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Abstract To form a more reliable percept of the environment, the brain needs to estimate its

own sensory uncertainty. Current theories of perceptual inference assume that the brain computes

sensory uncertainty instantaneously and independently for each stimulus. We evaluated this

assumption in four psychophysical experiments, in which human observers localized auditory

signals that were presented synchronously with spatially disparate visual signals. Critically, the

visual noise changed dynamically over time continuously or with intermittent jumps. Our results

show that observers integrate audiovisual inputs weighted by sensory uncertainty estimates that

combine information from past and current signals consistent with an optimal Bayesian learner that

can be approximated by exponential discounting. Our results challenge leading models of

perceptual inference where sensory uncertainty estimates depend only on the current stimulus.

They demonstrate that the brain capitalizes on the temporal dynamics of the external world and

estimates sensory uncertainty by combining past experiences with new incoming sensory signals.

Introduction
Perception has been described as a process of statistical inference based on noisy sensory inputs

(Knill and Pouget, 2004; Knill and Richards, 1996). Key to this perceptual inference is the estima-

tion and/or representation of sensory uncertainty (as measured by variance, i.e. the inverse of reli-

ability/precision). Most prominently, in multisensory perception, a more reliable or ‘Bayes-optimal’

percept is obtained by integrating sensory signals that come from a common source weighted by

their relative reliabilities with less weight assigned to less reliable signals. Likewise, sensory uncer-

tainty shapes observers’ causal inference. It influences whether observers infer that signals come

from a common cause and should hence be integrated or else be processed independently

(Aller and Noppeney, 2019; Körding et al., 2007; Rohe et al., 2019; Rohe and Noppeney,

2015b; Rohe and Noppeney, 2015a; Rohe and Noppeney, 2016; Wozny et al., 2010;

Acerbi et al., 2018). Indeed, accumulating evidence suggests that human observers are close to

optimal in many perceptual tasks (though see Acerbi et al., 2014; Drugowitsch et al., 2016;

Shen and Ma, 2016; Meijer et al., 2019) and weight signals approximately according to their
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sensory reliabilities (Alais and Burr, 2004; Ernst and Banks, 2002; Jacobs, 1999; Knill and Pouget,

2004; van Beers et al., 1999; Drugowitsch et al., 2014; Hou et al., 2019).

An unresolved question is how human observers compute their sensory uncertainty. Current theo-

ries and experimental approaches generally assume that observers access sensory uncertainty near-

instantaneously and independently across briefly (�200 ms) presented stimuli (Ma and Jazayeri,

2014; Zemel et al., 1998). At the neural level, theories of probabilistic population coding have sug-

gested that sensory uncertainty may be represented instantaneously in the gain of the neuronal pop-

ulation response (Ma et al., 2006; Hou et al., 2019). Yet, in our natural environment, sensory noise

often evolves at slow timescales. For instance, visual noise slowly varies when walking through a

snow storm. Observers may capitalize on the temporal dynamics of the external world and use the

past to inform current estimates of sensory uncertainty. In this alternative account, more reliable esti-

mates of sensory uncertainty would be obtained by combining past estimates with current sensory

inputs as predicted by Bayesian learning.

To arbitrate between these two critical hypotheses, we presented observers with audiovisual sig-

nals in synchrony but with a small spatial disparity in a sound localization task. Critically, the spatial

standard deviation (STD) of the visual signal changed dynamically over time continuously (experi-

ments 1–3) or discontinuously (i.e. with intermittent jumps; experiment 4). First, we investigated

whether the influence of the visual signal location on observers’ perceived sound location depended

on the noise only of the current visual signal or also of past visual signals. Second, using computa-

tional modeling and Bayesian model comparison, we formally assessed whether observers update

their visual uncertainty estimates consistent with (i) an instantaneous learner, (ii) an optimal Bayesian

learner, or (iii) an exponential learner.

Results
In a spatial localization task, we presented participants with audiovisual signals in a series of four

experiments, in which the physical visual noise changed dynamically over time either continuously or

discontinuously (Figure 1). Visual (V) signals (clouds of 20 bright dots) were presented every 200 ms

for a duration of 32 ms. The cloud’s horizontal STD varied over time at this temporal rate of 5 Hz

either continuously (experiments 1–3) or discontinuously with intermittent jumps (experiment 4). The

cloud’s location mean was temporally independently resampled from five possible locations (�10˚,

�5˚, 0˚, 5˚, 10˚) on each trial with the inter-trial asynchrony jittered between 1.4 and 2.8 s. In syn-

chrony with the change in the cloud’s mean location, the dots changed their color and a sound was

presented (AV signal). The location of the sound was sampled from the two possible locations adja-

cent to the visual cloud’s mean location (i.e. ±5˚ AV spatial disparity). Participants localized the sound

and indicated their response using five response buttons.

The small audiovisual disparity enabled an influence of the visual signal location on the perceived

sound location as a function of visual noise (Alais and Burr, 2004; Battaglia et al., 2003;

Meijer et al., 2019). As a result, observers’ visual uncertainty estimate could be quantified in terms

of the relative weight of the auditory signal on the perceived sound location with a greater auditory

weight indicating that observers estimated a greater visual uncertainty.

In the first three experiments, we used continuous sequences, where the visual cloud’s STD

changed periodically according to a sinusoid (n = 25; period = 30 s), a random walk (RW1; n = 33;

period = 120 s) or a smoothed random walk (RW2; n = 19; period = 30 s; Figure 2). In an additional

fourth experiment, we inserted abrupt increases or decreases into a sinusoidal evolution of the visual

cloud’s STD (n = 18, period = 30 s, Figure 5). We will first describe the results for the three continu-

ous sequences followed by the discontinuous sequence.

We assigned the sound localization responses and the associated physical visual noise (i.e. the

cloud’s STD) to 20 (resp. 15 for experiment 4) temporally adjacent bins covering the entire period of

each of the three sequences. Each experiment repeated the same 30 s (Sin, RW2) or 120 s (RW1)

period throughout the experiment resulting in ~32 periods for the RW1 and ~130 periods for the Sin

and RW2 sequences. The trial and hence sound onsets were jittered with respect to this periodic

evolution of the visual cloud’s STD resulting in a greater effective sampling rate than expected for

an inter-trial asynchrony of 1.4–2.8 s. In total, we assigned at least 44–87 trials to each bin

(Supplementary file 1-Table 1). We quantified the auditory and visual influence on observers’
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perceived auditory location for each bin based on regression models (separately for each of the 20

temporally adjacent bins). For instance, for bin = 1 we computed:

RA;trial;bin¼1 ¼ LA;trial;bin¼1�A;bin¼1 þLV;trial;bin¼1�V;bin¼1 þ �const;bin¼1 þ etrial;bin¼1

Figure 1. Audiovisual localization paradigm and Bayesian causal inference model for learning visual reliability. (A)

Visual (V) signals (cloud of 20 bright dots) were presented every 200 ms for 32 ms. The cloud’s location mean was

temporally independently resampled from five possible locations (�10˚, �5˚, 0˚, 5˚, 10˚) with an inter-trial

asynchrony jittered between 1.4 and 2.8 s. In synchrony with the change in the cloud’s mean location, the dots

changed their color and a sound was presented (AV signal) which the participants localized using five response

buttons. The location of the sound was sampled from the two possible locations adjacent to the visual cloud’s

mean location (i.e. ±5˚ AV spatial). (B) The generative model for the Bayesian learner explicitly modeled the

potential causal structures, that is whether visual (Vi) signals and an auditory (A) signal were generated by one

common audiovisual source St, that is C = 1, or by two independent sources SVt and SAt, that is C = 2 (n.b. only

the model component for the common source case is shown to illustrate the temporal updating, for complete

generative model, see Figure 1—figure supplement 1). Importantly, the reliability (i.e. 1/variance) of the visual

signal at time t (lt) depends on the reliability of the previous visual signal (lt-1) for both model components (i.e.

common and independent sources).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Generative model for the Bayesian learner.
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Figure 2. Time course of visual noise and relative auditory weights for continuous sequences of visual noise. The

visual noise (i.e. STD of the cloud of dots, right ordinate) and the relative auditory weights (mean across

participants ± SEM, left ordinate) are displayed as a function of time. The STD of the visual cloud was manipulated

as (A) a sinusoidal (period 30 s, N = 25), (B) a random walk (RW1, period 120 s, N = 33) and (C) a smoothed

random walk (RW2, period 30 s, N = 19). The overall dynamics as quantified by the power spectrum is faster for

RW2 than RW1 (peak in frequency range [0 0.2] Hz: Sinusoid: 0.033 Hz, RW1: 0.025 Hz, RW2: 0.066 Hz). The RW1

and RW2 sequences were mirror-symmetric around the half-time (i.e. the second half was the reversed first half).

The visual clouds were re-displayed every 200 ms (i.e. at 5 Hz). The trial onsets, that is audiovisual (AV) signals

(color change with sound presentation, black dots), were interspersed with an inter-trial asynchrony jittered

between 1.4 and 2.8 s. On each trial observers located the sound. The relative auditory weights were computed

based on regression models for the sound localization responses separately for each of the 20 temporally adjacent

bins that cover the entire period within each participant. The relative auditory weights vary between one (i.e. pure

auditory influence on the localization responses) and zero (i.e. pure visual influence). For illustration purposes, the

cloud of dots for the lowest (i.e. V signal STD = 2˚) and the highest (i.e. V signal STD = 18˚) visual variance are

shown in (A).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Time course of the relative auditory weights for continuous sequences of visual noise when

controlling for location of the cloud of dots in the previous trial.
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with RA;trial;bin¼1 = Localization response for trial t and bin 1; LA;trial;bin¼1 or LV;trial;bin¼1 = ‘true’ audi-

tory or visual location for trial t and bin 1; �A;bin¼1 or �V;bin¼1 = auditory or visual weight for bin 1;

�const;bin¼1 = constant term; etrial;bin¼1 = error term. For each bin b, we thus obtained one auditory and

one visual weight estimate. The relative auditory weight for a particular bin was computed as wA,bin

= ßA,bin / (ßA,bin + ßV,bin).

Figure 2 and Figure 3 show the temporal evolution of the STD of the physical visual noise and

observers’ relative auditory weight indices wA,bin. If observers estimate sensory uncertainty instan-

taneously, observer’s relative auditory weight indices should closely track the visual cloud’s STD (Fig-

ure 2). By contrast, we observed systematic biases: while the temporal evolution of the physical

visual noise was designed to be symmetrical for each time period, we observed a temporal asymme-

try for wA in all of the three experiments. For the monotonic sinusoidal sequence, wA was smaller for

the 1st half of each period, when visual noise increased, than the 2nd half, when visual noise

decreased over time (Figure 3A). For the non-monotonic RW1 and RW2 sequences, we observed

more complex temporal profiles, because the visual noise increased and decreased in each half. WA

was larger for increasing visual noise in the 1st as compared to the 2nd half, while wA was smaller for

decreasing visual noise in the 1st as compared to the 2nd half (Figure 3B, C). These impressions

were confirmed statistically in 2 (1st vs. flipped 2nd half) x 9 (bins) repeated measures ANOVAs

(Table 1) showing a significant main effect of the 1st versus flipped 2nd half period for the sinusoidal

(F(1, 24)=12.162, p=0.002, partial h2 = 0.336) and the RW1 sequence (F(1, 32)=14.129, p<0.001,

partial h2 = 0.306). For the RW2 sequence, we observed a significant interaction (F(4.6, 82.9)=3.385,

p=0.010, partial h2 = 0.158), because the visual noise did not change monotonically within each half

period. Instead, monotonic increases and decreases in visual noise alternated at nearly the double

frequency in RW2 as compared to RW1. The asymmetry in the auditory weights’ time course across

the three experiments suggested that the visual noise in the past influenced observers’ current visual

uncertainty estimate resulting in smaller auditory weights for ascending visual noise and greater

auditory weights for descending visual noise.

To further investigate the influence of past visual noise on observers’ auditory weights, we esti-

mated a regression model in which the relative auditory weights wA for each of the 20 bins were pre-

dicted by the visual STD in the current bin and the difference in STD between the current and the

previous bin (see Equation 2). Indeed, both the current visual STD (p<0.001 for all three sequences;

Sinusoid: t(24)=15.767, Cohen’s d = 3.153; RW1: t(32) = 15.907, Cohen’s d = 2.769; RW2: t(18) =

12.978, Cohen’s d = 2.977, two sided one-sample t test against zero) and the difference in STD

between the current and the previous bin (i.e. Sinusoid t(24) = �3.687, p=0.001, Cohen’s

d = �0.737; RW1 t(32) = �2.593, p=0.014, Cohen’s d = �0.451; RW2 t(18) = -2.395, p=0.028,

Figure 3. Observers’ relative auditory weights for continuous sequences of visual noise. Relative auditory weights wA of the 1st (solid) and the flipped

2nd half (dashed) of a period (binned into 20 bins) plotted as a function of the normalized time in the sinusoidal (red), the RW1 (blue), and the RW2

(green) sequences. Relative auditory weights were computed from auditory localization responses of human observers.
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Cohen’s d = �0.549) significantly predicted observers’ relative auditory weights (for complementary

results of nested model comparisons see Appendix 1 and Supplementary file 1-Table 5). Collec-

tively, these results suggest that observers’ visual uncertainty estimates (as indexed by the relative

auditory weights wA) depend not only on the current sensory signal, but also on the recent history of

the sensory noise. These results were also validated in a control analysis that regressed out and thus

accounted for potential influences of the previous visual location on observers’ sound localization,

suggesting that the effects of past visual uncertainty cannot be explained by effects of past visual

location mean (Appendix 1, Figure 2—figure supplement 1, Supplementary file 1-tables 2-4).

To characterize how human observers use information from the past to estimate current sensory

uncertainty, we compared three computational models that differed in how visual uncertainty is

learnt over time (Figure 4): Model 1, the instantaneous learner, estimates visual uncertainty indepen-

dently for each trial as assumed by current standard models. Model 2, the optimal Bayesian learner,

estimates visual uncertainty by updating the prior uncertainty estimate obtained from past visual sig-

nals with the uncertainty estimate from the current signal. Model 3, the exponential learner, esti-

mates visual uncertainty by exponentially discounting past uncertainty estimates. All three models

account for observers’ uncertainty about whether auditory and visual signals were generated by

common or independent sources by explicitly modeling the two potential causal structures

(Körding et al., 2007) underlying the audiovisual signals (n.b. only the model component pertaining

to the ‘common cause’ case is shown in Figure 1B, for the full model see Figure 1—figure supple-

ment 1). Models were fit individually to observers’ data by sampling from the posterior over param-

eters for each observer (Table 2).

We compared the three models in a fixed and random effects analysis (Penny et al., 2010;

Rigoux et al., 2014) using the Watanabe-Akaike information criterion (WAIC) as appropriate for

evaluating model samples (Gelman et al., 2014) (i.e. a low WAIC indicates a better model, a differ-

ence greater than 10 is considered very strong evidence for a model). In the fixed-effects analysis

(see Table 2 for details), the Bayesian learner was substantially better than the instantaneous learner

across all three experiments, but outperformed the exponential learner reliably only in the sinusoidal

sequence. Likewise, the random-effects analysis based on hierarchical Bayesian model selection

Table 1. Analyses of the temporal asymmetry of the relative auditory weights across the four sequences of visual noise using

repeated measures ANOVAs with the factors sequence part (1st vs. flipped 2nd half), bin and jump position (only for the sinusoidal

sequences with intermittent jumps).

Effect F df1 df2 p Partial h2

Sinusoid Part 12.162 1 24 0.002 0.336

Bin 92.007 3.108 74.584 <0.001 0.793

PartXBin 2.167 2.942 70.617 0.101 0.083

RW1 Part 14.129 1 32 0.001 0.306

Bin 76.055 4.911 157.151 <0.001 0.704

PartXBin 1.225 4.874 155.971 0.300 0.037

RW2 Part 2.884 1 18 0.107 0.138

Bin 60.142 3.304 59.467 <0.001 0.770

PartXBin 3.385 4.603 82.849 0.010 0.158

Sinusoid with intermittent jumps Jump 28.306 2 34 <0.001 0.625

Part 24.824 1 17 <0.001 0.594

Bin 76.476 1.873 31.839 <0.001 0.818

JumpXPart 0.300 2 34 0.743 0.017

JumpXBin 8.383 3.309 56.247 <0.001 0.330

PartXBin 1.641 3.248 55.222 0.187 0.088

JumpXPartXBin 0.640 5.716 97.175 0.690 0.036

Note: The factor bin comprised nine levels in the first three and seven levels in the fourth sequence. In this sequence, the factor Jump comprised three lev-

els. If Mauchly tests indicated significant deviations from sphericity (p<0.05), we report Greenhouse-Geisser corrected degrees of freedom and p values.
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Figure 4. Observed and predicted relative auditory weights for continuous sequences of visual noise. Relative auditory weights wA of the 1st (solid) and

the flipped 2nd half (dashed) of a period (binned into 20 bins) plotted as a function of the normalized time in the sinusoidal (red), the RW1 (blue) and

the RW2 (green) sequences. Relative auditory weights were computed from auditory localization responses of human observers (A), Bayesian (B),

exponential (C), or instantaneous (D) learning models. For comparison, the standard deviation of the visual signal is shown in (E). Please note that all

Figure 4 continued on next page
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(Penny et al., 2010; Rigoux et al., 2014) showed a protected exceedance probability that was sub-

stantially greater for the Bayesian learner (Sin, RW2) or the exponential learner (RW1, RW2) than for

the instantaneous learner (Figure 4F). However, the direct comparison between the Bayesian and

the exponential learner did not provide consistent results across experiments. As shown in

Figure 4A and B, both the Bayesian and the exponential learner accurately reproduced the tempo-

ral asymmetry for the auditory weights across all three experiments.

From the optimal Bayesian learner, we inferred observers’ estimated rate of change in visual reli-

ability (i.e. parameter 1

k
). The sinusoidal sequence was estimated to change at a faster pace (median

k = 7.4 across observers, 95% confidence interval, 95% CI [4.8, 10.8] estimated via bootstrapping)

than the RW1 sequence (median k = 8.1, 95% CI [7.0,14.9]), but slower than the RW2 sequence

(median k = 6.7, 95% CI [4.4,11.2]) indicating that the Bayesian learner accurately inferred that visual

reliability changed at different pace across the three continuous sequences (see legend of Figure 2).

Likewise, the learning rates 1-g of the exponential learner accurately reflect the different rates of

change across the sequences (Sinusoid g ¼ 0.23, 95% CI [0.14, 0.28]; RW1: g ¼ 0.33, 95% CI [0.21,

0.38]; RW2: g ¼ 0.25, 95% CI [0.21, 0.29]). Both the Bayesian and the exponential learner thus esti-

mated a smaller rate of change for the RW1 than for the sinusoidal sequence – although caution

needs to be applied when interpreting these results given the extensive confidence intervals. Fur-

ther, the learning rates of the exponential learner imply that observers gave the visual signals pre-

sented 4.1 (Sinusoid), 5.4 (RW1), and 4.3 (RW2) seconds before the current stimulus 5% of the

weight they assigned to the current visual signal to estimate the visual reliability.

To further disambiguate between the Bayesian and the exponential learner, we designed a fourth

experimental ‘jump sequence’ that introduced abrupt increases or decreases in physical visual noise

at three positions into the sinusoidal sequence (Figure 5A). Using the same analysis approach as for

experiments 1–3, we replicated the temporal asymmetry for the auditory weights (Figure 5B). For all

Figure 4 continued

models were fitted to observers’ auditory localization responses (i.e. not the auditory weight wA). (F) Bayesian model comparison – Random effects

analysis: The matrix shows the protected exceedance probability (color coded and indicated by the numbers) for pairwise comparisons of the

Instantaneous (Inst), Bayesian (Bayes) and Exponential (Exp) learners separately for each of the four experiments. Across all experiments we observed

that the Bayesian or the Exponential learner outperformed the Instantaneous learner (i.e. a protected exceedance probability >0.94) indicating that

observers used the past to estimate sensory uncertainty. However, it was not possible to arbitrate reliably between the Exponential and the Bayesian

learner across all experiments (protected exceedance probability in bottom row).

Table 2. Model parameters (median), absolute WAIC and relative.

DWAIC values for the three candidate models in the four sequences of visual noise.

Sequence Model sA Pcommon s0 k or g WAIC DWAIC

Sinusoid Instantaneous learner 5.56 0.63 8.95 - 81931.2 109.9

Bayesian learner 5.64 0.65 9.03 k: 7.37 81821.3 0

Exponential discounting 5.62 0.64 9.02 g : 0.23 81866.9 45.6

RW1 Instantaneous learner 6.30 0.69 8.46 - 110051.2 89.0

Bayesian learner 6.29 0.72 8.68 k: 8.06 109962.2 0

Exponential discounting 6.26 0.70 8.75 g : 0.33 109929.9 �32.3

RW2 Instantaneous learner 6.36 0.72 10.79 - 62576.4 201.3

Bayesian learner 6.49 0.78 10.9 k: 6.7 62375.2 0

Exponential discounting 6.46 0.73 11.0 g : 0.25 62421.5 46.3

Sinusoid with intermittent jumps Instantaneous learner 6.38 0.65 8.19 - 83891.4 94.9

Bayesian learner 6.45 0.68 8.26 k: 6.13 83796.5 0

Exponential discounting 6.43 0.67 8.20 g : 0.24 83798.1 1.64

Note: WAIC values were computed for each participant and summed across participants. A low WAIC indicates a better model. DWAIC is relative to the

WAIC of the Bayesian learner.
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three ‘jump positions’, wA was significantly smaller for the 1st half of each period, when visual noise

increased, than the 2nd half, when visual noise decreased over time. The 3 (jump positions) x 2 (1st

vs. flipped 2nd half) x 7 (bins) repeated measures ANOVA showed a significant main effect of 1st

versus flipped 2nd period’s half (F(1,17) = 24.824, p<0.001, partial h2 = 0.594), while this factor was

not involved in any higher-order interaction (see Table 1). Further, in a regression model the current

visual STD (t(17) = 11.655, p<0.001, Cohen’s d = 2.747) and the difference between current and

Figure 5. Time course of visual noise and relative auditory weights for sinusoidal sequence with intermittent jumps

in visual noise (N = 18). (A) The visual noise (i.e. STD of the cloud of dots, right ordinate) is displayed as a function

of time. Each cycle included one abrupt increase and decrease in visual noise. The sequence of visual clouds was

presented every 200 ms (i.e. at 5 Hz) while audiovisual (AV) signals (black dots) were interspersed with an inter-trial

asynchrony jittered between 1.4 and 2.8 s. (B, C) Relative auditory weights wA of the 1st (solid) and the flipped 2nd

half (dashed) of a period (binned into 15 bins) plotted as a function of the time in the sinusoidal sequence with

intermitted inner (light gray), middle (gray), and outer (dark gray) jumps. Relative auditory weights were computed

from auditory localization responses of human observers (B) and the Bayesian learning model (C). Please note that

all models were fitted to observers’ auditory localization responses (i.e. not the auditory weight wA).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Time course of relative auditory weights and visual noise for the sinusoidal sequence with

intermittent jumps in visual noise for the exponential and instantaneous learning models.

Figure supplement 2. Time course of relative auditory weights and root mean squared error of the computational

models before and after the jumps in the sinusoidal sequence with intermittent jumps.
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previous STD (t(17) = �4.768, p<0.001, Cohen’s d = �1.124) significantly predicted the relative audi-

tory weights. Thus, we replicated our finding that the visual noise in the past influenced observers’

current visual uncertainty estimate as indexed by the relative auditory weights wA.

Bayesian model comparison using a fixed-effects analysis showed that both the Bayesian learner

and the exponential learner substantially outperformed the instantaneous learner (see Table 2).

However, consistent with our Bayesian model comparison results for the continuous sequences, the

Bayesian learner did not provide a better explanation for observers’ responses than the exponential

learner (DWAIC = +2, see Table 2, Figure 5C and Figure 5—figure supplement 1A). Likewise, a

random-effects analysis based on hierarchical Bayesian model selection showed that the Bayesian

and the exponential learners outperformed the instantaneous learner, but again we were not able to

adjudicate between the Bayesian and exponential learner (Figure 4F, see also methods and results

in Appendix 1, Figure 5—figure supplement 2 and Supplementary file 1-Table 6 for further analy-

ses justifying the choice of continuous learning models in the jump sequence).

In summary, across four experiments that used continuous and discontinuous sequences of visual

noise, we have shown that the Bayesian or exponential learners outperform the instantaneous

learner. However, across the four experiments we were not able to decide whether observers

adapted to changes in visual noise according to a Bayesian or an exponential learner. The key fea-

ture that distinguishes between the Bayesian and the exponential learner is that only the Bayesian

learner adapts dynamically based on its uncertainty about its visual reliability estimates. As a conse-

quence, the Bayesian learner should adapt faster than the exponential learner to increases in physi-

cal visual noise (i.e. spread of the visual cloud) but slower to decreases in visual noise. From the

Bayesian learner’s perspective, the faster learning for increases in visual noise emerges because it is

unlikely that visual dots form a large spread cloud under the assumption that the true visual spread

of the cloud is small. Conversely, the Bayesian learner will adapt more slowly to decreases in visual

variance, because under the assumption of a visual cloud with a large spread visual dots may form a

small cloud by chance. Indeed, previous research has shown that observers adapt their variance esti-

mates faster for changes from small to large than for changes from large to small variance

(Berniker et al., 2010). However, these results have been shown for learning about a hidden variable

such as the prior that defines the spatial distribution from which an object’s location is sampled. In

our study, we manipulated the variance of the likelihood, that is the variance of the clouds of dots.

Asymmetric differences in adaptation rate between the exponential and the Bayesian learner

should thus be amplified if we increase observer’s uncertainty about its visual reliability estimate by

reducing the number of dots of the visual cloud from 20 to 5 dots. Based on simulations, we there-

fore explored whether we could experimentally discriminate between the Bayesian and exponential

learner using continuous sinusoidal or discontinuous ‘jump’ sequences with visual clouds of only five

dots. For the two sequences, we simulated the sound localization responses of 12 observers based

on the Bayesian learner model and fitted the Bayesian and exponential learner models to the

responses of each simulated Bayesian observer. Figure 6 shows observers’ auditory weights index-

ing their estimated visual reliability across time that we obtained from the fitted responses of the

Bayesian (blue) and the exponential learner (green). The simulations reveal the characteristic differ-

ences in how the Bayesian and the exponential learner adapt their visual uncertainty estimates to

increases and decreases in visual noise. As expected, the Bayesian learner adapts its visual uncer-

tainty estimates faster than the exponential learner to increases in visual noise, but slower to

decreases in visual noise. Nevertheless, these differences are relatively small, so that the difference

in mean log likelihood between the Bayesian and exponential learner is only �1.82 for the sinusoidal

sequence and �2.74 for the jump sequence.

Next, we investigated whether our experiments successfully mimicked situations in which observ-

ers benefit from integrating past and current information to estimate their sensory uncertainty. We

compared the accuracy of the instantaneous, exponential and Bayesian learner’s visual uncertainty

estimates in terms of their mean absolute deviation (in percentage) from the true variance. For

Gaussian clouds of 20 dots, the instantaneous learner’s error in the visual uncertainty estimates of

21.7% is reduced to 13.7% and 14.9% for the exponential and Bayesian learners, respectively (with

best fitted g = 0.6, in the sinusoidal sequence). For Gaussian clouds composed of only five dots, the

exponential and Bayesian learners even cut down the error by half (i.e. 46.8% instantaneous learner,

29.5% exponential learner, 23.9% Bayesian learner, with best fitted g = 0.7).
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Figure 6. Time course of the relative auditory weights, the standard deviation (STD) of the visual cloud and the

STD of the visual uncertainty estimates. (A) Relative auditory weights wA of the 1st (solid) and the flipped 2nd half

(dashed) of a period (binned into 15 bins) plotted as a function of the time in the sinusoidal sequence. Relative

auditory weights were computed from the predicted auditory localization responses of the Bayesian (blue) or

exponential (green) learning models fitted to the simulated localization responses of a Bayesian learner based on

visual clouds of 5 dots. (B) Relative auditory weights wA computed as in (A) for the sinusoidal sequence with

intermitted jumps. Only the outer-most jump (dark brown in Figure 5B/C and Figure 5—figure supplement 1) is

shown. (C, D) STD of the visual cloud of 5 dots (gray) and the STD of observers’ visual uncertainty as estimated by

the Bayesian (blue) and exponential (green) learners (that were fitted to the simulated localization responses of a

Figure 6 continued on next page
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Collectively, these simulation results suggest that even in situations in which observers benefit

from combining past with current sensory inputs to obtain more precise uncertainty estimates, the

exponential learner is a good approximation of the Bayesian learner, making it challenging to disso-

ciate the two experimentally based on noisy human behavioral responses.

Discussion
The results from our four experiments challenge classical models of perceptual inference where a

perceptual interpretation is obtained using a likelihood that depends solely on the current sensory

inputs (Ernst and Banks, 2002). These models implicitly assume that sensory uncertainty (i.e. likeli-

hood variance) is instantaneously and independently accessed from the sensory signals on each trial

based on initial calibration of the nervous system (Jacobs and Fine, 1999). Most prominently, in the

field of cue combination it is generally assumed that sensory signals are weighted by their uncertain-

ties that are estimated only from the current sensory signals (Alais and Burr, 2004; Ernst and Banks,

2002; Jacobs, 1999) (but see Mikula et al., 2018; Triesch et al., 2002).

By contrast, our results demonstrate that human observers integrate inputs weighted by uncer-

tainties that are estimated jointly from past and current sensory signals. Across the three continuous

and the one discontinuous jump sequences, observers’ current visual reliability estimates were influ-

enced by visual inputs that were presented 4–5 s in the past albeit their influence amounted to only

5% of the current visual signals.

Critically, observers adapted their visual uncertainty estimates flexibly according to the rate of

change in the visual noise across the experiments. As predicted by both Bayesian and exponential

learning models, observers’ visual reliability estimates relied more strongly on past sensory inputs,

when the visual noise changed more slowly across time. While observers did not explicitly notice

that each of the four experiments was composed of repetitions of temporally symmetric sequence

components, we cannot fully exclude that observers may have implicitly learnt this underlying tem-

poral structure. However, implicit or explicit knowledge of this repetitive sequence structure should

have given observers the ability to predict and preempt future changes in visual reliability and there-

fore attenuated the temporal lag of the visual reliability estimates. Put differently, our experimental

choice of repeating the same sequence component over and over again in the experiment cannot

explain the influence of past signals on observers’ current reliability estimate, but should have

reduced or even abolished it.

Importantly, the key feature that distinguishes the Bayesian from the exponential learner is how

the two learners adapt to increases versus decreases in visual noise. Only the Bayesian learner repre-

sents and accounts for its uncertainty about its visual reliability estimates. As compared to the expo-

nential learner, it should therefore adapt faster to increases but slower to decreases in visual noise

(e.g. see Berniker et al., 2010). Our simulation results show this profile qualitatively, when the learn-

er’s uncertainty about its visual reliability estimate is increased by reducing the number of dots (see

Figure 6). But even for visual clouds of five dots, the differences in learning curves between the

Bayesian and exponential learner are very small making it difficult to adjudicate between them given

noisy observations from real observers. Unsurprisingly, therefore, Bayesian model comparison

showed consistently across all four experiments that observers’ localization responses can be

explained equally well by an optimal Bayesian and an exponential learner. These results converge

with a recent study showing that learning about a hidden variable such as observers’ priors can be

accounted for by an exponential averaging model (Norton et al., 2019).

Collectively, our experimental and simulation results suggest that under circumstances where

observers substantially benefit from combining past and current sensory inputs for estimating sen-

sory uncertainty, optimal Bayesian learning can be approximated well by more simple heuristic strat-

egies of exponential discounting that update sensory weights with a fixed learning rate irrespective

of observers’ uncertainty about their visual reliability estimate (Ma and Jazayeri, 2014; Shen and

Figure 6 continued

Bayesian learner) as a function of time for the sinusoidal sequence (C) and in the sinusoidal sequence with

intermitted jumps (D). Note that only an exemplary time course from 600 to 670 s after the experiment start is

shown.
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Ma, 2016). Future research will need to assess whether observers adapt their visual uncertainty esti-

mates similarly if visual noise is manipulated via other methods such as stimulus luminance, duration,

or blur.

From the perspective of neural coding, our findings suggest that current theories of probabilistic

population coding (Beck et al., 2008; Ma et al., 2006; Hou et al., 2019) may need to be extended

to accommodate additional influences of past experiences on neural representations of sensory

uncertainties. Alternatively, the brain may compute sensory uncertainty using strategies of temporal

sampling (Fiser et al., 2010).

In conclusion, our study demonstrates that human observers do not access sensory uncertainty

instantaneously from the current sensory signals alone, but learn sensory uncertainty over time by

combining past experiences and current sensory inputs as predicted by an optimal Bayesian learner

or approximate strategies of exponential discounting. This influence of past signals on current sen-

sory uncertainty estimates is likely to affect learning not only at slower timescales across trials (i.e. as

shown in this study), but also at faster timescales of evidence accumulation within a trial

(Drugowitsch et al., 2014). While our research unravels the impact of prior sensory inputs on uncer-

tainty estimation in a cue combination context, we expect that they reveal fundamental principles of

how the human brain computes and encodes sensory uncertainty.

Materials and methods

Participants
Seventy-six healthy volunteers participated in the study after giving written informed consent (40

female, mean age 25.3 years, range 18–52 years). All participants were naı̈ive to the purpose of the

study. All participants had normal or corrected-to normal vision and reported normal hearing. The

study was approved by the human research review committee of the University of Tuebingen

(approval number 432 2007 BO1) and the research review committee of the University of Birming-

ham (approval number ERN_11–0470P).

Stimuli
The visual spatial stimulus was a Gaussian cloud of twenty bright gray dots (0.56˚ diameter, vertical

STD 1.5˚, luminance 106 cd/m2) presented on a dark gray background (luminance 62 cd/m2, i.e. 71%

contrast). The auditory spatial cue was a burst of white noise with a 5 ms on/off ramp. To create a

virtual auditory spatial cue, the noise was convolved with spatially specific head-related transfer func-

tions (HRTFs). The HRTFs were pseudo-individualized by matching participants’ head width, heights,

depth, and circumference to the anthropometry of subjects in the CIPIC database (Algazi et al.,

2001). HRTFs from the available locations in the database were interpolated to the desired locations

of the auditory cue.

Experimental design and procedure
In a spatial ventriloquist paradigm, participants were presented with audiovisual spatial signals. Par-

ticipants indicated the location of the sound by pressing one of five spatially corresponding buttons

and were instructed to ignore the visual signal. Participants did not receive any feedback on their

localization response. The visual signal was a cloud of 20 dots sampled from a Gaussian. The visual

clouds were re-displayed with variable horizontal STDs (see below) every 200 ms (i.e. at a rate of 5

Hz; Figure 1A). The cloud’s location mean was temporally independently resampled from five possi-

ble locations (�10˚, �5˚, 0˚, 5˚, 10˚) on each trial with the inter-trial asynchrony jittered between 1.4

and 2.8 s in steps of 200 ms. In synchrony with the change in the cloud’s location, the dots changed

their color and a concurrent sound was presented. The location of the sound was sampled from ±5˚

visual angle with respect to the mean of the visual cloud. Observers’ visual uncertainty estimate was

quantified in terms of the relative weight of the auditory signal on the perceived sound location. The

change in the dot’s color and the emission of the sound occurred in synchrony to enhance audiovi-

sual binding.
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Continuous sinusoidal and RW sequences
Critically, to manipulate visual noise over time, the cloud’s STD changed at a rate of 5 Hz according

to (i) a sinusoidal sequence, (ii) an RW sequence 1 or (iii) an RW sequence 2 (Figure 2). In all sequen-

ces, the horizontal STD of the visual cloud spanned a range from 2 to 18˚:

i. Experiment1 - Sinusoidal sequence (Sinusoid): A sinusoidal sequence was generated with a
period of 30 s. During the ~65 min of the experiment, each participant completed ~130
cycles of the sinusoidal sequence.

ii. Experiment2 - Random walk sequence 1 (RW1): First, we generated an RW sequence of 60 s
duration using a Markov chain with 76 discrete states and transition probabilities of stay (1/
3), change to lower (1/3) or upper (1/3) adjacent states. To ensure that the RW sequence seg-
ment starts and ends with the same value, this initial 60-s sequence segment was
concatenated with its temporally reversed segment resulting in an RW sequence segment of
120 s duration. Each participant was presented with this 120 s RW1 sequence approximately
32 times during the experiment.

iii. Experiment3 - Random walk sequence 2 (RW2): Likewise, we created a second random-walk
sequence of 15 s duration using a Markov chain with only 38 possible states and transition
probabilities similar to above. The 15-s sequence was concatenated with its temporally
reversed version resulting in a 30-s sequence. The smoothness of this sequence segment was
increased by filtering it (without phase shift) with a moving average of 250 ms. Each partici-
pant was presented with this sequence segment ~130 times.

Generally, a session of a sinusoid, RW1, or RW2 sequence included 1676 trials. Because of experi-

mental problems, four sessions included only 1128, 1143, or 1295 trials. Before the experimental tri-

als, participants practiced the auditory localization task in 25 unimodal auditory trials, 25 audiovisual

congruent trials with a single dot as visual spatial cue and 75 trials with stimuli as in the main

experiment.

Experiment 4 - Sinusoidal sequence with intermittent changes in visual
noise (sinusoidal jump sequence)
To dissociate the Bayesian learner from approximate exponential discounting, we designed a sinu-

soidal sequence (period = 30 s) with intermittent increases/decreases in visual variance (Figure 5).

As shown in Figure 5A, we inserted increases by 8˚ in visual STD at three levels of visual STD: 7.2˚,

8.6˚, 9.6˚ STD. Conversely, we inserted decreases by 8˚ in visual STD at 15.3˚, 16.7˚, 17.7˚ STD. We

inserted jumps selectively in the period sections of high visual variance to make the jumps less

apparent and maximize the chances that observers treated the series as a continuous sequence. As

a result, the up-jumps occurred when the increases in visual variance were fastest (i.e. steeper slope),

while the down-jumps occurred after sections in which the visual variance was relatively constant (i.e.

shallow slope). We factorially combined these 3 (increases) x 3 (decreases) such that each sinewave

cycle included exactly one sudden increase and decrease in visual STD (i.e. nine jump types). Other-

wise, the experimental paradigm and stimuli were identical to the continuous sinusoidal sequence

described above. During the ~80 min of this experiment, each participant completed ~154 cycles of

the sinusoidal sequence including 16–18 cycles for each of the nine jump types. This sinusoidal jump

sequence was expected to maximize differences in adaptation rate for the Bayesian and exponential

learner. If participants continuously update their estimates of the visual reliability, as opposed to

using a change point model (Adams and Mackay, 2007; Heilbron and Meyniel, 2019), the expo-

nential learner will weight past and present uncertainty estimates throughout the entire sequence

according to the same exponential function. By contrast, the Bayesian learner will take into account

its uncertainty about the visual reliability and therefore adapt its visual reliability estimate for jumps

from high to low visual variance (resp. low to high visual reliability, see Figure 6) more slowly than

the exponential learner (see Appendix 1).

Subject numbers and inclusion criteria
Of the 76 subjects, 30 participated in the sinusoidal and the RW1 sequence session. Eight additional

subjects participated only in the RW1 sequence session. Eighteen additional subjects participated in

the RW2 sequence session. One participant completed all three continuous sequences. Twenty sub-

jects participated in the sinusoidal sequence with intermittent changes in visual uncertainty. In total,
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we collected data from 30 participants for the sinusoidal, 38 participants for the RW1, 19 partici-

pants for the RW2, and 20 participants for the sinusoidal jump sequence. The sample sizes of 20–38

participants were based on a pilot experiment, which showed individually significant effects of past

visual noise on the weighting of audiovisual spatial signals in 6/6 pilot participants. From these sam-

ples, we excluded participants if their perceived sound location did not depend on the current visual

reliability (i.e. inclusion criterion p<0.05 in the linear regression; please note that this inclusion crite-

rion is orthogonal to the question of whether participants’ visual uncertainty estimate depends on

visual signals prior to the current trial). Thus, we excluded five participants of the sinusoidal and

RW1 sequence and two participants from the sinusoidal jump sequence. Finally, we analyzed data

from 25 participants for the sinusoidal, 33 participants for the RW1, 19 participants for the RW2, and

18 participants for the sinusoidal jump sequence.

Experimental setup
Audiovisual stimuli were presented using Psychtoolbox 3.09 (Brainard, 1997; Kleiner et al., 2007)

(http://www.psychtoolbox.org) running under Matlab R2010b (MathWorks) on a Windows machine

(Microsoft XP 2002 SP2). Auditory stimuli were presented at ~75 dB SPL using headphones (Sennhe-

iser HD 555). As visual stimuli required a large field of view, they were presented on a 3000 LCD dis-

play (Dell UltraSharp 3007WFP). Participants were seated at a desk in front of the screen in a

darkened booth, resting their head on an adjustable chin rest. The viewing distance was 27.5 cm.

This setup resulted in a visual field of approximately 100˚. Participants responded via a standard

QWERTY keyboard. Participants used the buttons [i, 9, 0, -, = ] with their right hand for localization

responses.

Data analysis
Continuous sinusoidal and RW sequences
At trial onset the visual cloud’s location mean was independently resampled from five possible loca-

tions (�10˚, �5˚, 0˚, 5˚, 10˚). Concurrently, the cloud’s dots changed their color and a sound was pre-

sented sampled from ±5˚ visual angle with respect to the mean of the visual cloud. The inter-trial

asynchrony was jittered between 1.4 and 2.8 s in steps of 200 ms. Therefore, across the experiment

the trial onsets occurred at different times relative to the period of the changing visual cloud’s STD

resulting in a greater effective sampling rate than provided if the inter-trial asynchrony had been

fixed.

For each period of the three continuous sinusoidal and RW sequences, we sorted the trials (i.e.

trial-specific visual cloud’s STD, visual location, auditory location, and observers’ sound localization

responses) into 20 temporally adjacent bins that covered one complete period of the changing visual

STD. This resulted in about 1676 trials in total/20 bins = approximately 80 trials on average per bin

in each subject (more specifically: a range of 52–96 (Sin), 52–92 (RW 1), or 71–93 (RW2) trials, for

details see Supplementary file 1-Table 1).

We quantified the influence of the auditory and visual locations on observers’ perceived auditory

location for each bin by estimating a regression model separately for each bin (i.e. one regression

model per bin). For instance, for bin = 1 we computed:

RA;trial;bin¼1 ¼ LA;trial;bin¼1�A;bin¼1 þLV;trial;bin¼1�V;bin¼1 þ �const;bin¼1 þ etrial;bin¼1 (1)

with RA;trial;bin¼1 = Localization response for trial t and bin 1; LA;trial;bin¼1 or LV;trial;bin¼1 = ‘true’ audi-

tory or visual location for trial t and bin 1; �A;bin¼1 or �V;bin¼1 = auditory or visual weight for bin 1;

�const;bin¼1 = constant term; etrial;bin¼1 = error term for trial t and bin 1. For each bin b, we thus

obtained one auditory and one visual weight estimate. The relative auditory weight for a particular

bin was computed as wA,bin = ßA,bin / (ßA,bin + ßV,bin) (Figure 2A–C).

By design, the temporal evolution of the physical visual variance (i.e. STD of the visual cloud) is

symmetric for each period in the sinusoidal, RW1 and RW2 sequences. In other words, for physical

visual noise, the 1st half and the flipped 2nd half within a period are identical (Figure 3E). Given this

symmetry constraint, we evaluated the influence of past visual noise on participants’ auditory weight

wA,bin by comparing the wA for the bins in the 1st half and the flipped 2nd half in a repeated meas-

ures ANOVA. If human observers estimate visual uncertainty by combining prior with current visual

uncertainty estimates as expected for a Bayesian learner, wA should differ between the 1st half and
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the mirror-symmetric flipped 2nd half of the sequence. More specifically, wA should be smaller for

the 1st half in which visual variance increased than for the mirror-symmetric time points of the 2nd

half in which visual variance decreased. To test this prediction, we entered the subject-specific wA,bin

into 2 (1st vs. flipped 2nd half) x 9 (bins, i.e. removing the bins at maximal and minimal visual noise

values) repeated measures ANOVAs separately for the sinusoidal, RW1 and RW2 experiments

(Table 1). For the sinusoidal sequence, we expected a main effect of ‘half’ because the sequence

increased/decreased monotonically within each half period. For the RW1 and RW2 sequences, an

influence of prior visual noise might also be reflected in an interaction effect of ‘half x bin’ because

these sequences increased/decreased non-monotonically within each half period.

To further test whether the noise of past visual signals influenced observers’ current visual uncer-

tainty estimate, we employed a regression model in which the relative auditory weights wA,bin were

predicted by the visual STD in the current bin and the difference in STD between the current and

the previous bin:

wA;bin ¼ sV;bin � sV þ sV;bin �sV;bin�1

� �
�

DsV þ � const þ ebin (2)

with wA,bin = relative auditory weight in bin b; sV,bin = mean visual STD in current bin b or previous

bin b-1; ßconst = constant term; ebin = error term. To allow for generalization to the population level,

the parameter estimates (ß
sV, ßDsV) for each participant were entered into two-sided one-sample

t-tests at the between-subject random-effects level.

Sinusoidal sequence with intermittent changes in visual uncertainty
For each period of the sinusoidal sequence with intermittent changes, we sorted the values for the

physical visual cloud’s variance (i.e. the cloud’s STD) and sound localization responses into 15 tempo-

rally adjacent bins which were positioned to capture the jumps in visual noise. For analysis of these

sequences, we recombined the first and second halves of the 3 (increases at low, middle, high) x 3

(decreases at low, middle, high) sinewave cycles into three types of sinewave cycles such that both

jumps were at low (=outer jump), middle (=middle jump), or high (=inner jump) visual noise. This

recombination makes the simplifying assumption that the jump position of the first half will have

negligible effects on participants’ uncertainty estimates of the second half. As a result of this recom-

bination, each bin comprised at least 44–51 trials across participants (Supplementary file 1-Table

1). As for the continuous sequences, we quantified the auditory and visual influence on the per-

ceived auditory location for each bin based on separate regression models for the 15 temporally

adjacent bins (see Equation 1). Next, we independently computed the relative auditory weight wA,

bin = ßA,bin / (ßA,bin + ßV,bin) for each of the 15 temporally adjacent bins. We statistically evaluated

the influence of past visual noise on participants’ auditory weight on the wA in terms of the differ-

ence between 1st half and flipped 2nd half using a 2 (1st vs. flipped 2nd half) x 7 (bins) x 3 (jump:

inner, middle, outer) repeated measures ANOVAs (Table 1).

Computational models (for continuous and discontinuous sequences)
To further characterize whether and how human observers use their uncertainty about previous visual

signals to estimate their uncertainty of the current visual signal, we defined and compared three

models in which visual reliability (lV) was (1) estimated instantaneously for each trial (i.e. instanta-

neous learner), was updated via (2) Bayesian learning or (3) exponential discounting (i.e. exponential

learner) (Figure 1—figure supplement 1).

In the following, we will first describe the generative model that accounts for the fact that (1)

visual uncertainty usually changes slowly across trials (i.e. time-dependent uncertainty changes) and

(2) auditory and visual signals can be generated by one common or two independent sources (i.e.

causal structure). Using this generative model as a departure point, we then describe how the instan-

taneous learner, the Bayesian learner and the exponential learner perform inference. Finally, we will

explain how we account for participants’ internal noise and predict participants’ responses from

each model (i.e. the experimenter’s uncertainty).

Generative model
On each trial t, the subject is presented with an auditory signal At, from a source SA,t, (see Figure 1—

figure supplement 1) together with a visual cloud of dots at time t arising from a source, SV,t, drawn
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from a Normal distribution SV,t ~ N(0, 1=lS) with the spatial reliability (i.e. inverse of the spatial vari-

ance): lS ¼ 1=s2

S. Critically, SA,t and SV,t, can either be two independent sources (C = 2) or one com-

mon source (C = 1): SA,t = SV,t = St (Körding et al., 2007).

We assume that the auditory signal is corrupted by noise, so that the internal signal is At ~ N(SA,t,

1=lA). By contrast, the individual visual dots (presented at high visual contrast) are assumed to be

uncorrupted by noise, but presented dispersed around the location SV,t according to Vi,t ~ N(Ut,

1=lV;t), where Ut ~ N(SV,t, 1=lV;t). The dispersion of the individual dots, 1=lV;t; is assumed to be

identical to the uncertainty about the visual mean, allowing subjects to use the dispersion as an esti-

mate of the uncertainty about the visual mean.

The visual reliability of the visual cloud, lV;t ¼ 1=s2

V;t, varies slowly at the re-display rate of 5 Hz

according to a log RW: loglV;t ~N loglV;t�1; 1=k
� �

with 1

k
being the variability of lV;t in log space. We

also use this log RW model to approximate learning in the four jump sequence (see Behrens et al.,

2007).

The generative models of the instantaneous, Bayesian, and exponential learners all account for

the causal uncertainty by explicitly modeling the two potential causal structures. Yet, they differ in

how they estimate the visual uncertainty on each trial, which we will describe in greater detail below.

Observer inference
The instantaneous, Bayesian, and exponential learners invert this (or slightly modified, see below)

generative model during perceptual inference to compute the posterior probability of the auditory

location, SA,t, given the observed At and Vi,t. The observer selects a response based on the posterior

using a subjective utility function which we assume to be the minimization of the squared error (SA,t -

Strue)
2. For all models, the estimate for the location of the auditory source is obtained by averaging

the auditory estimates under the assumption of common and independent sources by their respec-

tive posterior probabilities (i.e. model averaging, see Figure 1—figure supplement 1):

ŜA;t ¼ ŜA;C¼1;t P Ct ¼ 1jAt ;V1:n;t

� �
þ ŜA;C¼2;t 1�P Ct ¼ 1jAt ;V1:n;t

� �� �
(3)

where ŜA;C¼1;t and ŜA;C¼2;t depend on the model (see below), and P C ¼ 1jAt ;V1:n;t

� �
is the posterior

probability that the audio and visual stimuli originated from the same source according to Bayesian

causal inference (Körding et al., 2007).

P Ct ¼ 1jAt ;V1:n;t

� �
¼

P At ;V1:n;t jC¼ 1
� �

P Ct ¼ 1ð Þ
� �

P At ;V1:n;t jCt ¼ 1
� �

P Ct ¼ 1ð ÞÞþ P At ;V1:n;t jCt ¼ 2
� ��

1�P Ct ¼ 1ð Þð
� � (4)

Finally, for all models, we assume that the observer pushes the button associated with the posi-

tion closest to ŜA;t. In the following, we describe the generative and inference models for the instan-

taneous, Bayesian, and exponential learners. For the Bayesian learner, we focus selectively on the

model component that assumes a common cause, C = 1 (for full derivation including both model

components, see Appendix 2).

Model 1: Instantaneous learner
The instantaneous learning model ignores that the visual reliability (i.e. the inverse of visual uncer-

tainty) of the current trial depends on the reliability of the previous trial. Instead, it estimates the

visual reliability independently for each trial from the spread of the cloud of visual dots:

P SA;t;Ut ;lV;tj A1:t ; V1:n;1:t

� �
¼ P SA;t;Ut;lV;tj At; V1:n;t

� �
¼

P C¼ 1jAt ;V1:n;t

� �
PC¼1 St;Ut;lV;tj At; V1:n;t

� �
þ

P C¼ 2jAt ;V1:n;t

� �
PC¼2 SA;t;Ut;lV;tj At ; V1:n;t

� �
¼

P C¼ 1jAt ;V1:n;t

� �P Stð ÞP AtjStð ÞPC¼1 UtjSt;lV;t
� �

P V1:n;tjUt ;lV;t
� �

P lV;t
� �

Z1
þ

1�P C¼ 1jAt ;V1:n;t

� �� �
P SA;t
� �

P AtjSA;t
� �

=Z2:

(5)

with Z1; Z2 as normalization constants.

Apart from P C ¼ 1jAt;Vtð Þ, these terms are all normal distributions, while we assume in this model

that P lV;t
� �

is uninformative. Hence, visual reliability is computed from the variance:
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clVt ¼ 1= s2

Vt þ
s2

Vt

n

� �
where s2

Vt ¼ 1= n� 1ð Þ
Pn

i¼1

Vi;t � �Vi;t

� �2
is the sample variance (and �Vt ¼ 1=n

Pn

i¼1

Vi;t is

the sample mean). The causal component estimates are given by:

ŜA;C¼1;t ¼
l̂V ;t �Vt þlAAt

lV ;t þlAþlS
(6)

ŜA;C¼2;t ¼
lAAt

lAþlS
(7)

These two components are then combined based on the posterior probabilities of common and

independent cause models (see Equation 3). This model is functionally equivalent to a Bayesian

causal inference model as described in Körding et al., 2007, but with visual reliability computed

directly from the sample variance rather than a fixed unknown parameter (which the experimenter

estimates during model fitting).

Model 2: Bayesian learner
The Bayesian learner capitalizes on the slow changes in visual reliability across trials and combines

past and current inputs to provide a more reliable estimate of visual reliability and hence auditory

location. It computes the posterior probability based on all auditory and visual signals presented

until time t (here only shown for C = 1, see Appendix 2).

According to Bayes rule, the joint probability of all variables until time t can be written based on

the generative model as:

P lV;1:t; A1:t; U1:t; V1:n;1:t;S1:t
� �

¼

P A1jS1ð ÞP V1:n;1jU1;lV;1
� �

P U1jS1;lV;1
� �

P S1ð ÞP lV;1
� �

Qt

k¼2

P AkjSkð ÞP V1:n;kjUk;lV;k
� �

P UkjSk;lV;k
� �

P lV;kjlV;k�1

� �
P Skð Þ

(8)

As above, the visual likelihood is given by the product of individual Normal distributions for each

dot i: P V1:n;tjUt;lV;t
� �

¼
Qn

i¼1

N Vi;tjUt;1=lV;t
� �

, and P UtjSt;lV;t
� �

¼N UtjSt;1=lV;t
� �

:

The prior P Stð Þ is a Normal distribution N Stj0; 1=lSð Þ and the auditory likelihood.

P At;jSt
� �

is a Normal distribution N At jSt; 1=lAð Þ. As described in the generative model,

P lV;kjlV;k�1

� �
is given by loglV;t ~N loglV;t�1; 1=k

� �
.

Importantly, only the visual reliability, lV;t, is directly dependent on the previous trial

(P lV;k; lV;k�1

� �
¼ P lV;kjlV;k�1

� �
P lV;k�1

� �
6¼ P lV;k

� �
P lV;k�1

� �
). Because of the Markov property (i.e.

lV;t depends only on lV;t�1), the joint distribution for time t can be written as

P lV;t; lV;t�1; At; Ut; V1:n;t;St
� �

¼ P AtjStð ÞP UtjSt;lV;t
� �

P V1:njUt;lV;t
� �

P lV;tjlV;t�1

� �
P lV;t�1jV1:n;t�1;At�1

� �
P Stð Þ:

(9)

Hence, the joint posterior probability over location and visual reliability given a stream of auditory

and visual inputs can be rewritten as:

P St;Ut ;lV;tj A1:t; V1:n;1:t

� �
¼

P Stð ÞP AtjStð ÞP UtjSt;lV;t
� �

P V1:njUt;lV;t
� �R

P lV;tjlV;t�1

� �
P lV;t�1jV1:n;t�1;At�1

� �
dlV;t�1=Z:

(10)

As this equation cannot be solved analytically, we obtain an approximate solution by factorizing

the posterior in terms of the unknown variables (St;Ut;lV;t) according to the method of variational

Bayes (Bishop, 2006). In this approximate method (for details see Appendix 2), the posterior is fac-

torized into three terms, each a normal distribution:

P St;Ut;lV;tj At;V1:n;t

� �
»q St;Ut;lV;t t

� �
¼ q Stð Þ*q Utð Þ*q lV;t t

� �
:

In order to estimate the set of parameters (mean and variance) of q Stð Þ, q Utð Þ and q lV;tt
� �

, the

Free Energy is minimized iteratively (and thereby the Kullback–Leibler divergence between the true
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and approximate distribution), until a convergence criterion is reached (here, the change in each fit-

ted parameter is less than 0.0001 between iterations).

This is done separately for the common cause model component (C = 1) and the independent

cause model component (C = 2). The auditory location, for the common cause model is based on

the approximation over the posterior location of ŜA;C¼1;t from, q1 Stð Þ ¼ N ŜA;C¼1;t;s1;t

� �
. The auditory

location for the independent cause model is simply computed as ŜA;C¼2;t ¼ At= 1þ s2

A=s
2

0

� �
, because

it is independent of the visual signal.

The marginal model evidence is estimated based on the minimized Free Energy for each mode

component, P At ;V1:n;tjC ¼ 1
� �

, respectively P At ;V1:n;t jC ¼ 2
� �

to form the posterior probability

P C ¼ 1jAt ;V1:n;t

� �
, as described above in Equation 4. These values can then be used to compute

the predicted responses for a particular participant according to Equation 3.

Model 3: Exponential learner
Finally, the observer may approximate the full Bayesian inference of the Bayesian learner by a more

simple heuristic strategy of exponential discounting. In the exponential discounting model, the

observer learns the visual reliability by exponentially discounting past visual reliability estimates:

l̂V ;t�1 ¼ 1=s2

Vt 1�gð Þþ l̂V ;t�1g (11)

where s2

Vt ¼ 1= n� 1ð Þ
Pn

i¼1

Vi;t � �Vi;t

� �2
is the sample variance and �Vt ¼ 1=n

Pn

i¼1

Vi;t is the sample mean.

Similar to the optimal Bayesian learner (above), this observer model uses the past to compute the

current reliability, but it does so based on a fixed learning rate 1 - g. Computation is otherwise per-

formed in accordance with models 1 and 2, Equations 3-4 and 6-7.

Assumptions of the computational models: motivation and caveats
Computational models inherently make simplifying assumptions about the generation of the sensory

inputs and observers’ inference.

First, we modeled that visual signals (i.e. the cloud’s mean) were sampled from a Gaussian, while

they were sampled from a uniform discrete distribution (i.e. [�10˚, �5˚, 0˚, 5˚, 10˚]) in the experiment.

Gaussian assumptions about the stimuli locations have nearly exclusively been made in the recent

series of studies focusing on Bayesian Causal Inference in multisensory perception (Körding et al.,

2007; Rohe and Noppeney, 2015b; Rohe and Noppeney, 2015a). Because visual signals have

been sampled from a wide range of visual angle (i.e. 20˚) and are corrupted by physical (i.e. cloud of

dots) and internal neural noise, we used the simplifying assumption of a Gaussian spatial prior con-

sistent with previous research.

Second, we assumed that the auditory signal location is sampled from a Gaussian, while the

experiments presented sounds ±5˚ from the visual location. These Gaussian assumptions about

sound location can be justified by the fact that observers are known to be limited in their sound

localization ability, particularly when generic HRTFs were used to generate spatial sounds. Moreover,

because sounds are presented together with visual signals, it is even harder for observers to obtain

an accurate estimate of the sound’s location.

Third, in the experiment we generated the cloud of dots directly from a Gaussian distribution cen-

tred on St. By contrast, in the model we introduced a hidden variable Ut that is sampled from a

Gaussian centred on St. The visual cloud of dots is then centred on this hidden variable Ut. We intro-

duced this additional hidden variable Ut to account for observers’ additional causal uncertainty in

natural environments, in which even signals from a common source may not fully coincide in space.

Critically, the dispersion of the cloud of dots is set to be equal to the STD of the distribution from

which Ut is sampled, so that the cloud’s STD informs observers about the variance of the hidden vari-

able Ut.

Inference by the experimenter
From the observer’s viewpoint, this completes the inference process. However, from the experiment-

er’s viewpoint, the internal variable for the auditory stimulus, At, is unknown and not directly under

the experimenter’s control. To integrate out this unknown variable, we generated 1000 samples of
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the internal auditory value for each trial from the generative process At ~ N(SA,t,true, sA
2 ), where SA,t,

true was the true location the auditory stimulus came from. For each value of At, we obtained a single

estimate ŜA;t (as described above). To link these estimates with observers’ button response data, we

assumed that subjects push the button associated with the position closest to ŜA;t. In this way, we

obtained a histogram of responses for each subject and trial which provide the likelihood of the

model parameters given a subject’s responses: P resptjk;sA;Pcommon; SA;t;true; SV ;t;true
� �

.

Model estimation and comparison
Parameters for each model (for all models: sA, Pcommon = P(C = 1), s0, Bayesian learner: k, exponen-

tial learner: g) were fit for each individual subject by sampling using a symmetric proposal Metropo-

lis-Hasting (MH) algorithm (with At integrated out via sampling, see above). The MH algorithm

iteratively draws samples setn from a probability distribution through a variant of rejection sampling:

if the likelihood of the parameter set is larger than the previous set, the new set is accepted, other-

wise it is accepted with probability L(model|setn)/L(model|setn-1), where L(resp|setn) =

t

Y
P resptjk;sA;Pcommon; SA;t;true; SV ;t;true
� �

(for Bayesian learner). We sampled 4000 steps from four sam-

pling chains with thinning (only using every fourth sampling to avoid correlations in samples), giving

a total of 4000 samples per subject data sets. Convergence was assessed through scale reduction

(using criterion R < 1.1 [Gelman et al., 2013]). Using sampling does not just provide a single param-

eter estimate for a data set (as when fitting maximum likelihood), but can instead be used to assess

the uncertainty in estimation for the data set. The model code was implemented in Matlab (Math-

works, MA) and ran on two dual Xeon workstations. Each sample step, per subject data set, took 30

s on a single core (~42 hr per sampling chain).

Quantitative Bayesian model comparison of the three candidate models was based on the Wata-

nabe-Akaike Information Criterion (WAIC) as an approximation to the out of sample expectation

(Gelman et al., 2013). At the fixed-effects level, Bayesian model comparison was performed by sum-

ming the WAIC over all participants within each experiment. For a random-effects analysis, we trans-

formed the WAIC into log-likelihoods by dividing them by minus 2. We then computed the

protected exceedance probability that one model is better than the other model beyond chance

using hierarchical Bayesian model selection (Penny et al., 2010; Rigoux et al., 2014).

To qualitatively compare the localization responses given by the participants and the responses

predicted by the instantaneous, Bayesian and exponential learner, we computed the auditory weight

wA from the predicted responses of the three models exactly as in the analysis for the behavioral

data. For illustration, we show and compare the model’s wA from the 1st and the flipped 2nd half of

the periods for each of the four experiments (Figure 3, Figure 4, Figure 5B/C and Figure 5—figure

supplement 1).

Parameter recovery
To test the validity of the models, we performed parameter recovery and were able to recover the

generating values with a bias of all parameters smaller than 10% (for full details of bias and variance

across parameters, see Appendix 1 and Supplementary file 1-Table 7).

Simulated localization responses
To further compare the Bayesian and exponential learner and assess whether they can be discrimi-

nated experimentally, we simulated the choices of 12 subjects for the continuous sinusoidal and sinu-

soidal jump sequence using the Bayesian learner model (parameters: sA = 6˚, k = 15, Pcommon = 0.7

and s0 = 12˚). To increase observers’ uncertainty about their visual reliability estimates, we reduced

the number of dots in the visual clouds from 20 to 5 dots where we ensured that the mean and vari-

ance of the five dots corresponded to the experimentally defined visual mean and variance. We then

fitted the Bayesian learner and exponential learner models to each simulated data set (using the

BADS toolbox for likelihood maximization [Acerbi and Ma, 2017]). The fitted parameters for the

Bayesian model, setBayes were very close to the parameters used to generate observers’ simulated

responses (sinusoidal sequence, fitted parameters: sA = 6.11˚, k = 17.5, Pcommon = 0.72 and

s0 = 12.4˚; sinusoidal jump sequence, fitted parameters: sA = 6.08˚, k = 17.3, Pcommon = 0.71 and

s0 = 12.2˚) – thereby providing a simple version of parameter recovery. The parameters of the
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exponential model, setExp (fitted to observers’ responses generated from the Bayesian model) were

very similar to those of the Bayesian learner (sinusoidal sequence: sA = 5.99˚, g = 0.70, Pcommon = 0.61

and s0 = 12.0˚, sinusoidal jump sequence: sA = 6.06˚, g = 0.70, Pcommon = 0.65 and s0 = 12.0˚). More-

over, the fits to the simulated observers’ responses were very close for the two models (Figure 6),

with mean log likelihood difference (log(L(resp|setBayes)) – log(L(resp|setExp))) = 1.82 for the sinusoidal

and 2.74 for the sinusoidal jump sequence (implying a slightly better fit for the Bayesian learner).

Figure 6C and D show the timecourses of observers’ visual uncertainty (STD) as estimated by the

Bayesian and exponential learners.
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Appendix 1

Additional methods and results
Influence of the visual location of the previous trial on observers’ sound
localization responses

We have performed a control regression analysis to assess the influence of the visual location of the

previous trial on observers’ sound localization response. This is important because 200 ms prior to

trial onset and sound presentation, observers were presented with a visual cloud whose mean was

the same as for the previous trial and the cloud’s standard deviation (STD) varied according to a con-

tinuous or discontinuous sequence (see main paper). To quantify the influence of the previous visual

location, we expanded our regression model that we used in the main paper by another regressor

modeling the visual cloud’s location on the previous trial. For instance, for bin = 1, we computed:

RA;trial;bin¼1 ¼ LA;trial;bin¼1 �A;bin¼1 þLV;trial;bin¼1 �V;bin¼1

þLV;trial�1;bin¼1 �Vprevious;bin¼1 þ �const;bin¼1 þ etrial;bin¼1

with RA,trial, bin=1 = localization response for current trial that is assigned to bin 1; LA,trial,bin=1 or LV,

trial,bin=1= ‘true’ auditory or visual location for current trial that is assigned to bin 1; LV,trial-1,bin=1 ‘true’

visual location for corresponding previous trial (for explanatory purposes, we assign here the bin of

the current trial; the previous trial actually falls into a different bin); ßA,bin=1 or ßV,bin=1 = quantified

the influence of the auditory and visual location of the current trial on the perceived sound location

of the current trial for bin 1; ßVprevious,bin=1 quantified the influence of the visual location of the previ-

ous trial on the perceived sound location of the current trial for bin 1. ßconst,bin=1 = constant term;

etrial,bin=1 = error term. For each bin, we thus obtained another visual weight estimate ßVprevious,bin
for the previous location.

First, we averaged ßVprevious,bin across bins and entered these participant-specific bin-averaged

ßVprevious into two-sided one-sample t-tests at the between-subject random effects level. Results: As

shown in Supplementary file 1-Table 2A, this analysis demonstrated that the visual location of the

previous trial significantly influenced observers’ perceived sound location on the current trial in the

Sinusoidal, RW1 and (marginally) the Sinusoidal jump sequence.

Second, we computed the correlation of ßVprevious,bin with the visual noise in the current trials

averaged in a given bin (r(ßVprevious,bin, sVcurrent,bin)) or with the visual noise (i.e. visual cloud’s STD) in

the previous trial averaged within a given bin (r(ßVprevious,bin, sVprevious,bin)). The correlations were

computed over bins within each participant. We entered the participant-specific Fisher z-trans-

formed correlation coefficients into two-sided one-sample t-tests at the between-subject random-

effects level (see Supplementary file 1-Table 2, section B and C). Results: These analyses demon-

strated that the influence of the visual location on the previous trial was not correlated with the visual

cloud’s STD on the current or previous trial (apart from one significant p-value for the sinusoidal

jump sequence, but after Bonferroni correction for the eight additional statistical comparisons this

p-value is no longer statistically significant either). This analysis already suggests that the previous

visual location is unlikely responsible for the effects of the previous STD on observers’ perceived

sound location.

Third and most importantly, this regression model provides us with weights for the auditory (ßA,

bin) and visual (ßV,bin) locations in the current trial from a regression model that regressed out the

influence of the previous visual location. We used those auditory (ßA,bin) and visual (ßV,bin) weights as

in the main paper to compute bin-specific wA,bin = ßA,bin / (ßA,bin + ßV,bin). Following exactly the

same procedures as in the main paper, we then assessed in a repeated-measures ANOVA whether

these wA,bin differed between first and second half (see Supplementary file 1-Table 3). Moreover,

we repeated a second regression model analysis to assess whether wA,bin was predicted not only by

the visual cloud’s STD of the current, but also of the previous bin using the following regression

model (i.e. Equation 2 in the main text): wA,bin = sV,bin * ß
sV + (sV,bin – sV,bin-1)* ß

DsV + ßconst + ebin
with wA,bin = relative auditory weight in bin b; sV,bin = mean visual STD in current bin b or previous

bin b-1; ßconst = constant term; ebin = error term. To allow for generalization to the population level,

the parameter estimates (ß
sV, ßDsV) for each subject were entered into two-sided one-sample t-tests

at the between-subject random-effects level (see Supplementary file 1-Table 4). Results: These con-

trol analyses (see Figure 2—figure supplement 1, Supplementary file 1-Table 4) replicate our
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initial analyses reported in the main manuscript. Collectively, they provide further evidence that the

effect of previous visual location on observers’ perceived sound location cannot explain the effect of

prior visual reliability that are the key focus of our paper.

Nested model comparison to assess the effect of past visual noise on
observers’ auditory weights
To assess the effect of past visual noise on auditory weights (Equation 2 in the main text), we also

formally compared two nested linear mixed-effects models to predicts observers’ relative auditory

weights wA,bin separately for the Sin, RW1, and RW2 sequences. The reduced model included only

the STD of the current bin as fixed effects. The full model included both the STD of the current bin

and the difference in STD between the current and the previous bin as fixed effects. Both the

reduced and the full model included participants as random effects. After fitting the two models

using maximum likelihood estimation, we compared them using loglikelihood ratio tests and the

Bayesian Inference Criterion as an approximation to the model evidence (see Supplementary file 1-

Table 5). The model comparison demonstrated that the full model including the difference in STD

provided a better explanation of observers relative auditory weights wA,bin across all four sequences.

This corroborates that observers estimate sensory uncertainty by combining information from past

and current sensory inputs.

Characterization of observer’s behavior and the model predictions
before and after the jumps in visual reliability
One critical question in the discontinuous sinusoidal jump sequence is whether observers continue

combining past with current inputs to adapt their visual uncertainty estimates. One may argue that

observers detect the discontinuity, ‘reset’ the estimation of visual uncertainty after the jump and

therefore do not integrate information from before the jump. In that case Bayesian learning models

would not be ideal for modeling observers’ behavior in the jump sequence and better accommo-

dated by Bayesian change-point detection model (Adams and Mackay, 2007; Heilbron and Mey-

niel, 2019).

First, we inserted the jumps selectively in the period sections in which the visual variance was

greater, so that changes in visual variance were more difficult to detect. This experimental choice

minimized the chances that observers ‘reset’ their estimation of visual uncertainty.

Second, we assessed observers’ estimation strategy at a greater temporal resolution before and

after the jumps. To estimate the relative auditory weight wA at a greater resolution, we applied sep-

arate regression models to individual sampling points of the visual cloud of dots presented every

200 ms (i.e. no binning). Thus, wA was computed at 5 Hz resolution before and after the jumps (i.e.

at time points [�1.9:0.2:1.9] s; Figure 5—figure supplement 2). Because the number of trials was

very low on individual sampling points, we pooled the trials across the three up- and down-jumps

before computing the regression models. Nevertheless, the small number of trials on individual sam-

pling points (range 7–28 trials across participants and bins) rendered the estimation of the relative

auditory weights very unreliable. Thus, individual wA values that were smaller or larger than three

times the scaled median absolute deviation were excluded from the analyses in Figure 5—figure

supplement 2 and Supplementary file 1-Table 6. To assess statistically whether participants’

adjusted wA after the jump, we computed a paired t test on wA specifically from the time point

before versus after the jump (i.e. �0.1 vs. 0.1 s; Supplementary file 1-Table 6).

Third, we assessed the model fit of our learning models before and after the jumps. If the jumps

violate the assumptions of the learning models, we would expect that observers’ behavior deviates

from the model’s predictions more strongly after the jump. We computed the root mean squared

error of the models’ wA (i.e. (wA,behavior – wA,model)
2) before and after the change point (Figure 5—

figure supplement 2B) and entered those into a paired t test (i.e. �0.1 vs. 0.1 s;

Supplementary file 1-Table 6).

Results: Our data showed that participants and models rapidly and significantly adjusted their

weights after the jumps. Critically, the model fits did not significantly differ for the time points just

before or after the jumps in visual variance (i.e. if anything, they significantly decreased after the

jump; Figure 5—figure supplement 2B and Supplementary file 1-Table 6). Collectively, these
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control analyses suggest that our Bayesian and exponential learning models adequately modeled

observers’ visual uncertainty adaptation both before and after change points (Norton et al., 2019).

Parameter recovery
To test the validity of the Bayesian, exponential, and instantaneous models, we performed parame-

ter recovery by assessing the bias and variability of the parameters fitted to simulated data sets with

respect to the true parameters used to generate the data.

For each model, we selected four different parameter sets (within a realistic range of values for

parameters sA = [6:12]˚, Pcommon = [0.7:0.9], s0 = [6:20]˚, k = [5:20], g = [0.3:0.7]) and generated data

sets of simulated observers for the RW2 sequence. We repeated this process six times (with different

initial random seeds), creating a total of 24 simulated data sets for each model. We then fitted the

Bayesian, exponential, and instantaneous learner models to each simulated data set (using exactly

the same fitting procedures as for observers’ data in the experiments) resulting in 24 sets of best fit-

ting parameters for each model.

In order to assess how well the fitting procedure recovers the generating parameters, we com-

pared the fitted parameters to the ‘true’ parameters used to generate the data. Specifically, we

assessed the parameter recovery in terms of bias and variability of the fitted parameters as follows:

The recovered parameters’ bias was computed as the signed deviation from the true generating

value in percentage. As an example, if a data set was generated with a model parameter of 5, but

the fitted (i.e. recovered) parameter was 4, we would compute a �20% deviation. As a measure of

the variability for the recovered parameters, we calculated the absolute (i.e. unsigned) deviation

from the true generating values in percentage. As an example, a fitted value of 4, relative to a gen-

erating value of 5 would be a 20% absolute deviation. We report the median (and first and third

quartile) across simulated data sets as a robust measure for this bias and variability.
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Appendix 2
This document describes a Variational Bayes approximation to inference on a generative model that

allows for two possible ways that stimuli data was generated (thus allowing subjects to perform

causal inference).

Section (1) describes the full generative model for both a single and two sources, section (2) explains

how an optimal observer can perform inference within either sub-model, through a variational Bayes

approximation to the posteriors and section (3) shows how to calculate the model likelihood for

either sub-model, as necessary for combining the two sub-models.

Section (4) finally describes how the results for each causal model are combined into a single

posterior.

1 Generative model
The model presented here is an extension of the Causal Inference model of Körding et al., 2007,

with the reliability of the visual signal assumed to be changing smoothly over trials according to a

random walk (RW). In the case where the visual reliability is constant the model approximates the

original Causal Inference model.

In this model (figure Appendix 2—figure 1), at each stimulus presentation, t, subjects assume

that the visual dots at positions Vi;t and auditory stimulus at At, are generated through either of two

causal models (Ct ¼ 1 or Ct ¼ 2) with fixed prior probabilities:

Ct ~BernoulliðpcommonÞ (1)

If Ct ¼ 1, (single source, St, leading to forced fusion)

St ~NðSt;�0;s
2

0
Þ (2)

At ~NðAt;St ;s
2

AÞ (3)

Ut ~NðUt;St;1=lV ;tÞ (4)

Vi;t ~NðVi;t;Ut;1=lV ;tÞ (5)

loglV ;t ~NðlogðlV ;tÞ; logðlV ;t�1Þ;kÞ (6)

If Ct ¼ 2 (independent sources, SA;t and SV ;t )

SA;t ~NðSA;t;�0;s
2

0
Þ (7)

At ~NðAt;SA;t;s
2

AÞ (8)

SV ;t ~NðSV ;t;�0;s
2

0
Þ (9)

Ut ~NðUt;SV ;t;1=lV ;tÞ (10)

Vi;t ~NðVi;t;Ut;1=lV ;tÞ (11)

loglV ;t ~NðlogðlV ;tÞ; logðlV ;t�1Þ;kÞ (12)

The intermediate variable Ut means that the mean of the visual dots is not located at the true

source (St or SV ;t), but normally distributed around it. Note that for Ct ¼ 1 we can explicitly write

SA;t ¼ SV ;t ¼ St.

For simplicity, we assume that �0 ¼ 0, that is, the prior mean is located at the horizontal center.

The auditory STD sA, the prior probability of a single cause, Pcommon and the prior STD, s0 , are fixed

individually for each subject (see main text for fitting procedure).

In the following, we will simplify the notation by referring to Pð�jCt ¼ 1Þ by P1ð�Þ and Pð�jCt ¼ 2Þ

by P2ð�Þ.
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Appendix 2—figure 1. Generative model, for one (C = 1) or two sources (C = 2).

2 Posterior
The full posterior over the latent variables in the model up until time t is
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PðSV ;1:t;SA;1:t; ;l1:t;U1:t;C1:tjA1:t;V1:N;1:tÞ ¼

PðSV ;1;SA;1;lV ;1;U1;C1jA1;V1:N;1Þ
Qt

j¼1
PðSV ;j;SV ;j;lV ;j;Uj;CjjA1:j;V1:N;1:j;lV ;j�1Þ

(13)

Recursively we can write

PðSV ;t ;SA;t;lV ;t;Ut;CtjA1:t ;V1:N;1:tÞ ¼
R
PðSV ;t ;SA;t;lV ;t;Ut;CtjA1:t ;V1:N;1:t;lV ;t�1Þ

PðSV ;t�1;SA;t�1;Ut�1;Ct;lV ;1:t�1jA1:t�1;V1:N;1:t�1ÞdSV ;t�1dSA;tdUt�1dlV ;1:t�1

(14)

PðSV ;t;SA;t;lV ;t;Ut;CtjA1:t;V1:N;1:tÞ / PðCtÞPðSA;t;SV ;tÞPðAtjSA;tÞ

PðV1:N;t jUt;lV ;tÞPðUtjSV ;t ;lV ;tÞ

R
PðlV ;tjlV ;t�1ÞPðlV ;1:t�1jA1:t�1;V1:N;1:t�1ÞdlV ;1:t�1=Z

(15)

where PðSA;t;SV ;tÞ obviously depends on Ct through the generative model (Appendix 2—figure 1).

If we marginalize over the latent Ct:

PðSV ;t;SA;t;lV ;t;UtjA1:t;V1:N;1:tÞ ¼

PðSV ;t;SA;t;lV ;t;UtjA1:t;V1:N;1:t;Ct ¼ 1ÞPðCt ¼ 1jA1:t;V1:N;1:tÞ

þPðSV ;t;SA;t;lV ;t;UtjA1:t;V1:N;1:t;Ct ¼ 2ÞPðCt ¼ 2jA1:t;V1:N;1:tÞ

(16)

At this point it should be clear that the posterior is a mixture of the forced fusion and indepen-

dent solutions, with the mixture determined by the posterior probability of either model generating

the data:

PðCt ¼ 1jA1:t ;V1:N;1:tÞ ¼
PðAt;V1:N;tjCt ¼ 1ÞPðCt ¼ 1Þ

PðAt;V1:N;tjCt ¼ 1ÞPðCt ¼ 1ÞþPðAt;V1:N;t jCt ¼ 2ÞPðCt ¼ 2Þ
(17)

To evaluate this, we need to calculate the marginal model evidence, PðAt;V1:N;tjCtÞ, for either

model, see the later section.

2.1 Posterior for C = 1

The full posterior over the latent variables in the single source sub-model is

P1ðS1:t;l1:t;U1:t jA1:t;V1:N;1:tÞ ¼ PðS1;lV ;1;U1jA1;V1:N;1:tÞ
Yt

i¼1

PðSi;lV ;i;UijAi;Vi;lV ;i�1Þ (18)

Recursively we can write

P1ðSt;lV ;t ;UtjA1:t ;V1:N;1:tÞ ¼
R
P1ðSt ;lV ;t;UtjA1:t;V1:N;1:t ;lV ;t�1Þ

P1ðSt�1;lV ;1:t�1;Ut�1jA1:t�1;V1:N;1:t�1ÞdSt�1dUt�1dlV ;1:t�1

(19)

P1ðSt;lV ;t ;UtjA1:t ;V1:N;1:tÞ ¼
R
P1ðSt ;lV ;t;UtjA1:t;V1:N;1:t ;lV ;t�1Þ

PðlV ;1:t�1jA1:t;V1:N;1:t�1ÞdlV ;1:t�1

(20)

P1ðSt;lV ;t;UtjA1:t;V1:N;1:tÞðStÞPðAtjStÞPðUtjSt ;lV ;tÞPðV1:N;tjUt;lV ;tÞR
PðlV ;tjlV ;t�1ÞPðlV ;1:t�1jA1:t�1;V1:N;1:t�1ÞdlV ;1:t�1=Z

(21)

As we will see later it is convenient to use a change of parameters

�t ¼ logðlV ;tÞ (22)

allowing us to rewrite

P1ðSt; �t;Ut jA1:t;V1:N;1:tÞ / PðStÞPðAtjStÞPðUtjSt; �tÞPðV1:N;tjUt; �tÞR
Pð�tj�V ;t�1ÞPð�V ;1:t�1jA1:t�1;V1:N;1:t�1Þd�V ;1:t�1=Z

(23)

where
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PðUtjSt; �tÞ ¼NðUt;St ;1=expð�tÞÞ (24)

PðV1:N;tjUt ; �tÞ ¼
Y

n

NðUt;Vn;t;1=expð�tÞÞ (25)

Pð�tj�V ;t�1Þ ¼N ð�t;�V ;t�1;1=kÞ (26)

We will assume that

Pð�V ;1:t�1jA1:t�1;V1:N;1:t�1Þ (27)

can be approximated by a Normal distribution (see below), thus allowing us to write
Z

Pð�tj�V ;t�1ÞPð�V ;1:t�1jA1:t�1;V1:N;1:t�1Þd�V ;1:t�1 ¼Nð�tj�V ;t�1;1=k
0
tÞ (28)

where 1=k0t ¼ 1=kþ 1=t �;t�1 (due to properties of convolution of two Normal distributions).

The log-posterior (to be used for a variational approximation) is now

logP1ðSt;lV ;t;UtjA1:t;V1:N;1:tÞ /�lSS
2

t =2

�lAðAt � StÞ
2=2

�lV ;tðUt � StÞ
2=2þ loglV ;t=2

�lV ;t
PN

i ðUt �Vi;tÞ
2=2þðN=2Þ loglV ;t

�k0ð�t � �V ;t�1Þ
2=2

(29)

2.2 Variational Bayes approximation for C = 1

We will now approximate the log-posterior with variational Bayes by factorization:

P1ðSt; �t ;UtjAt;V1:N;tÞ»q1 St ;Ut; �tð Þ ¼ q1ðStÞ � q1ðUtÞ � q1ð�tÞ (30)

2.2.1 q1ðStÞ
For q1ðStÞ

logq1ðStÞ /�lSS
2

t =2�lAðAt � StÞ
2=2�E�ðexpð�tÞÞEUððUt � StÞ

2Þ=2 (31)

where EYðXÞ signifies the expectation of X over the distribution of Y: EYðXÞ ¼
R
PðYÞXdY.

Using EUððUt � StÞ
2Þ ¼ EUðU2

t þ S2t � 2UtStÞ ¼ EUðU2

t Þ þ S2t � 2StEUðUtÞ =

ðS2t � StEUðUtÞ � 2þ EUðUtÞ
2Þ � EUðUtÞ

2 þ EUðU
2

t Þ ¼ ðSt � EUðUtÞÞ
2 � EUðUtÞ

2 þ EUðU
2

t Þ, where the last

two terms do not depend on St (and thus can be discarded) we can rewrite the last term:

logq1ðStÞ /�lSS
2

t =2�lAðAt � StÞ
2=2�E�ðexpð�tÞÞðSt �EUðUtÞÞ

2=2 (32)

2.2.2 q1ðUtÞ
For q1ðUtÞ

logq1ðUtÞ /�E�ðexpð�tÞÞ=2
X

i

ðUt �Vi;tÞ
2 �E�ðexpð�tÞÞESððUt � StÞ

2Þ=2 (33)

Here, we use the same trick

logq1 Utð Þ /�E�t exp �tð Þð Þ=2
X

i

Ut �Vi;t

� �2
�E� exp �tð Þð Þ Ut �ES Stð ÞÞ2

� �
=2 (34)
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2.2.3 q1ð�Þ
For q1ð�Þ

logq1ð�Þ ¼�exp�tEU;SððUt � StÞ
2Þ=2

�exp�tEUð
PN

i ðUt �Vi;tÞ
2Þ=2

þðNþ 1Þ logðexpð�ÞÞ=2�k0ð�t � �t�1Þ
2=2

(35)

2.2.4 Simplifying q1ðStÞ and log q1ðUtÞ
Inspecting log q1ðStÞ and log q1ðUtÞ we can see that both q1ðStÞ and q1ðUtÞ are products of Normal dis-

tributions, and thus themselves Normal distributed

q1ðStÞ~NðSt;�S;t ;1=t S;tÞ (36)

and

q1ðUtÞ~NðUt ;�U;t;1=t U;tÞ (37)

where

�S;t ¼ ðlS � 0þlAAt þEðexp�tÞ�U;tÞ=t S;t (38)

t S;t ¼ lS þlAþEðexpð�tÞÞ (39)

�U;t ¼ ðE�ðexpð�tÞÞ
XN

i

Vi;t þE�ðexpð�tÞÞ�S;tÞ=t U;t (40)

t U;t ¼ ðNþ 1Þ �E�ðexpð�tÞÞ (41)

Note that ESðStÞ»
R
q1ðStÞStdSt ¼ �S;t and EUðUtÞ»

R
q1ðUtÞUtdUt ¼ �U;t

2.2.5 Simplifying q1ð�tÞ
Regarding q1ð�tÞ we can expand a little using that

EU;SððUt � StÞ
2Þ ¼ EU;SððU2

t þ S2t � 2StUtÞÞ

¼ EU;SðU2

t ÞþEðS2t Þ� 2EðStÞEðUtÞ

¼ �2

U þ 1=t U þ�2

S þ 1=t S � 2�S�U

¼ ð�U ��SÞ
2 þ 1=t U þ 1=t S

(42)

(using that EðX2Þ ¼ �2 þ 1=t for a normal distribution NðX;�;1=t Þ) and

EUð
PN

i ðUt �Vi;tÞ
2Þ ¼ EUð

PN
i ðU

2

t þV2

i;t � 2UtVi;tÞÞ

¼ EUð
PN

i ðU
2

t Þþ
PN

i ðV
2

i;tÞ� 2
PN

i ðUtVi;tÞ

¼ EUðN � ðU2

t Þþ
PN

i ðV
2

i;tÞ� 2Ut

PN
i Vi;tÞ

¼N � ð�2

U þ 1=t UÞþ
PN

i ðV
2

i;tÞ� 2�U

PN
i Vi;tÞ ¼N=t U þ

PN
i ðVi;t ��UÞ

2

(43)

Which together gives:

EU;SððUt � StÞ
2ÞþEUð

PN
i ðUt �Vi;tÞ

2Þ

¼ ð�U ��SÞ
2þ 1=t U þ 1=t S þðNþ 1Þ=t U þ

PN
i ðVi;t ��UÞ

2
(44)

2.3 Approximating qð�Þ

We will approximate q1ð�Þ with a Normal distribution.
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To do this, we use a Laplace approximation around the max of q1ð�Þ (see figure Appendix 2—fig-

ure 2): argmaxðq1ð�tÞÞ ¼ ��;t and with second derivative �t �;t

This gives

q1ð�tÞ~Nð�tj��;t;1=t �;tÞ (45)

2.3.1 First derivative
However, in order to find argmaxðq1ð�tÞÞ, we differentiate log q1ð�tÞ and set equal to 0:

d logq1ð�tÞ=d�t ¼�exp�tEU;SððUt � StÞ
2Þ=2

�exp�tEUð
PN

i ðUt �Vi;tÞ
2Þ=2

þðNþ 1Þ=2�k0ð�t � �t�1Þ ¼ 0

(46)

exp�tðEU;SððUt � StÞ
2Þ=2þEUð

PN
i ðUt �Vi;tÞ

2Þ=2Þ ¼ ðNþ 1Þ=2�k0ð�t � �t�1Þ (47)

At this point there is no analytical solution.

2.3.2 Taylor expansion of first derivative
Although we could use a numerical approximation for speed of implementation, we use Taylor

expansion. We need to solve for �

exp�tðEU;SððUt � StÞ
2Þ=2þEUð

PN
i ðUt �Vi;tÞ

2Þ=2Þ� ðNþ 1Þ=2þk0ð�t � �t�1Þ ¼ 0 (48)

For simplicity we refer to SV ¼ ðEU;SððUt � StÞ
2ÞþEUð

PN
i ðUt �Vi;tÞ

2ÞÞ

We can solve this by using the third-order Taylor expansion of the exponential:

exp�t »e
ð��Þþ eð��Þð�t � ��Þþ eð��Þð�t � ��Þ

2=2þ eð��Þð�t � ��Þ
3=6¼

eð��Þ 1� �� þ �2�=2� �3�=6þð1� 2=2 � �� þ 3=6 � �2�Þ�t þð1=2� 3=6 � ��Þ�2t þ �3t =6
� �

¼

eð��Þ 1� ��þ �2�=2� �3�=6þð1� �� þ �2�=2Þ�t þð1=2� ��=2Þ�2t þ �3t =6
� �

(49)

We can set �� as �t�1, as we expect that �t will be close to ��. For big changes in the variance of Vi

this can be off; however, this was not a problem in this stimulus set which relied on slow gradual

changes.

In order to find argmaxðq1ð�tÞÞ we therefore have to solve

SV=2 � eð��Þ 1� �� þ �2�=2� �3�=6þð1� �� þ �2�=2Þ�t þð1=2� ��=2Þ�
2

t þ �3t =6
� �

�ðNþ 1Þ=2þk0ð�t � �t�1Þ ¼ 0
(50)

which can be rewritten as a third order polynomial

�3t þ c1�
2

t þ c2�t þ c3 ¼ 0 (51)

where

c1 ¼ 1=2� ��=2

c2 ¼ 1� ��þ �2� þk0=ðSV=2 � eð��ÞÞ

c3 ¼ 1� �� þ �2�=2þ �3�=6�ðN=2þ 1=2þk0�t�1Þ=ðSV=2 � eð��ÞÞ

(52)

the solution to which, �optimt , can be numerically found using Matlab’s nthroot function.

As we assume that the log-variance only changes slightly between trials the solution closest to

the previous value �t�1 is automatically chosen, argmaxðq1ð�tÞÞ ¼ ��t ¼ �optimt .

2.3.3 Second derivative
The second derivative is
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d2 logq1ð�tÞ=d�2t ¼�exp�t � SV=2�k0 (53)
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Appendix 2—figure 2. Approximation of theta using Laplace approximation.

We evaluate this at argmaxðq1ð�tÞÞ, so we insert �t ¼ ��;t

Hence we can finally write

q1ð�tÞ~Nð�tj��;t;1=t theta;tÞ (54)

where

��;t ¼ �optimt (55)

t �;t ¼ expð��;tÞ � ðSVÞ=2þk0 (56)

and where SV ¼ ð�U ��SÞ
2þ 1=t S þðNþ 1Þ=t U þ

PN
i ðVi;t ��UÞ

2

With q1ð�tÞ a Normal distribution, that makes q1ðlV ;tÞ a log-normal distribution with �lV ;t ¼

EðlV ;tÞ ¼ Eðexpð�tÞÞ ¼ expð��t þ 1=ð2 � t �t ÞÞ (general property of log-normal distribution).

2.4 Final algorithm for C = 1

We can now create an iterative algorithm that for each time step t represents the model posterior.

Variables s2

A ¼ 1=lA, s
2

0
¼ 1=l0 and k have to be set before hand, together with the input data A1:t

and V1:N;1:t. For time step t:

1. initially set
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��;t ¼ ��;t�1; (57)

�S;t ¼ 0; (58)

�U;t ¼ 1=N
X

Vi;t; (59)

t �;t ¼ 1 (60)

2. set �S;t S;t

�S;t ¼ ðlAAt þ expð��t þ 1=ð2 � t �t ÞÞ�U;tÞ=t S;t (61)

t S;t ¼ lS þlAþ expð��t þ 1=ð2 � t �t ÞÞ (62)

3. set �U;t;t U;t

�U;t ¼ ðN=ðNþ 1ÞÞ �Vt þð1=ðNþ 1ÞÞ�S;t (63)

t U;t ¼ ðNþ 1Þ � expð��t þ 1=ð2 � t �t ÞÞ (64)

where �Vt ¼ 1=N
PN

i Vi;t

4. find ��t by solving third order polynomial, Equation 51,

��;t ¼ �optim (65)

then set t �t

t �;t ¼ k0 þ expð��;tÞ � ðð�U;t ��S;tÞ
2þ 1=t S;t þðNþ 1Þ=t U;t þ

XN

i

ðVi;t ��U;tÞ
2Þ=2 (66)

where k0t ¼ 1=ð1=kþ 1=t �;t�1Þ

5. Repeat steps 2–4 until the change in each parameter is small (<0.0001)

This is then repeated for each time step t, providing us with the approximation to the posterior

P1 St ; �t;UtjAt ;V1:N;t

� �
» q1 St ;Ut ; �tð ÞÞ ¼ q1 Stð Þ � q1 Utð Þ � q1 �tð Þ.

2.5 Posterior for C = 2
Due to the independent structure this posterior can be written as

P2ðSA;t;SV ;t;lV ;t ;Ut jAt;V1:N;tÞ ¼ PðSA;tjAtÞPðSV ;t;lV ;t;UtjV1:N;tÞ (67)

where

P2ðSA;t jAtÞ ¼ PðSA;tÞPðAtjSA;tÞ=Z (68)

which is simple enough given the Normal distribution of both PðSA;tÞ and PðAtjSA;tÞ

P2ðSA;tjAtÞ ¼N ðSA;t ;Ats
2

A0=s
2

A;s
2

A0Þ (69)

where s2

A0 ¼ 1=ð1=s2

Aþ 1=s2

0
Þ.

Note that for the subject response the posterior P2ðSA;t jAtÞ is all that is needed, but for the calcu-

lation of the prior PðlV ;tÞ for subsequent trial t þ 1 we need to compute the full posterior.

We again use the transformation of parameters

�t ¼ logðlV ;tÞ (70)

Proceeding with just the posterior over SV ;t, Ut and �t

PC¼2ðSV ;t; �t;UtjA1:t;V1:N;1:tÞ / PðSV ;tÞPðUtjSV ;t; �tÞPðV1:N;tjUt; �tÞR
Pð�tj�V ;t�1ÞPð�V ;1:t�1jA1:t�1;V1:N;1:t�1Þd�V ;1:t�1=Z

(71)

where
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PðUtjSV ;t; �tÞ ¼ N ðUt ;SV ;t;1=expð�tÞÞ (72)

PðV1:N;tjUt ; �tÞ ¼
Y

n

NðUt;Vn;t;1=expð�tÞÞ (73)

Pð�tj�t�1Þ ¼ Nð�t;�t�1;1=kÞ (74)

We will assume that Pð�V ;1:t�1jA1:t�1;V1:N;1:t�1Þ can be approximated by a Normal distribution (see

q1ð�Þ below), thus allowing us to use properties of Normal distributions.

Hence,
Z

Pð�tj�t�1ÞPð�V ;1:t�1jA1:t�1;V1:N;1:t�1Þd�V ;1:t�1 ¼ Nð�t;�t�1;1=k
0
tÞ (75)

where 1=k0t ¼ 1=kþ 1=t �;t�1 (due to the convolution of Pð�tj�t�1Þ with Pð�t�1jA1:t�1;V1:N;1:t�1Þ, both Nor-

mal distributed).

While any estimate of �t will depend on A1:t�1 and V1:N;1:t�1

�
for ease of notation, we will omit

those in the following.

The log-posterior is now

logP2ðSV ;t ; �t;UtjA1:t;V1:N;1:tÞ /

�l0S
2

V ;t=2

�exp�tðUt � SV ;tÞ
2=2þ �t=2

�exp�t
PN

i ðUt �Vi;tÞ
2=2þN�t=2

�k0ð�t � �V ;t�1Þ
2=2

(76)

2.6 Variational Bayes approximation for C = 2

We will now approximate the log-posterior with variational Bayes by factorization:

P2ðSt ; �t;UtjAt ;V1:N;tÞ » q2 St;Ut; �tð ÞÞ ¼ q2ðStÞ � q2ðUtÞ � q2ð�tÞ This proceeds similarly to the combined

(C ¼ 1) model, but with SV ;t instead of St, and with no influence from At. For completeness the calcu-

lations are included here:

2.6.1 q2ðStÞ
For q2ðStÞ

logq2ðSV ;tÞ /�l0S
2

V ;t=2�E�ðexpð�tÞÞEUððUt � SV ;tÞ
2Þ=2 (77)

where EYðXÞ signifies the expectation of X over the distribution of Y: EYðXÞ ¼
R
PðYÞXdY.

Using EUððUt � V ; tÞ2Þ ¼ EUðU2

t þ S2V ;t � 2UtSV ;tÞ ¼ EUðU2

t Þ þ S2V ;t � 2SV ;tEUðUtÞ =

ðS2V ;t � SV ;tEUðUtÞ � 2þ EUðUtÞ
2Þ � EUðUtÞ

2 þ EUðU2

t Þ ¼ ðSV ;t � EUðUtÞÞ
2 � EUðUtÞ

2 þ EUðU2

t Þ, where the

last two terms do not depend on SV ;t (and thus can be discarded) we can rewrite the last term:

logq2ðSV ;tÞ /�l0S
2

V ;t=2�E�ðexpð�tÞÞðSV ;t �EUðUtÞÞ
2=2 (78)

2.6.2 q2ðUtÞ
For q2ðUtÞ

logq2ðUtÞ /�E�ðexpð�tÞÞ=2
X

i

ðUt �Vi;tÞ
2 �E�ðexpð�tÞÞESððUt � SV ;tÞ

2Þ=2 (79)

Here, we use the same trick

logq2ðUtÞ /�E�t ðexpð�tÞÞ=2
X

i

ðUt �Vi;tÞ
2 �E�ðexpð�tÞÞ Ut �ES SV ;t

� �� �2�
=2 (80)
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2.6.3 q2ð�tÞ
For q2ð�Þ

logq2ð�Þ ¼�exp�tEU;SððUt � SV ;tÞ
2Þ=2

�exp�tEUð
PN

i ðUt �Vi;tÞ
2Þ=2

þðNþ 1Þ logðexpð�ÞÞ=2�k0ð�t � �t�1Þ
2=2

(81)

2.6.4 Simplifying q2ðStÞ and log q2ðUtÞ
Inspecting log q2ðSV ;tÞ and log q2ðUtÞ we can see that both q2ðSV ;tÞ and q2ðUtÞ are products of Normal

distributions, and thus themselves Normal distributed

q2ðSV ;tÞ~ NðSV ;tj�SV ;t;1=t SV ;tÞ (82)

and

q2ðUtÞ~NðUtj�U;t;1=t U;tÞ (83)

where

�SV ;t ¼ ðl0 � 0þEðexpð�tÞÞ�U;tÞ=t SV ;t (84)

t SV ;t ¼ l0 þEðexpð�tÞÞ (85)

�U;t ¼ ðE�ðexpð�tÞÞ
XN

i

Vi;t þE�ðexpð�tÞÞ�SV ;tÞ=t U;t (86)

t U;t ¼ ðNþ 1Þ �E�ðexpð�tÞÞ (87)

Note that ESðSV ;tÞ»
R
q2ðSV ;tÞSV ;tdSV ;t ¼ �SV ;t and EUðUtÞ»

R
q2ðUtÞUtdUt ¼ �U;t

We can approximate q2ð�Þ with a Normal distribution, in exactly the same way as for C = 1. As

equations are identical (see above) they will not be repeated here.

2.7 Final algorithm for C = 2

We can now create an iterative algorithm that for each time step t represents the variational Bayes

approximation of the model posterior over SV ;t;Ut and lV ;t (or rather �t):, PðSV ;t;Ut; �tjV1:N;tÞ. Variable

k has to be set before hand, together with the input data A1:t and V1:N;1:t. For time step t:

1. initially set ��;t ¼ ��;t�1, �U;t ¼ 1=N
P

Vi;t, and t �;t ¼ 1

2. set �SV ; t SV ;t

�SV ;t ¼ ðexpð��t þ 1=ð2 � t �;tÞÞ�U;tÞ=t SV ;t (88)

t SV ;t ¼ l0þ expð��t þ 1=ð2 � t �;tÞÞ (89)

3. set �U ;t U;t

�U;t ¼ ðN �Vt þ�SV ;tÞ=ðNþ 1Þ (90)

t U;t ¼ ðNþ 1Þ � expð��t þ 1=ð2 � t �;tÞÞ (91)

where �Vt ¼ 1=N
PN

i Vi;t

4. find ��;t by numerically solving polynomial, Equation 51,
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��;t ¼ �optim (92)

then set t �;t

t �;t ¼ k0 þ expð��;tÞ � ðð�U;t ��SV ;tÞ
2þ 1=t SV ;t þðNþ 1Þ=t U;t þ

XN

i

ðVi;t ��U;tÞ
2Þ=2 (93)

where k0t ¼ 1=ð1=kþ 1=t �;t�1Þ

5. Repeat steps 2–4 until convergence, that is, until the change in each parameter is small

(<0.0001)

This is then repeated for each time step t, providing us with the approximation to the posterior

P2ðSt ; �t;UtjAt ;V1:N;tÞ » q2 St;Ut; �tð ÞÞ ¼ q2ðStÞ � q2ðUtÞ � q2ð�tÞ.

See figure Appendix 2—figure 3 below for an example of the learned inference of the visual vari-

ance s2

V ;t ¼ 1=lV ;t ~ 1= log q2ð�tÞ, compared with a simple instantaneous learner model that assumes

s2

V ;t ¼ 1=N
P

iðVi;t � �VtÞ
2.
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Appendix 2—figure 3. Comparing variational Bayes approximation with a numerical discretised grid

approximation. Top row: Example visual stimuli over eight subsequent trials. Middle row: The

distribution of estimated sample variance, with no learning over trials. Bottom row: The distribution

of _V;t for the Bayesian model that incorporates the learning across trials. Red line is the numerical

comparison when using a discretised grid to estimate variance, as opposed to the variational Bayes

(green line).

3 Marginal model evidence
Recall that the posterior is a mixture of the forced fusion and independent solutions, with the mix-

ture determined by the posterior probability of either model generating the data:

PðCt ¼ 1jAt ;V1:N;tÞ ¼
PðAt ;V1:N;t jCt ¼ 1ÞPðCt ¼ 1Þ

PðAt;V1:N;tjCt ¼ 1ÞPðCt ¼ 1ÞþPðAt;V1:N;tjCt ¼ 2ÞPðCt ¼ 2Þ
(94)

To evaluate this, we need to calculate the marginal model evidence, PðAt;V1:N;tjCtÞ, for either

model.

One way to do so is by a sampling approximation, but here we utilise the variational results we

have already found.

3.1 Model likelihood for C = 2, two sources SV ;t; SA;t
We need to evaluate the model likelihood for both C ¼ 1 and C ¼ 2. The case for C ¼ 2 is slightly

simpler, hence we start with this:

PðAt;V1:N;tjCt ¼ 2Þ ¼ PðAtjCtÞPðV1:N;tjCt ¼ 2Þ ¼R
PðAtjSA;t;Ct ¼ 2ÞPðSA;tjCt ¼ 2ÞdSA;t�R

PðV1:N;t jUt;lt;Ct ¼ 2ÞPðUt ;lt;SV ;tjCt ¼ 2ÞdVdldSV ;t

(95)

The first integral is easy as it is just the integral of the product of two Normal distributions.
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R
P2ðAtjSA;tÞP2ðSA;tÞdS¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p s2

A
þ1=t 0ð Þð

p expð� ðA��0Þ
2

2ðs2

A
þ1=t 0Þ

Þ (96)

It is however more convenient to operate in log-space

logP2ðAtÞ ¼� logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðs2

A þ 1=t 0Þ
p

Þ� ðA��0Þ
2=ð2ðs2

Aþ 1=t 0ÞÞ (97)

The second integral we approximate through the Free Energy that we already maximise itera-

tively in the variational Bayes algorithm.

logPðV1:N;tjCt ¼ 2Þ ¼ log

Z
PðV1:N;tjUt; �t;SV ;t;Ct ¼ 2ÞPðUt; �t;SV ;tjCt ¼ 2ÞdUtd�tdSV ;t

»L2ðqÞ ¼

Z
q2ðUt ; �t;SV ;tÞ�

log
P2ðV1:N;tjUt; �t ;CtÞP2ðUtj;SV ;t; �t;CtÞP2ðSV ;t jCtÞP2ð�tjCtÞ

q2ðUt ; �t;SV ;tÞ
dUtd�tdSV ;t

(98)

(this approximation becomes exact if the variational approximation is exact, that is, if the Kul-

back-Leibler difference between the posterior P2ðUt; �t;SV ;tjV1:NÞ and the approximation q2ðUt; �t;SV ;tÞ

becomes zero.)

This can be interpreted as taking the expectation with regard to the posterior approximation,

and due to the properties of the logarithm this can be separated into a sum of expectations:

L2ðqÞ ¼ EðlogP2ðV1:N;tjUt; �tÞÞþ

E logP2 Ut jSV ;t; �t
� ��

þEðlogP2ðSV ;tÞÞþEðlogP2ð�tÞÞ

�Eðlogq2ðUtÞÞ�Eðlogq2ð�tÞÞ�Eðlogq2ðSV ;tÞÞ

(99)

where (due to Equation 43)

EðlogP2ðV1:N;tjUt; �tÞÞ ¼ Eðlog
Q

iP2ðVi;t jUt; �ÞÞ ¼

Eðlog
Q

i

ffiffiffiffiffiffiffiffiffiffiffi
expð�tÞ
2p

q
expð�ðVi;t �UtÞ

2
expð�tÞ=2Þ ¼

Eð
P

i logð
ffiffiffiffiffiffiffiffiffiffiffi
expð�tÞ
2p

q
Þ� ðVi;t �UtÞ

2
expð�tÞ=2Þ ¼

N=2ðE�t ð�Þ� logð2pÞÞþEUt
ð
P

i�ðVi;t �UtÞ
2ÞÞEðexpð�tÞÞ=2¼

N=2ð��� logð2pÞÞ� ðN=t U;t þ
P

iðVi;t ��UÞ
2Þexpð��;t þ 1=ð2t �;tÞÞ=2

(100)

and (since EðX2Þ ¼ �2

X þs2

X )

EðlogP2ðUtÞjSV ;t ; �tÞÞ ¼ Eðlog NðUt ;SV ;t;1=expð�tÞÞÞ ¼

Eðlog
ffiffiffiffiffiffiffiffiffi
exp�t
2p

q
expð�ðUt � SV ;tÞ

2Þexpð�tÞ=2ÞÞ ¼

ð��;t � logð2pÞÞ=2� ½ð�U ��SV ;tÞ
2þ 1=t U;t þ 1=t SV ;t�expð��;t þ 1=ð2t �;tÞÞ=2

(101)

and

EðlogP2ðSV ;tÞÞ ¼ Eðlog NðSV ;t;�0;s
2

0
ÞÞ ¼

Eðlog
ffiffiffiffiffiffiffiffi
1

s2

0
2p

q
expð�ðSV ;t ��0Þ

2Þ=ð2s2

0
ÞÞ ¼� logðs2

0
2pÞ=2�½ð�SV ;t ��0Þ

2 þ 1=t SV ;t�=ð2s
2

0
Þ

(102)

and (due to Equation 75)

EðlogP2ð�tÞÞ ¼ Eð N ð�t;�t�1;1=k
0ÞÞ ¼

Eðlog
ffiffiffiffi
k0

2p

q
expð�ð�t ���;t�1Þ

2
k0=2ÞÞ ¼ ðlogk0� logð2pÞÞ=2�½ð��;t ���;t�1Þ

2 þ 1=t �;t�k0=2
(103)

and
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Eðlogq2ðUtÞÞ ¼ Eðlog NðUt;�U;t ;1=t U;tÞÞ ¼

Eðlogð
ffiffiffiffiffiffi
t U;t

2p

q
expð�ðUt ��U;tÞ

2
t U;t=2ÞÞÞ ¼

log

ffiffiffiffiffiffi
t U;t

2p

q
�EððUt ��U;tÞ

2
t U;t=2Þ ¼

ðlogt U;t � logð2pÞÞ=2�ðEðU2

t Þþ�2

U;t � 2�U;tEðUtÞÞt U;t=2¼

ðlogt U;t � logð2pÞÞ=2�ð�2

U;t þ 1=t 2

U;t þ�2

U;t � 2�U;t�U;tÞt U;t=2¼

ðlogt U;t � logð2pÞ� 1Þ=2

(104)

and

Eðlogq2ðStÞÞ ¼ Eðlog NðSV ;t;�SV ;t ;1=t SV ;tÞÞ ¼

Eðlog
ffiffiffiffiffiffiffiffi
1

2ps2

0

q
expð�ðSV ;t ��SV ;tÞ

2
t SV ;t=2ÞÞ ¼

ðlogt SV ;t � logð2pÞ� 1Þ=2

(105)

and

Eðlogq2ð�tÞÞ ¼ Eðlog Nð�t;��;t;1=t �;tÞÞ ¼

ðlogt �;t � logð2pÞ� 1Þ=2
(106)

In total we now have

logP2ðAt;V1:N;tjCtÞ» logP2ðAtÞþL2 ¼

�ðlogð2pÞþ log s2

Aþ 1=t 0

� ��
=2�ðA��0Þ

2=ð2ðs2

Aþ 1=t 0ÞÞ

þð��;t � logð2pÞÞN=2�½N=t U;t þ
PN

i ðVi;t ��UÞ
2�expð��;t þ 1=ð2t �;tÞÞ=2

þðð��;t � logð2pÞÞ=2�½ð�U ��SV ;tÞ
2 þ 1=t U;t þ 1=t SV ;t�expð��;t þ 1=ð2t �;tÞÞ=2

� logðs2

0
2pÞ=2�½ð�SV ;t ��0Þ

2 þ 1=t SV ;t�=ð2s
2

0
Þ

þðlogk0� logð2pÞÞ=2�½ð��;t ���;t�1Þ
2 þ 1=t �;t�k0=2

�ðlogt U;t � logð2pÞ� 1Þ=2

�ðlogt SV ;t � logð2pÞ� 1Þ=2

�ðlogt �;t � logð2pÞ� 1Þ=2

(107)

Although lengthy, this is trivial and fast to compute numerically in Matlab (e.g.). Note that all esti-

mates come from the variational Bayes approximation q2ðSt;Ut; �tÞ.

3.2 Model likelihood for C = 1, one source St ¼ SV ;t ¼ SA;t

We now need to do the same for the one source model.

PðAt;V1:N;tjCt ¼ 1Þ ¼ P1ðAt ;V1:N;tÞ ¼R
P1ðAtjSt ;Ct ¼ 1ÞP1ðV1:N;tjUt;lt;Ct ¼ 1ÞP1ðUt;lt;StjCt ¼ 1ÞdVdldSt

(108)

Note that for simplicity in notation we will use P1 to indicate the probability within the model

given Ct ¼ 1

We again approximate through the Free Energy that we already maximised iteratively in the varia-

tional Bayes algorithm.

logP1ðAt;V1:N;tÞ ¼ log
R
P1ðV1:N;t jUt; �t;StÞP1ðAt jStÞP1ðUt; �t ;StÞdUtd�tdSt

»LCt¼1ðq1Þ ¼
R
q1ðUt; �t;SV ;tÞ log

P1ðV1:N;t jUt ;�tÞP1ðAt jStÞP1ðUt j;St ;�tÞP1ðStÞP1ð�tÞ
q1ðUt ;�t ;StÞ

dUtd�tdSt

(109)

(this approximation becomes exact if the variational approximation is exact, ie if the Kulback-Lei-

bler difference between the posterior P1ðV ; �t ;SV ;tjV1:N;tÞ and the approximation q1ðUt; �t;SV ;tÞ

becomes zero.)

This can be interpreted as taking the expectation with regard to the posterior approximation,

and due to the properties of the logarithm this can be separated into a sum of expectations:
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L1ðqÞ ¼ EðlogP1ðAtjStÞÞþEðlogP1ðV1:N;tjUt;ltÞÞ

þEðlogP1ðUtÞÞþEðlogP1ð�tÞÞþEðlogP1ðSV ;tÞÞ

�Eðlogq1ðUtÞÞ�Eðlogq1ð�tÞÞ�Eðlogq1ðSV ;tÞÞ

(110)

where (since EðX2Þ ¼ �2

X þs2

X )

EðlogP1ðAtjStÞÞ ¼

E log
ffiffiffiffiffiffiffiffi
1

2ps2

A

q
exp � At � Stð Þ2= 2s2

A

� �� ��
¼

� logðs2

A2pÞ=2� ½ðAt ��SÞ
2 þ 1=t S;t�=ð2s2

AÞ

(111)

EðlogP1ðV1:N;tjUt; �tÞÞ ¼ Eðlog
Q

iP1ðVi;t jUt; �ÞÞ ¼

Eðlog
Q

i

ffiffiffiffiffiffiffiffiffiffiffi
expð�tÞ
2p

q
expð�ðVi;t �UtÞ

2
expð�tÞ=2Þ ¼

Eð
P

i logð
ffiffiffiffiffiffiffiffiffiffiffi
expð�tÞ
2p

q
Þ� ðVi;t �UtÞ

2
expð�tÞ=2Þ ¼

n=2ðE�t ð�Þ� logð2pÞÞþEðexpð�tÞÞ=2EUt
ð
P

i�ðVi;t �UtÞ
2ÞÞ ¼

n=2ð��;t � logð2pÞÞþ expð��;t � 1=ð2t �;tÞÞ=2ðN=t U;t þ
P

iðVi;t ��UÞ
2Þ

(112)

and

EðlogP1ðUtÞjSt ; �tÞÞ ¼ Eðlog NðUt;St;1=expð�tÞÞÞ ¼

Eðlog
ffiffiffiffiffiffiffiffiffi
exp�t
2p

q
expð�ðUt � StÞ

2Þexpð�tÞ=2ÞÞ ¼

ð��;t � logð2pÞÞ=2� ½ð�U ��S;tÞ
2þ 1=t U;t þ 1=t S;t�expð��;t þ 1=ð2t �;tÞÞ=2

(113)

and

EðlogP1ðStÞÞ ¼ Eðlog NðSt;�0;s
2

0
ÞÞ ¼

Eðlog
ffiffiffiffiffiffiffiffi
1

s2

0
2p

q
expð�ðSt ��0Þ

2Þ=ð2s2

0
ÞÞ ¼� logðs2

0
2pÞ=2� ½ð�S;t ��0Þ

2 þ 1=t S;t �=ð2s2

0
Þ

(114)

and (due to Equation 75)

EðlogP1ð�tÞÞ ¼ EðN ð�t;�t�1;1=k
0ÞÞ ¼

Eðlog
ffiffiffiffi
k0

2p

q
expð�ð�t ���;t�1Þ

2
k0=2ÞÞ ¼ ðlogk0� logð2pÞÞ=2�½ð��;t ���;t�1Þ

2 þ 1=t �;t�k0=2
(115)

and

Eðlogq1ðUtÞÞ ¼ Eðlog NðUt;�U;t ;1=t U;tÞÞ ¼

Eðlog
ffiffiffiffiffiffi
t U;t

2p

q
expð�ðUt ��U;tÞ

2
t U;t=2ÞÞ ¼

log

ffiffiffiffiffiffi
t U;t

2p

q
�EððUt ��U;tÞ

2
t U;t=2Þ ¼

ðlogt U;t � logð2pÞÞ=2�ðEðU2

t Þþ�2

U;t � 2�U;tEðUtÞÞt U;t=2¼

ðlogt U;t � logð2pÞ� 1Þ=2

(116)

and

Eðlogq1ðStÞÞ ¼ Eðlog NðSt;�S;t;1=t S;tÞÞ ¼

Eðlog
ffiffiffiffiffiffiffiffi
1

2ps2

0

q
expð�ðSt ��S;tÞ

2
t S;t=2ÞÞ ¼

ðlogt S;t � logð2pÞ� 1Þ=2

(117)

and

Eðlogq1ð�tÞÞ ¼ Eðlog Nð�t;��;t;1=t �;tÞÞ ¼

ðlogt �;t � logð2pÞ� 1Þ=2
(118)

In total we now have
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logP1ðAt;V1:N;tÞ»

L1ðq1Þ ¼� logðs2

A2pÞ=2� ½ðAt ��SÞ
2 þ 1=t S;t�=ð2s2

AÞ

þN=2ð��;t � logð2pÞÞ� ðN=t U;t þ
PN

i ðVi;t ��UÞ
2Þexpð��;t þ 1=ð2t �;tÞÞ=2

þ ��;t � log 2pð Þ
� ��

=2� ½ð�U ��SV ;tÞ
2 þ 1=t U;t þ 1=t SV ;t�expð��;t þ 1=ð2t �;tÞÞ=2

� logðs2

0
2pÞ=2�½ð�SV ;t ��0Þ

2 þ 1=t SV ;t�=ð2s
2

0
Þ

þðlogk0� logð2pÞÞ=2�½ð��;t ���;t�1Þ
2 þ 1=t �;t�k0=2

�ðlogt U;t � logð2pÞ� 1Þ=2

�ðlogt S;t � logð2pÞ� 1Þ=2

�ðlogt �;t � logð2pÞ� 1Þ=2

(119)

(where all first and second order moments (�;t ) have been derived from q1).

This is identical to the result from C ¼ 2 except for the first line.

In total this provides us with an approximation to the model evidence for each model,

PðAt;V1:N;tjCt ¼ 1Þ and PðAt;V1:N;tjCt ¼ 2Þ, which can be used to calculate the posterior probability of

either model given data, PðCtjA1:t;V1:N;1:tÞ.

4 Putting it all together
For either sub-model, the factorization (due to assumptions and variational Bayes approximation)

allows us to write out the equations for the variable for subject choice:

PðSt jA1:t;V1:N;1:tÞ ¼

PðStjA1:t;V1:N;1:t ;Ct ¼ 1ÞPðCt ¼ 1jA1:t;V1:N;1:tÞþ

PðSA;tjA1:t ;V1:N;1:t;Ct ¼ 2ÞPðCt ¼ 2jA1:t;V1:N;1:tÞ»

qC¼1;tðStÞPðCt ¼ 1jA1:t;V1:N;1:tÞþ

PðSA;tjA1:t;Ct ¼ 2ÞPðCt ¼ 2jA1:t;V1:N;1:tÞ

(120)

This is now a mixture of two Gaussian distributions (due to the Variational Bayes approximation),

with mixture weights given by the model evidence (partly approximated by the Free Energy).

We will assume subjects report the mean of the distribution that is,

Ŝt ¼ ŜC¼1;tPðCt ¼ 1jA1:t;V1:N;1:tÞþ ŜC¼2;tPðCt ¼ 2jA1:t;V1:N;1:tÞ (121)

where ŜC¼1;t ¼ �S;t for C¼ 1 and ŜC¼2;t ¼ �S;A;t for C¼ 2.

We also need a prior over the visual log-reliability for the following trial

Pð�tjA1:t;V1:N;1:tÞ ¼

Pð�tjA1:t;V1:N;1:t;C¼ 1ÞPðC¼ 1jA1:t;V1:N;1:tÞþ

Pð�tjA1:t;V1:N;1:t;C¼ 2ÞPðC¼ 2jA1:t;V1:N;1:tÞ

(122)

While this is a mixture of two Gaussians, we need the prior to be a single Gaussian in order for

our approximation scheme above to work. We will approximate this mixture with a single Gaussian

(essentially fitting a Gaussian to the mixture of two Gaussians).

Pð�tjA1:t ;V1:N;1:tÞ»Nð�tj��;t ;1=t �;tÞ (123)

where (due to the first- and second-order moments of mixture distributions)

��;t ¼ ��;t;C¼1PðCt ¼ 1jA1:t ;V1:N;1:tÞþ

��;t;C¼2PðCt ¼ 2jA1:t;V1:N;1:tÞ
(124)

1=t �;t ¼ ð1=t �;t;C¼1 þ�2

�;t;C¼1
ÞPðCt ¼ 1jA1:t;V1:N;1:tÞ

þð1=t �;t;C¼2 þ�2

�;t;C¼2
ÞPðCt ¼ 2jA1:t;V1:N;1:tÞ

��2

�;t

(125)

While fitting a Gaussian to the sum of two Gaussians could be a very in-exact approximation, in
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practice the two individual distributions are close enough for this not to be a problem (as any contri-

bution from At to the posterior of �t is very small).

In conclusion, subjects report Ŝt (through a button response, see Equation 121) and they propa-

gate the posterior Pð�tjA1:t;V1:N;1:tÞ (see Equation 123) as prior for the next trial.
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