented seed region. Note that even if the seeds are overlapping or touching each other, the network can
discriminate them as an independent object. c Examples of detected candidate regions to be filtered in the post-processing step indicated in red arrows.
Black arrowheads indicate the input image boundary. d Probability density of the seed areas of the raw and filtered output. e Scatterplot describing the
correlation of the seed area that was measured by the pipeline (inferenced seed area) and by manual annotation (ground-truth seed area). Each dot
represents the value by a single seed. Black and gray lines indicate the identity and the 10% error threshold line, respectively. The proportion of the seeds
that have lower or higher than the 10% error is also displayed.
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verification is required, rendering the average contours that
represent the shapes of the respective cultivars implies the
difference in such metrics (Supplementary Fig. 5b).

Finally, we trained a variational autoencoder (VAE) for latent
space visualization48. Unlike other methods using the shape
descriptors (i.e., eight simple features or EFDs), the VAE inputs
the segmented seed images, which can thus obtain a representa-
tion that well describes the dataset without feature predefinition
(see Methods for details). We have expected that such neural
networks can learn the high-level feature (complex phenotype)
such as textures, in addition to contour shape and morphological
parameters we have handled in Fig. 5a–d. The learned
representation can be visualized into a two-dimensional scatter-
plot similar to a PCA (Fig. 5e). Compared with the PCA-based
methods, VAE seems to cluster the cultivar in the latent space
more explicitly. While the predefined morphological descriptors
extract a limited amount of information from an image, VAE can
handle an entire image itself; hence, the latter theoretically can
learn more complex biological features. Overall, Z1 tends to be
involved in the seed color (i.e., brightness) and size, while Z2 is in
seed length (Fig. 5f). These results suggest the potential power of
utilizing deep learning for further phenotypic analysis, in addition
to the well-established morphological analysis.

Application in various crop seeds. We further extended our
method to verify the efficacy of our approach for other crop seeds.
In this report, we newly trained our model to analyze the seed
morphology of wheat, rice, oat, and lettuce, with the, respectively,
generated synthetic datasets (Fig. 6, top row). Processing the real-
world images resulted in a clear segmentation of each species,
regardless of seed size, shape, texture or color, and background
(Fig. 6, middle and bottom rows). In conclusion, these results

strongly suggest the high generalization ability of our presented
method.

Discussion
In this research, we showed that utilizing a synthetic dataset can
successfully train the instance segmentation neural network to
analyze the real-world images of barley seeds. The values obtained
from the image analysis pipeline were comparable to that of
manual annotation (Fig. 3e), thus achieving high-throughput
quantification of seed morphology in various analyses. Moreover,
our pipeline requires a limited number of synthesized images to
be added to the pool for creating a synthetic dataset. This is labor
cost-efficient and practical compared with labeling numerous
amounts of images required for deep learning.

To completely understand the use of synthetic data for deep
learning, we must have a precise understanding of “what type of
features are critical to represent the real-world dataset”. In the
case of seed instance segmentation, we presumed that the net-
work must learn the representation that is important for segre-
gating physically touching or overlapping seeds into an individual
object. Therefore, in the course of designing synthetic images, we
prioritized the dataset to contain numerous patterns of seed
orientation, rather than to contain massive patterns of seed tex-
tures. Based on the result that the model showed sufficient result
against the test dataset (Fig. 3b; Supplementary Fig. 2, Table 1), it
is suggested that our presumption was legitimate to a certain
extent. However, because the neural network itself is a black box,
we cannot discuss more than ex post facto reasoning. Recently,
there have been challenges to understand the representation of
biological context by various interpretation techniques10,49.
Extending such approaches applicable to an instance segmenta-
tion neural network as used in our study will help verify the
authenticity of both the synthesized dataset and the trained
neural network in future studies.

Notably, it is expected that the model performance will be
greatly influenced by the image resolution and variance of seed
images used to create the synthetic image, as well as the number
of images that constitute the training dataset. Optimal parameters
will also depend on the type of cultivars that constitute the test
dataset. In this study, we used a fixed condition for synthetic
dataset generation, in order to prioritize or demonstrate the
effectiveness of domain randomization for seed phenotyping.
However, in practical situations where the respective users build
and execute a customized pipeline, parameter search may benefit
them by providing minimal dataset requirement that leads to
calculation cost efficiency. Moreover, introducing additional
image augmentation techniques in the synthetic dataset such as
random color shift and zoom will lead to a more robust model.

We introduced post processing to exclude nonintegral mask
regions prior to phenotypic analysis (Fig. 3a, bottom row and Fig.
4c, d). Theoretically, if we can add a category label to the syn-
thetic dataset to determine whether the respective regions are
suitable for analysis, the neural network may acquire the classi-
fication ability to discriminate such integrity. However, the
complexity of synthetic data generation increases, and mis-
detected or incomplete mask regions cannot be excluded. We
presume that heuristic-based post processing is a simple yet
powerful approach. Nonetheless, our outlier removal process is
based on the assumption that the seed population is homo-
geneous. It is important to verify if such filtering is valid against
the heterogeneous population. Notably, SmartGrain also intro-
duces a post-processing step, involving a repetitive binary dilation
and erosion. Those processes were reported to be effective in
analyzing the progenies of two cultivars in rice upon QTL ana-
lysis44. As the post processing is independent of the neural

Table 1 Model evaluation. Table describing the evaluation
result of the trained Mask R-CNN raw output.

Object detection metric Mask region metrics

Recall50 AP@[.5:.95] AP50 AP75
Synthetic test
dataset

0.95 0.73 0.96 0.93

Real-world test dataset
B669 0.92 0.56 0.92 0.84
C319 0.95 0.62 0.91 0.86
C346 0.98 0.64 0.97 0.89
C656 0.96 0.61 0.95 0.92
E245 0.95 0.63 0.94 0.84
E612 0.96 0.66 0.98 0.89
H602 0.87 0.42 0.78 0.41
I304 0.99 0.64 0.98 0.88
I335 0.97 0.67 0.93 0.92
I622 0.93 0.62 0.93 0.87
I626 0.96 0.65 0.95 0.89
J064 0.93 0.65 0.97 0.86
J247 0.94 0.65 0.97 0.86
J647 0.98 0.62 0.98 0.92
K692 0.98 0.69 0.98 0.93
K735 0.95 0.62 0.92 0.86
N009 0.99 0.63 0.99 0.91
T567 0.98 0.63 0.98 0.88
U051 0.96 0.65 0.96 0.89
U353 1.00 0.65 0.98 0.89
Average 0.96 0.59 0.95 0.86

Recall values at the IoU threshold of 50% (Recall50) and average precision (AP) at the IoU 50%
(AP50), 75% (AP75), and the mean value from IoU 50 to 95% with the step size of 5% (AP@
[.5:.95]) are shown.
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network in our pipeline, designing and verifying various methods
are important for expanding the functionality of the analysis
pipeline.

The shape and size of seeds (grains) are important agronomic
traits that determine the quality and the yield of crops50. In recent
years, a number of genes have been identified and characterized
through genetic approach, accompanied by laborious phenotyp-
ing. In previous studies, researchers manually measured the shape
and size of seeds, which is time-consuming and erroneous; it
restricted the number of seeds that the researcher can analyze.
The researchers used to manually select several seeds that seemed
to represent the population in a subjective manner, and for this
reason, small phenotypic differences between genotypes could not
be detected. Our pipeline can phenotype a large number of seeds
without the need to consider the seed orientation to be sparse in
image acquisition and thereby can obtain large amount of data in
a short period of time. This allows easy and sensitive detection of
both obvious and subtle phenotypic differences between cultivars
supported by statistical verification (Fig. 4) or by dimensionality
reduction methods of multivariate parameters introduced herein
(Fig. 5a–d). Moreover, VAE, which requires a sufficient amount
of data to fully exert its power to learn the representation of the
dataset, becomes also applicable with the data obtained by our
approach (Fig. 5e, f). The large-scale analysis across various
cultivars provides researchers with yet another option to execute
such analyses as demonstrated. This will be a breakthrough in
identifying agronomically important genes, especially for mole-
cular genetic research such as genome-wide association study
(GWAS), quantitative trait locus (QTL) analysis, and mutant
screening. Thus, it will open a new path to identify genes that
were difficult to isolate by conventional approaches.

Moreover, the application of our pipeline is not restricted to
barley, but can be extended to various crops such as seeds of

wheat, rice, oats, and lettuce (Fig. 6). Our results strongly suggest
that our approach is applicable to any varieties or species in
principle; thus, it is expected to accelerate research in various
fields with similar laborious issues. One example can be an
application in characterization and gene isolation from seeds of
wild species. Cultivated lines possess limited genetic diversity due
to bottlenecks in the process of domestication and breeding;
therefore many researchers face challenges to identify agrono-
mically important genes from wild relatives as a source of genes
for improving agronomic traits. As the appearance of the seeds of
wild species is generally more diverse than that of cultivated
varieties, development of a universal method to measure both
traits was difficult. Another example can be analyzing undetached
seeds of small florets (e.g., wheat). Although the shapes of
small florets can be manually quantified from the image of a
scanned spikelet, the automated quantification has not
been realized owing to excess non-seed objects (e.g., glume, awn,
and rachis) in the image. Applying another domain of rando-
mization for synthesizing a training dataset can be utilized to
functionalize a neural network to quantify seed phenotype from
such images.

Collectively, we have shown the efficacy of utilizing the syn-
thetic data, based on the concept of domain randomization to
train the neural network for real-world tasks. Recent technical
advances in the computer vision domain have enabled us to
generate a realistic image, or even a realistic “virtual reality”
environment; thus, they will provide more possibilities to give
solutions to current image analysis that involved challenges in the
agricultural domain. We envision that a collaboration with plant
and computer scientists will open a new point of view for gen-
erating a workflow that is valuable for plant phenotyping, leading
to a further understanding of the biology of plants through the
complete use of machine learning/deep-learning methods.
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Fig. 4 Analysis of natural variation of barley seed morphology. Whisker plot overlaid with a swarm plot (colored dot) grouped by barley cultivars. a Seed
area, b seed width, c length, and d length-to-width ratio. Diamonds represent outliers. Statistical differences were determined by one-way ANOVA
followed by Tukey post hoc analysis. Different letters indicate significant differences (p < 0.05).
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Methods
Plant materials. Barley seeds used in this research are 19 domesticated barley
(Hordeum vulgare) accessions and one wild barley (H. spontaneum) accession:
B669, Suez (84); C319, Chichou; C346, Shanghai 1; C656, Tibet White 4; E245,
Addis Ababa 40 (12-24-84); E612, Ethiopia 36 (CI 2225); I304, Rewari; I335,
Ghazvin 1 (184); I622, H.E.S. 4 (Type 12); I626, Katana 1 (182); J064, Hayakiso 2;
J247, Haruna Nijo; J647, Akashinriki; K692, Eumseong Covered 3; K735, Natsu-
daikon Mugi; N009, Tilman Camp 1 (1398); T567, Goenen (997); U051, Archer;
U353, Opal; H602, wild barley. All the details of the said cultivars can be obtained
at the National BioResource Project (NBRP) (https://nbrp.jp). Meanwhile, seeds of
rice (Oryza sativa, cv. Nipponbare), oat (Avena sativa, cv. Negusaredaiji), lettuce
(Lactuca sativa, cv. Great Lakes), and wheat (Triticum aestivum cv. CS, Chinese
Spring; N61, Norin 61; AL, Arina (ArinaLrFor))51; and Syn01, a synthetic hex-
aploid wheat line Ldn/KU-2076 that is generated by a cross between tetraploid
wheat Triticum turgidum cv. Langdon and Aegilops tauschii strain KU-207652 were
used in this report.

Image acquisition. All the barley seeds were threshed using a commercial table-
top threshing system (BGA-RH1, OHYA TANZO SEISAKUSHO & Co., Japan).
The seed images were captured on an EPSON GT-X900 A4 scanner with the
supplied software without image enhancement. Seeds were spread uniformly on the
glass, scanned at 7019 × 5100 px at 600 dpi using a blue-colored paper background.

For the image acquisition of seeds of rice, oat, lettuce, and wheat, an overhead
scanner ScanSnap SV600 (Fujitsu, Japan) was used with the image size of 3508 ×
2479 at 300 or 600 dpi.

Synthetic image generation. Single-seed images per cultivar (total of 400; 20 seed
images for 20 cultivars) were isolated and saved as an individual image file. These
400 seeds were manually annotated and were used to create a non-domain -ran-
domized training dataset used in Supplementary Fig. 3. The following describes the
procedure of synthetic image generation.

First, the background regions of seed images were removed such that the pixel
value other than the area of the seed will be (0,0,0) in RGB color value. As a result,
400 background-clean images were prepared to constitute a “seed image pool”. For
the background image, four images at the fixed size of 1024 × 1024 were cropped
from the actual background used in the seed scanning process and were prepared
as a “background image pool”.

The synthetic image generation process is described as follows. First, an image
was randomly selected from the background image pool and pasted to the virtual
canvas of size 1024 × 1024. Second, another image was randomly selected from the
seed image pool. Image rotation angle was randomly set upon selection. After
rotation, the x and y coordinates at which the image was to be pasted were
randomly determined; however, the coordinate value was restricted to a certain
range so that the image does not exceed the canvas size, with which its values were
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Fig. 5 Multivariate analysis of barley seed morphology. a, b Principal component analysis (PCA) with morphological parameters of barley seeds. Each
point represents the data point of the respective seed. The colors correspond to those defined in the color legend displayed below (e). Mean PC1 and PC2
values of each cultivar are plotted as a large circle with text annotations in (a). Eigenvectors of each descriptor are drawn as arrows in (b). LWR length-to-
width ratio, E eccentricity, L seed length, PL seed perimeter length, AS seed area, W seed width, S solidity, CS seed circularity. c, d PCA with elliptic Fourier
descriptors (EFD). The colors and points annotated of (c) follow those of (a). Interpolation of the latent space followed by reconstruction of the contours
are displayed in (d). e, f Latent space visualization of variational autoencoders (VAE). The colors and points annotated of (e) follow those of (a).
Interpolation of the latent space followed by image generation using the generator of VAE are displayed in (f).
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dependent on the selected seed image size and its rotation angle. Third, the seed
image was pasted to the canvas according to the determined values described
above. When pasting, alpha masks were generated and utilized in alpha blending
such that the area outside of the seed will be transparent and does not affect the
canvas image. Moreover, utilizing the alpha mask, the seed perimeter was Gaussian
blurred to decrease the artifacts resulting from the background removal process of
the seed image. Notably, if the region where the image was to be pasted in the
canvas already had a seed image, the overlapping proportion of the area of the
seeds was calculated. If the calculated value exceeded the ratio of 0.25, pasting was
canceled, and another coordinate was chosen again. The threshold percentage of
overlap was arbitrarily determined based on the actual seed overlap that was
observed in actual situations. A maximum of 70 pasting trials were performed to
generate a single image.

During the synthetic image generation, a mask that has the same image size as
the synthetic image was created by first creating a black canvas and coloring the
seed region with unique colors based on the coordinate of the placing object. The
coloring was performed when the seeds were randomly placed in the synthetic
image. If a seed to be placed were overlapping an existing seed, the colors in the
corresponding region in the mask image were replaced by the foreground color.

The above procedure generates an image size of 1024 × 1024 with seeds
randomly oriented inside the canvas region. While in real-world images, seeds that
are adjacent to the border of the image are cut off. To replicate such a situation, the
borders of synthetic images were cropped to obtain the final image. The generated
synthetic dataset constitutes 1200 set of data pairs of synthetic and mask images, in
which each image has a size of 768 × 768 that was used for neural network training.

Model training. We used a Mask R-CNN7 implementation on the Keras/Ten-
sorflow backend (https://github.com/matterport/Mask_RCNN). Configuration
predefined by the repository was used, including the network architectures and
losses. The residual network ResNet10153 was used for the feature extraction. From
the initial weights of ResNet101 obtained by training using the MS COCO dataset,
we performed fine-tuning using our synthetic seed image dataset for 40 epochs by
stochastic gradient descent optimization with a learning rate of 0.001 and batch size
of 2. Within the 1200 images of the synthetic dataset, 989 were used for training, 11
for validation, and 200 for the synthetic test dataset. No image augmentation was
performed during training. The synthetic training data have a fixed image size of
768 × 768; however, the input image size for the network was not exclusively
defined such that variable sizes of the image can be fed upon inference. The
network outputs a set of bounding boxes and seed candidate mask regions with a
probability value. A threshold value of 0.5 was defined to isolate the final mask
regions.

Real-world test dataset for model evaluation. While the synthetic test dataset
was generated according to the method described in the previous section, we
prepared a real-world test dataset consisting of 20 images with which each image
contained seeds derived from a homogeneous population (Fig. 2a). Each image had
a size of 2000 × 2000. AP50, AP75, and AP@[.5:.95] per image (cultivar), as well as
the mean AP of all images, was calculated. As the seeds to be detected per image

average to ~100 objects per image and images themselves were acquired under the
same experimental condition, we used one image per cultivar for model evaluation.
Ground-truth label of real-world test dataset was manually annotated with
Labelbox54. For reference, we also prepared 200 synthetic images for testing
(synthetic test dataset), which were not used for the model training or validation.

Metrics for model evaluation. To assess the accuracy of object detection using
Mask R-CNN, we evaluated using two metrics, which were also used in the eva-
luation of the original report7. While they are commonly used measures in object
recognition and instance segmentation, such as in MS COCO15 and Pascal VOC55

dataset, we briefly recap our evaluation metrics for clarity. During the experiment,
the evaluation metrics were calculated using the Mask R-CNN distribution.

Recall: We first measured the recall, which evaluates how well the objects (i.e.,
seeds) are detected, which can be obtained by the ratio of true positive matches
over the total number of ground-truth objects. To calculate the recall values, we
determined the correct detection when the detection threshold of the intersection-
over-union (IoU) between the ground-truth and predicted bounding boxes is over
0.5 (Fig. 7a). In other words, for each ground-truth bounding box, if a detected
bounding box overlaps over 50%, it was counted as the true positive. Hereafter, we
denote the recall measures as Recall50.

Average precision (AP) using mask IoUs: The drawbacks of the recall measure
include penalizing the false-positive detections and evaluating using the overlaps of
bounding boxes that are poor approximation of the object shape. We, therefore,
calculated the average precision (AP) using mask IoUs, which can be a measure of
the detection accuracy (in terms of both recall and precision) as well as providing a
rough measure of mask generation accuracy. During the computation of APs, we
first compute the IoU between the instance masks (mask IoU), as shown in Fig. 7a.
AP can be obtained based on the number of correct (i.e., true positive) and wrong
(i.e., false positive) detection determined using a certain threshold of mask IoUs.
Figure 7b summarizes the computation of the AP. We sort the detected instances
using the class score (i.e., the confidence that the detected object is a seed, in our
case) in the descending order. For the nth instance, the precision and recall, based
on the mask IoU threshold, are calculated for the subset of instances from 1st to
nth detections. By repeating the process for each of the instances, we obtain a
receiver-operating characteristic (ROC) curve shown in Fig. 7b. The AP is defined
as the ratio of the rectangle approximations of the area under the curve (AUC),
which is shown as the area marked by slanted lines in the figure. APs thus takes the
value from 0.0 to 1.0 (i.e., 100%). We evaluated APs using multiple mask IoU
thresholds. AP50 and AP75 are computed using the mask IoU threshold of 0.5 and
0.75, respectively. AP75 becomes a stricter measure than AP50, because AP75
requires the correct matches with more accurate instance masks. Similar to MS
COCO evaluation, we also measured AP@ [.5:.95], which is the average value of
APs with IoU thresholds from 0.5 to 0.95 with the interval of 0.05.

Quantification of seed morphology. The main application of the seed instance
segmentation is to quantify phenotypes of seeds for analyzing and comparing
morphological traits. In the mask image, morphological variables of seed shape
such as area, width, and height were calculated using the measure.regionprops

Synthetic
Dataset

Real World
Input Image

Visualized
Raw Output

LettuceOatWheat

AL CS N61 Syn01

Rice

Nipponbare Negusaredaiji Great Lakes

Fig. 6 Application of our proposed pipeline to seeds of various species. Synthetic data of the respective species were generated (top row) and the neural
networks were independently trained. The inference results against the real-world input images (middle row) were visualized (bottom row). The name of
the cultivar per species is overlaid, respectively.
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module of the scikit-image library, respectively. To analyze the characteristics of
seeds across different cultivars, principal component analysis (PCA) was applied to
the variables. In the “Results” section, we briefly present the analysis using different
types of descriptors, computed by elliptic Fourier descriptors (EFD) and variational
autoencoder (VAE), both of which are described below.

Post processing: selection of isolated seeds: The instance segmentation network
outputs a set of bounding boxes and seed area candidates as mask images, where
some seeds overlap with each other. To analyze the seed morphology (or use for
further phenotyping applications), it is required to select the seeds that are isolated
(i.e., not partly hidden) from the neighboring seed instances. To select such seeds,
the post-processing step was introduced. First, the bounding box coordinates were
checked whether it resides inside the 5 px margin of the image. The bounding
boxes that protrude the margin were removed. Second, using the solidity (ratio of
the region of interest area against its convex hull area) of the respective mask as a
metric, the 25% lower quantile threshold was determined and used to remove the
outliers. Similarly, further outliers were removed by a 5% lower and 95% higher
quantile threshold of length-to-width ratio. The threshold was empirically
determined during the analysis.

Elliptic Fourier descriptors (EFD): EFD56 has been used to quantify the contour
shape of seeds38, which approximate the contour shape as the set of different
ellipses. During the computation of EFD, segmented seed images were first
converted to binary mask image where the background pixel value was 0 and the
seed area is 1. Next, the contour of the seed was detected by the find_contours
module of the scikit-image library. The detected contours were converted to EFD
coefficients using the elliptic_fourier_descriptors module of pyefd library (https://
github.com/hbldh/pyefd) under the condition of harmonics 20 and with
normalization so as to be rotation- and size-invariant. The output was flattened,
which converted the shape of the array from 4 × 20 to 80. As the first three
coefficients are always or nearly equal to 1, 0, 0 due to the normalization process,
they were discarded upon further analysis. A total of 77 variables were used as
descriptors for principal component analysis (PCA).

Variational autoencoder (VAE): Autoencoder (AE) is a type of neural network
with an encoder–decoder architecture that embeds a high-dimensional input data
(e.g., images) to a low-dimensional latent vector, to correctly decode the input data
from the low-dimensional vector. Variational autoencoder (VAE)48 is a variant of
AE, where the distribution in the latent space is generated to fit a prior distribution
(e.g., Gaussian distribution, N(0,1)). In a generative model, the low-dimensional
parameters in the latent space are often used as the nonlinear approximation (i.e.,
dimensional reduction) of the dataset. Similar to other approximation methods like
PCA, the parameters in the latent space estimated by VAE can be used for
interpolation for the data distribution; the input data with different characteristics
(e.g., different species) are often well separated in the space57 compared with the
conventional methods (e.g., PCA), without using the ground-truth labels for the
classes during the training. We used a VAE with a CNN-based encoder–decoder
network to visualize the latent space. In brief, the network receives an RGB image
that has a shape of 256 × 256 × 3. For the encoder, input data were first passed
through four layers of convolution with filter numbers of 32, 64, 128, and 256,
respectively. Since we fit the latent space to the Gaussian distribution, the log
variance and the mean of the latent space are computed after full-connection
layers. For the decoder, the output of the encoder was passed through four layers of
deconvolution with filter numbers of 256, 128, 64, and 32, respectively. Finally, the
convolution layer with three filters was added to convert the data back to an RGB
image with its shape identical to the input image. In our analysis, we utilized the
two-dimensional latent space (i.e., the final output of the encoder of VAE) to
visualize the compressed features of the input image.

Statistics and reproducibility. Numbers of barley seeds analyzed per cultivar for
evaluation of seed morphology in this study are as follows: 157, B669; 353, C319;
395, C346; 208, C656; 143, E245; 159, E612; 207, I304; 223, I335; 245, I622; 169,
I626; 300, J064; 189, J247; 351, J647; 267, K692; 279, K735; 264, N009; 219, T567;
196, U051; 140, U353. R (ver. 3.5.1) was used for ANOVA and Tukey post hoc
HSD test analysis to evaluate the statistical differences of their morphological
parameters.

Software libraries and hardware. Computational analysis in this study was
performed using Python 3.6. Keras (ver. 2.2.4) was also used with Tensorflow (ver.
1.14.0) backend for deep-learning-related processes. Single GPU (Geforce GTX
1080 Ti, NVIDIA) was used for the model training. Each epoch in training took
about 186 s. For inference, an average of 3.9 s was required per image to process the
real-world test dataset. OpenCV3 (ver. 3.4.2) and scikit-image (ver. 0.15.0) were
used for operations in morphological calculations of the seed candidate regions as
well as basic image processing. A single GPU was used for network training and
inference.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Synthetically generated and real-world datasets can be obtained from the following
GitHub repository (https://github.com/totti0223/crop_seed_instance_segmentation).

Code availability
Code to reproduce the deployment of the trained Mask R-CNN and multivariate analysis
is formatted as IPython notebooks and can also be obtained from the GitHub repository
(https://github.com/totti0223/crop_seed_instance_segmentation). Other data and
information regarding the paper are available upon reasonable request.
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