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Developmental depression-to-facilitation shift
controls excitation-inhibition balance
David W. Jia1, Tim P. Vogels 1,2,4 & Rui Ponte Costa 1,3,4✉

Changes in the short-term dynamics of excitatory synapses over development have been

observed throughout cortex, but their purpose and consequences remain unclear. Here, we

propose that developmental changes in synaptic dynamics buffer the effect of slow inhibitory

long-term plasticity, allowing for continuously stable neural activity. Using computational

modeling we demonstrate that early in development excitatory short-term depression quickly

stabilises neural activity, even in the face of strong, unbalanced excitation. We introduce a

model of the commonly observed developmental shift from depression to facilitation and

show that neural activity remains stable throughout development, while inhibitory synaptic

plasticity slowly balances excitation, consistent with experimental observations. Our model

predicts changes in the input responses from phasic to phasic-and-tonic and more precise

spike timings. We also observe a gradual emergence of short-lasting memory traces gov-

erned by short-term plasticity development. We conclude that the developmental

depression-to-facilitation shift may control excitation-inhibition balance throughout devel-

opment with important functional consequences.
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Short-term synaptic plasticity is a hallmark of synaptic
function. It refers to transient and fast changes in synaptic
efficacy in the range of a few milliseconds up to several

seconds1–3. Different short-term plasticity (STP) profiles regarding
the direction and time-scale of change are found across cell
types4–7, brain regions8–12, and throughout development8–10,13–16.
For example, excitatory synapses from pyramidal cells in cortex are
predominately short-term depressing in young animals, whereas
adult synapses exhibit short-term facilitation (STF)8. Conversely,
inhibitory synapses from cortical fast-spiking inhibitory inter-
neurons are short-term depressing throughout development4,6,7.
Functionally, STP is known to homeostatically control synaptic
transmission and firing rates in neuronal networks on millisecond
timescales17–19. However, it has remained unclear what is the
combined impact of long-term and short-term synaptic plasticity
for homeostatic control in neural circuits.

Recent studies suggest that long-term inhibitory plasticity
(ISP)20–24, acting on the time-scale of minutes to hours, is also
responsible for homeostasis, by way of establishing and main-
taining excitation-inhibition balance, limiting the destabilizing
effects of its excitatory counterpart25,26. However, the stabilizing
effects of co-tuning excitatory and inhibitory synaptic currents,
the hallmark of inhibitory synaptic plasticity, can only be
observed in adult animals. In young animals, a tight
excitation–inhibition balance has not yet formed and receptive
fields are often unbalanced26,27. Despite this lack of detailed
excitation–inhibition tuning, experimental observations con-
sistently show that neural circuits exhibit stable firing activity at
all stages of development28–31. Here, we hypothesize that STP
provides the homeostatic control needed in young animals for
low neural activity32.

Using computational models, we show how STP can comple-
ment and even control the expression of inhibitory long-term
plasticity, thus acting as a gating mechanism for the emergence of
excitation-inhibition balance across development. In particular, our
model suggests that short-term depression (STD) is important to
maintain stable neural activity even with flat inhibitory tuning
curves in young animals26. Further, the gradual shift to STF, as
observed throughout development8–10,13,14,16 allows for excitatory-
inhibitory balance to emerge. We show that this developmental
control of STP shapes neuronal dynamics, making neural responses
more diverse and postsynaptic spike timings more precise over the
course of maturation. Finally, the maturation of STP in our model
leads to synapse-based short-lasting memory traces in an
excitatory–inhibitory balanced model.

Results
Changes in STP are a hallmark of neural development8,12,33, but
their impact on neuronal dynamics has remained unclear. Here,
we study the effects of STP in congruence with long-term ISP in a
computational model of development, and show that STP can
play a crucial role in young neurons, compensating for a lack of
inhibitory tuning. Moreover, a gradual change of excitatory STP
from depression to facilitation over development allows for
excitatory-inhibitory balance to develop while guaranteeing stable
response properties.

To investigate these effects, we built a model of a simple
feedforward network with a single conductance-based integrate-
and-fire neuron receiving inputs from 800 excitatory and 200
inhibitory afferents22. To emulate heterogeneous inputs we
modeled eight different pathways (Fig. 1a) each with 100 exci-
tatory and 25 inhibitory synapses, whose activity is determined by
a time-varying rate signal (Methods). Excitatory and inhibitory
synapses were modulated by STP, consistent with experimentally
observed profiles in young and adult mice8–10,12–14,33–37.

Inhibitory synapses additionally experienced long-term ISP20,23.
Excitatory afferents were tuned according to experimentally
observed receptive fields, while inhibitory baseline weights were
initially flat (Fig. 1b, see also ref. 26).

Fig. 1 A feedfoward cortical circuit with short-term synaptic plasticity
exhibits low firing rates in both young and adult conditions. a Schematic
of animal development from young with short-term depression (left) to
adult with short-term facilitation (right) at excitatory synapses as observed
experimentally8–10,13,14. Traces of short-term synaptic plasticity (STP) for
depression (orange) and facilitation (purple)8. In the middle is a schematic
of the feedforward neural circuit with eight independent input channels,
each with an excitatory (red) and an inhibitory (blue) group synapsing onto
a postsynaptic neuron (Fig. S2). b Inhibitory tuning does not mirror
excitatory tuning in young animals (left). Once animals reach adulthood, a
precise excitation-inhibition (EI) balance can be observed. Panels
adapted from a previous study26 . c Computational model with long-term
synaptic plasticity in inhibitory synapses (ISP; see inset) started from
unbalanced excitation-inhibition (top left) and gradually developed EI
balance (top right). Neuron with unbalanced excitation-inhibition showed
high activity (~20 Hz; bottom left), which was gradually reduced through
ISP (~4.5 Hz; bottom right). Bottom raster plots represents postsynaptic
spiking activity; black line corresponds to 1 second. d A computational
model with both ISP and STP started from unbalanced excitation-inhibition
(top left) and gradually developed EI balance (top right). Neuron with
unbalanced excitation-inhibition shows low firing activity (~4.5 Hz; bottom
left) throughout development (~4.5 Hz; bottom right). Bottom raster plots
represents postsynaptic spiking activity; black line corresponds to 1 second.
e Firing rates of a model without STP (left and right panels, solid gray line)
and a model with both ISP and STP in young (left, solid orange line) and
adult (right, solid purple line) conditions. Desired activity (dashed green
line) represents baseline firing rate as observed experimentally28–31.
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Inhibitory long-term synaptic plasticity, working on a time-
scale of hours, has been suggested to underlie excitation-
inhibition (E-I) balance in cortical networks20,22,23. The slow
nature of long-term synaptic plasticity is consistent with the
gradual and slow development of E-I balance over multiple days
from young to adult animals26 (Fig. 1b). However, the lack of
detailed balance in young animals could lead to unstable, unna-
turally high activity (Fig. 1c, e). This could, in principle, be
compensated by increased learning rates at inhibitory synapses,
but this is known to lead to unstable receptive field
development38,39 and is not consistent with the slow and gradual
development of E-I balance25,26.

STP can offer an elegant solution to maintain low firing rates
throughout development. To this end, we added experimentally
observed4,6,7 STD to all afferent synapses using a standard
Tsodyks-Markram model17 (Methods). In contrast with the ISP-
alone model, the addition of an appropriate STP profile that
features STD at the excitatory synapses, led to lower firing rates in
the “young” model, despite unbalanced excitation-inhibition
(Fig. 1d, e).

Notably, the low postsynaptic firing rates that resulted from
STD in the excitatory afferents effectively prevented long-term
plasticity from developing inhibitory receptive fields that have
been observed in adult animals (Fig. 1b;26). As we will see below,
the shift of STP profiles over the course of development8,12,33

allowed the gradual tuning of inhibition in simulations of young-
to-adult development.

To better highlight the respective points the results that follow
are presented using different time courses. For ease of compar-
ison all key results are also provided in Fig. S1 using the same
time courses.

Gradual depression-to-facilitation shift enables stable activity
over development. Next we studied how the developmental
changes of STD to STF in excitatory synapses8–10,12–14,33–37 may
aid the tuning of inhibitory synapses by way of long-term plas-
ticity, and provide stable postsynaptic firing rates throughout the
process.

To simulate ageing in our model, we devised an algorithm that
gradually changed the STP parameters between young and adult
profiles fitted to experimental data (Fig. 2a; Methods). The
algorithm monitored average postsynaptic firing rate over sliding
windows of 500 ms. When rates were stable and low, excitatory
STP parameters were modified by a small amount towards
facilitation (see Methods and Figs. S2–S4 for details on how the
parameters and STP profiles were determined). For computa-
tional reasons we used a total simulation time of 8 hours to model
development, but the exact temporal frame does not qualitatively
change our results.

As expected the developmental STP model (dev-STP) main-
tained a low level of firing activity throughout the simulation (i.e.,
~5 Hz in line with experimental observations in freely behaving
rodents32) while a tight excitation-inhibition balance in the
feedforward circuit developed (Fig. 2b). For clarity we use firing
rates and synaptic input currents to assess the level of E-I balance,
but the results are qualitative similar when considering other
forms of measuring E–I balance (Fig. S5)24,40. As controls, we
considered two other models in which STP was fixed either at
STD (fixed-STD) or STF (fixed-STF) throughout the simulation.
The fixed-STF scenario exhibited high and more variable firing
rates before ISP was able to balance the postsynaptic neuron and
lower the firing rates (Fig. 2b, g; Fig. S6). On the other hand, the
fixed-STD scenario was able to maintain homeostatic balance
throughout the simulation (Fig. 2b, g), but did not develop a
tightly balanced inhibitory receptive field (Fig. 2f, h). In addition,

to highlight the contribution of the different decisions made
during model development we tested a number of model
variations (see details in the Methods; Figs. S9–S11 and S13 for
a summary plot).

Although the dev-STP and fixed-STF models converged to the
same mean inhibitory weights (Fig. 2c), the fixed-STF scenario
led to substantially higher firing rate variability during develop-
ment, and large, somewhat erratic weight changes (Fig. 2g, d). In
contrast dev-STP maintained relatively small weight changes
throughout development (Fig. 2d). Finally, while the initial
changes of receptive field in the fixed-STF scenario arose quickly,
the time of convergence was similar to the dev-STP model
(Fig. 2f, i, j), because long-term ISP in the dev-STP scenario sped
up dramatically as facilitation developed (Fig. 2b–f). In the dev-
STP model, ISP evolved the inhibitory tuning to match excitation
(Fig. 2f), incrementally handing over control of the target firing
rate to inhibition, which ensured postsynaptic activity remained
relatively low (Fig. 2b). This means that each increase in the
excitatory efficacy through strengthened STF was matched by an
increase in the inhibitory efficacy through ISP, until inhibition
was fully tuned and the excitatory synapses reach their adult
profile of STF. Note that if ISP is not included in our model, the
developmental changes of STD-to-STF at excitatory synapses
would be prone to pathologically high firing rates18,41. Taken
together, our results suggest the need for a synergistic interaction
between excitatory short-term and inhibitory long-term synaptic
plasticity.

The dev-STP model was able to maintain the neuron in a
(globally) balanced state throughout development while allowing
inhibition to gradually mirror the excitatory tuning. In line with
experimental in vivo observations in rat auditory cortex across
development26 inhibitory tuning curves were initially flat (Fig. 3a).
In the adult neuron, both model and experiment showed E-I
balance. Using linear correlation analysis as done experimentally
by26, we confirmed that excitatory and inhibitory responses in
“young” models were not correlated, but became strongly
correlated in the adult profile (Fig. 3b).

Developmental changes in STP shape signal dynamics and
transmission. Next we studied how the developmental STP
model shapes neuronal responses and signal transmission. In line
with the establishment of detailed balance22, the postsynaptic
firing rates in the dev-STP model were initially more correlated
with the fixed-STD model, and gradually became more correlated
with the fixed-STF model (Fig. 4a–c; Fig. S6). Across all input
channels we found a gradual decrease of input-output correlation
(Fig. 4d). This was largely due to the fact that the output
responses became less correlated with the preferred channel
versus the non-preferred channels (Fig. 4e).

Another functional consequence of the changes in short-term
dynamics could be observed in the phasic and tonic stimulus
response profiles. Transient (phasic) and steady-state (tonic)
neural activity has been observed in sensory cortical
circuits28,35,42,43. We examined these properties by probing the
neuron responses using a step-input stimulus (see Methods;
Fig. 5b) to the preferred input channel (channel 5), simulating the
sudden presence of a strong sensory feature. We defined the
phasic response as the average activity over the first 50 ms after
stimulus onset, and the tonic response as the average rate over the
remaining stimulus duration (200 ms). Over development, the
average phasic activity of the circuit decreased, while the tonic
activity increased (Fig. 5b). These changes in the dynamics are a
direct consequence of the gradual change from depressing to
facilitating synapses, interacting with the strengthening inhibition
(see Fig. S1 for comparison of results across figures). The shift in
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tonic and phasic responses to a single stimulus also affected
subsequent input responses when using two paired step inputs
(Fig. 5d inset; Methods). This interaction between subsequent
responses was largest for the phasic response, which grew
substantially over development, as seen by the increasing ratio of
firing rate between the two stimuli (Fig. 5d, e). On the other hand,
the tonic response decreased, but only slightly.

We also investigated the phasic response to a step stimulus on
very short time scales (Fig. 6a), specifically focusing on the
temporal jitter of the first evoked spike (Fig. 6b). In line with
experimental observations of reduced jitter over development26,
we observed substantially more stimulus-locked spike times in the
adult model than in the young model (Fig. 6c, d; Fig. S12). The

young scenario showed higher normalized jitter (Methods) than
the adult scenario across all stimulus strength, and particularly
when the background activity before stimulus onset was low
(Fig. 6e). This is the result of, under adult conditions, some of the
connections do not resulting in any output spiking due to the
tight excitation-inhibition balance. Finally, our results do not
change qualitatively if non-normalized jitter is measured (Fig.
S14).

Emergence of short-lasting memory traces in a balanced neu-
ron. Finally, we also investigated the longer term effects of
changing STP over development with regard to its implications

3-5 months

Young Adult
...

...
1

8

1

8

...
...

...
...

Short-term
Depression

Short-term
Facilitation

Fig. 2 Gradual short-term plasticity shift maintained stable firing rates while detailed E-I balance developed. a Schematic of our developmental short-
term plasticity (STP) model (cf. Fig. S2); top: young and adult STP (as in Fig. 1); bottom: gradual changes in STP from depressing to facilitating dynamics
(orange and purple respectively, in log-scale as in b–f). b–f Different variables of the model across simulated development for three different models: fixed
short-term depression (fixed-STD, orange), fixed short-term facilitation (fixed-STF, purple) and developmental model with gradual changes in STP (dev-
STP, green line). Note x-axis on log-scale. b Receiver neuron firing rate. c Mean inhibitory weight. d Mean changes in the weight of the inhibitory synaptic
afferents. e Rate of STP change (note that the curves for both fixed-STF and fixed-STD remain fixed at 0 as these models do not consider any
developmental changes to STP, shown as dashed lines). f Area between normalized excitatory and inhibitory tuning curves (cf. h–j) during the course of
simulated development. A normalized area close to 0 represents a perfectly balanced neuron. g Additional statistics for the three models. (i) Total neuronal
activity calculated using the area between the firing rate in b and the desired target rate of 5 Hz. (ii) Average coefficient of variation of the firing rates
across simulated development (cf. b). (iii) Percent of time spent under homeostasis (i.e., at the desired firing rate; cf. b). (iv) Average change in inhibitory
weights (cf. d). h–j Snapshots of excitatory and inhibitory tuning curves across three points in simulated development: 10 s (star), 1000 s (square) and
10,000 s (triangle). Shaded gray area represents difference between excitatory and inhibitory tuning curves (cf. f). h–j Excitatory (red) and inhibitory (blue)
postsynaptic tuning curves for the fixed-STD (h), fixed-STF (i) and dev-STP models (j).
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for short-lasting memory traces. STP has recently been proposed
as a substrate for short-lasting memory traces44,45, owing to the
fact that STF can promote increased response to previously dis-
played stimuli. Here, inspired by these ideas we used the dev-STP
model to test for short-term memory properties in a balanced
neuron. We compared the responses of a "recall" stimuli that were
or were not preceded by a "preloaded" stimulus.

Models with no STP mechanism, as well as the “young” dev-
STP model showed identical firing rates during the recall period
(Fig. 7a, b) independently of whether they had experienced a
preloaded stimulus or not. This is because the form of STP that
has been proposed to underpin (silent) short-term memory
traces, that is STF, had not yet developed. The “adult” dev-STP
model, on the other hand, showed substantially higher firing rates
during the recall period (Fig. 7c, d) when the recall stimulus was
preceded by a preloaded cue that activated STF in excitatory
synapses. Dev-STP thus allowed the neuron to gradually utilize
this silent short-term memory mechanism in a neuron with E-I
balance (Figs. 3a, b and 7e, f). Note that this result depends on the
dynamics of STF. For example, when adult facilitating synapses
are replaced by mixed depression-facilitation, it results in much
weaker memory traces (Fig. S15). This dependency on the STP
profile suggests that short-lasting memories are more likely to be
relevant to brain regions in which strong facilitating synapses are
prevalent44,45.

Discussion
It has been widely observed that short-term synaptic dynamics in the
cortex change from depressing to facilitating throughout the course
of development8–10,12–14,33–37. Here, we propose that this commonly
observed shift in STP interacts with long-term plasticity at inhibitory
synapses to form the fundamental architecture of neuronal proces-
sing. According to our model, short-term depressing synapses could

help to stabilize neural networks in the absence of properly tuned
inhibition in young animals (Figs. 1 and S6). A gradual change from
STD to facilitation then allows for stable dynamics throughout
development while inhibitory synaptic plasticity-mediated, detailed
excitation-inhibition balance can emerge (Fig. 2). In addition to this
stabilizing interplay, we show that the developmental maturation of
STP also shapes signal processing, by allowing for more temporally
precise coding (Fig. 6), and the emergence of synaptic-based short-
lasting memory traces (Fig. 7).

There are currently two dominant views on how changes in
STP throughout development may arise. One view is that these
changes are caused by sensory experience34; the other view poses
that these are hard-wired, pre-programmed changes13. Our
developmental STP model suggests a way to reconcile these two
views, in that both the sensory-dependent34 and non-sensory-
dependent13 changes observed experimentally may be simply
caused by changes in the neural baseline activity. However,
although we have modeled changes in STP as a function of neural
activity, it is in principle possible to allow for these changes to be
purely hard-wired and continuous (cf. Fig. S11). In our hands, the
latter mode, i.e. unilateral maturation of STP without heeding the
co-development of inhibitory tuning curves, can also lead to
stable development (Fig. S11), but this requires fine tuning of a
STP change interval. Taken together with experimental
observations34 these results suggest that activity-dependent
changes provide a more biologically plausible mechanism for
developmental STP, but further experimental work remains to be
done to test these scenarios. In addition, our model also predicts
that if this activity-dependent mechanism controlling dev-STP
would be perturbed this would lead to a delayed onset of
excitation-inhibition balance in cortical networks.

Concurrently with changes in STP there are also changes in
baseline excitatory synaptic weights over development, which can
increase, decrease or not change depending on experimental

Model ModelData Data
Young Adult

Fig. 3 Depression-to-facilitation shift captured inhibitory receptive field development. a Comparison of experimentally observed and simulated (dev-
STP model) excitatory and inhibitory tuning curves, for both young (i) and adult (ii) conditions. b Excitatory-inhibitory responses for model (gray) and
experiments (black). Different dots represent different tone frequencies in the data and different input channels in the model. Lines represent linear
correlation between excitatory and inhibitory responses in both model (gray) and experiments (black). Experimental data reproduced from a previous
study26.
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conditions16,26. We tested a range of variants of the dev-STP
model, in which the baseline excitatory weight increases,
decreases or does not change (Fig. S3v). Our results show that the
qualitative outcome of dev-STP does not depend on how the
baseline synaptic weight changes at excitatory synapses, sug-
gesting that these modifications are not critical for the dev-STP
functions studied here.

Our work highlights how developmental STP may shape
temporal aspects of synaptic transmission. In particular, our
model predicts that young animals primarily encode stimuli with
transient, phasic activity, whereas adult animals may transmit
both phasic transients and sustained tonic rates equally well.
Interestingly, both modes of transmission have been observed in
sensory cortices28 at different developmental stages. In our model

we have assumed that STP changes at all excitatory synapses
happen in lockstep over development. However, in the brain not
all synapses are modified coincidentally8–10, and it is possible that
this degree of variability gives a tighter homeostatic control
throughout development.

We have focused on long-term inhibitory synaptic plasticity,
but excitatory synapses also undergo long-term synaptic plasti-
city. Importantly, long-term excitatory synaptic plasticity also
changes the short-term synaptic dynamics19,46–48. It is possible
that the gradual changes of STP at excitatory synapses that we
have considered here are mediated by long-term excitatory
plasticity. Indeed, long-term modifications of presynaptic STP is
mediated by retrograde signaling, which depends on postsynaptic

Developmental changes

Young Adult

Short-term
Depression

Short-term
Facilitation

Fig. 4 Input–output response correlations over development. a Schematic
of the modeled development from young with depressing synapses (left) to
adult facilitating synapses (right). Bottom color bar indicates the gradual
shift in STP (as in Fig. 2). b Correlation of the dev-STP model response
profiles to that of the fixed-STD (orange) and fixed-STF (purple) scenarios
during development. c Example output responses (cf. Fig. S6) for the fixed-
STD (orange), fixed-STF (purple), and dev-STP (green) models at three
points in simulated development (i: 10 s, stars; ii: 2000 s, squares; iii:
30000 s, triangles). d Normalized range of correlation to input (Methods).
e Example of output correlations at specific times during the course
simulated development (same timings as in c). Results shown here were
averaged over 50 trials.

Developmental changes

Young Adult

Short-term
Depression

Short-term
Facilitation

Fig. 5 Developmental STP shaped tonic and phasic input-output
transmission. a Schematic of the modeled development from young with
depressing synapses (left) to adult facilitating synapses (right), as in
previous figures. b Average phasic (red) and tonic (blue) postsynaptic firing
rates for a step-input of 150 Hz (inset; cf. Fig. S6; see Fig. S1 for a
comparison between these and other devSTP results). c Example output
responses for the phasic (red) and tonic (blue) activities at three points
during development. d Ratios of the average phasic (red) and tonic (blue)
firing rates between two consecutive step stimuli (inset; see Fig. S1 for a
comparison between these and other devSTP results). e Examples of
responses to the first (light red) and second (dark red) phasic activities in
response to the double step-input stimulus at specific points during
development. Results shown here were averaged over 50 trials.
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activity, in line with our model47–49. In future work it would be
interesting to explore the effects of long-term excitatory plasticity
with realistic inputs in conjunction with inhibitory synaptic
plasticity as a potential model for developmental STP20,38,50. In
addition to the homeostatic mechanisms studied here (ISP and
STP) there are others that we could have considered. However,
the vast majority of the homeostatic mechanisms identified to
date are relatively slow, so they would suffer from the same
problem as ISP on its own – i.e. inability to quickly stabilize firing
rates51. Therefore our model would also be relevant if other
(slow) homeostatic mechanisms were included, but this remains
to be tested in future work.

Our model shows a gradual increase in temporal precision of
spiking over development, consistent with experimental observa-
tions in the auditory cortex of rats26, suggesting that STP
maturation plays an important role in temporal encoding52–56. Our
findings add to the growing experimental literature showing that
inhibition-excitation balance sharpens spike timings26,55,57,58.

Here we have focused on a simple feedforward network.
However, developmental changes in STP have also been found at
recurrent synapses8–10,13–16. It has been shown previously that
STD is important for a fast control of firing rates in recurrent
synapses59. In addition due to strong instabilities common in
recurrent networks, ISP is also critical in these cases24. This

means that our combined model of dev-STP and ISP would be
even more detrimental to avoid runaway and pathological firing
rates (Fig. 1) when applied to a recurrent network. Recurrent
neural network dynamics are traditionally thought of as being a
property of working memory in the prefrontal cortex. However,
STF at recurrent connections in the prefrontal cortex has been
proposed as an alternative biologically plausible mechanism of
working memory at the synaptic level44,60,61. Our short-term
memory results (Fig. 7) resemble the working memory-like
properties that have been proposed44. In future work it would be
of interest to investigate how these translate into recurrent net-
works, which may offer a model with both E-I balance and
synaptic-based working memory properties. This suggests that
synaptic-based working memory properties may be more pre-
valent in adult cortices, enabling animals to retain information
about the recent past throughout the brain.

We have demonstrated that the developmental shift towards
STF may provide neural networks with the ability to encode
short-term memory traces. However, there are other possible
interpretations. In sensory systems plasticity processes across
multi-timescales are known to facilitate sensory reactivation62,
which may be relevant to the short-latency stimulus facilitation
that we highlight above. In addition, it has been suggested
recently that STD and facilitation play a critical role in
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Fig. 6 Adult STP improves temporal precision of postsynaptic spikes. a Examples of postsynaptic voltage responses with preferred channel input for both
young STP model (i) and adult STP model (ii); gray bar at top represents time during which preferred channel is stimulated. b Stimulus evoked responses in
in vivo recordings across a few trials in young (i) and adult (ii) animals. Panels adapted from a previous study26. In a, b the background firing rate is 5 Hz.
c, d Normalized jitter of postsynaptic spikes in the young (c) and adult (d) model for different background firing rates (denoted by different shades of gray;
see Methods; cf. Fig. S12 and Fig. S16). e Difference between normalized jitter of young STP model (c) and adult STP model (d).
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hierarchical synaptic credit assignment across sensory and non-
sensory streams63,64. The shift in STP that we study here may also
contribute to this type of credit assignment throughout
development.

Finally, dysfunctions in the regulation of excitation-inhibition
balance underlie numerous neurological disorders65–74. In our
model we show that STP can dynamically control the expression
of long-term inhibitory synaptic plasticity, thus modulating E-I
balance. Maldaptive developmental STP should thus be reflected
in E-I malfunction. Interestingly, this is supported by disease
animal models, in which STP and excitation-inhibition balance
are both altered in animal models of dysplasia75,76.

Overall, our results suggest important functional roles for the
commonly observed shift in STP during development.

Materials and methods
Neuron models. In this study, we used a conductance-based integrate-and-fire
neuron model for simulations77. In this model, the membrane voltages are

calculated following

τ
dV
dt

¼ �g leak � ðV rest � VÞ þ gexc � ðEexc � VÞ þ g inh � ðEinh � VÞ ð1Þ

where V is the membrane potential of the neuron as a function of time t, τ is the
membrane time constant, Vrest is the resting membrane potential, Eexc is the
excitatory reversal potential, and Einh is the inhibitory reversal potential. Our
neuron parameters are the same as in previous studies77. In particular, we used a
membrane capacitance, C, of 200pF with membrane resistance, R, of 100MΩ,
which gives a membrane time constant τ= 20ms. gexc and ginh, expressed in the
units of the resting membrane conductance, are the synaptic conductances, and gl
is the leaky conductance. The synaptic conductances are modeled as τexc

dgexc
dt ¼

�gex and τinh
dg inh
dt ¼ �g in where τexc and τinh are the synaptic time constants for

the excitatory and the inhibitory conductances, respectively. When the neuron
receives a presynaptic action potential, its conductance increases by gexc→ gexc+
wexc or ginh→ ginh+winh for excitatory and inhibitory synapses, respectively. The
model parameters used are summarized in Table 1.

Synaptic plasticity models. We used both STP and long-term inhibitory synaptic
plasticity models in our work. Both were calculated separately in the simulations
and combined as explained below.
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Fig. 7 Gradual emergence of synaptic-based short-term memory traces over development. a–c Raster plot of short-term memory test (SMT, i-top)) with
a preloaded stimulus and subsequent recall stimulus (black and gray bars, respectively) compared with raster plot of trials without the preloaded stimulus
(i-bottom). Average firing rates (ii) for both memory preloaded (light green) and control conditions (dark brown). Release probability (u in blue) and
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(dark brown) preloaded stimulus. SMTs were preformed every 50 seconds during dev-STP development simulation (cf. Fig. 2) as STP changes from
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Short-term synaptic plasticity. Short-term plasticity was used in the simulations
following the Tsodyks-Markram (TM) model defined by5,78,79 as follows

dRðtÞ
dt

¼ 1� RðtÞ
D

� uðtÞRðtÞ � δðt � tAPÞ
duðtÞ
dt

¼ U � uðtÞ
F

þ f � ð1� uðtÞÞ � δðt � tAPÞ
ð2Þ

where R models vesicle depletion and u models the presynaptic release probability.
Every presynaptic spike at tAP causes a decrease in R by the number of vesicles
available by uR, which then recovers exponentially to its baseline value of 1 with a
time constant D. At the same time every presynaptic spike at tAP also causes an
increase in the release probability u by f ⋅ (1− u(t)) (where f is the facilitation rate)
and recovers exponentially to its baseline U with a time constant F. Finally, the
postsynaptic potential, or the weight of the STP component for a synapse exhi-
biting STP at time t is computed as

wðtÞ ¼ ARðtÞuðtÞ ð3Þ
where A is the baseline amplitude factor. We use different weights w(t) for exci-
tatory (wexc) and inhibitory (winh) connections (see below for more details). In
simulations, the initial value of u is set to U, and the initial value of R is set to 1. We
used the four-parameter version of the TM model (D, F,U, f) as it provides an
overall better fit of short-term dynamics data79.

STP model fitting. We found STP parameters which produced excitatory STP
paired-pulse responses (PPRs) that matched those found in experiments for young
and adult animals. Specifically, we used the STP PPRs observed experimentally8,
with excitatory STP PPRs of 0.7 and 1.24 for young and adult animals respectively.
In order to find STP parameter values that matched these PPRs, we interpolated
between strong STD and strong STF parameter values79 (Fig. S2e). Using this
interpolation we then calculated the PPR across all parameter sets. We use these
PPRs to compare with experimental data from young and adult animals8. Finally
we used least squares to obtain STP parameters that best matched the data in both
young (STD) and adult conditions (STF) (see Table 2). For STP dynamics at
inhibitory synapses, these are known to be short-term depressing (e.g.80) so we
used the young case which follows short-term depressing dynamics (see Table 2).

Inhibitory synaptic plasticity. Long-term ISP is implemented in all inhibitory
synapses in all simulations unless otherwise specified. We used the same model as
in previous studies22. In this model, each synapse i has a presynaptic trace xi, which
increases with each spike by xi→ xi+ 1 and decays exponentially following
τSTDP

dxi
dt ¼ �xi. Then, the synaptic weight of a given synapse following pre- or

postsynaptic spikes are updated by

Ainh
c ! Ainh

c þ ηðxpost � αÞwith each presynaptic spikes
Ainh
c ! Ainh

c þ ηxpre with each postsynaptic spikes
ð4Þ

where η is the learning rate, α= 2 ⋅ rtarget ⋅ τSTDP is the depression factor, where
τSTDP= 20 ms is the STDP time constant, and rtarget= 5Hz is a constant parameter
that defines the target postsynaptic firing rate. In simulations, the initial values of
wISP is set to zero. Ainh is initialized to 0.35 nS.

ISP with STP. In our simulations, ISP is combined with STP in some cases at the
inhibitory synapses. In these cases, the total synaptic weight winh is computed as the
product of the STP and ISP weight components at the time of the postsynaptic
spike winh ¼ winh

STP � wISP while the excitatory weight was given by wexc ¼ wexc
STP.

Simulations
Input signals and connectivity. To model the neural responses we used 8 inde-
pendently generated traces of low-pass filtered, half-wave rectified white noise
signals. Each of the 8 independent channels represents a signal pathway, and
consists of 100 excitatory neurons and 25 inhibitory neurons, giving a total of 1000
presynaptic neurons22. All presynaptic neurons synapse onto a single postsynaptic
neuron with a total of 1000 synapses, 800 excitatory and 200 inhibitory.

As in previous studies22 for each of the 8 channels, we generated its time-

varying rates iteratively as ŝkðt þ dtÞ ¼ ξ � ðξ � ŝkðtÞÞ � e�
dt
τs where ŝk is the k-th

signal, ξ ∈ [−0.5, 0.5] is drawn from a uniform distribution, dt= 0.1 ms is the
simulation time step, and the filtering time constant is τs= 50 ms. We normalized
all rates to a preferred firing rate of 100 Hz, and negative values were remove and
replaced with a background activity level of 5Hz.

These traces represent the firing rates across time of each of the 8 input signal
channels (see examples in Fig. S2b). We used these rates as seeds to generate
Poisson spike trains for each of the eight channels. These inputs were used in the
simulations shown in Figs. 1, 2 and S6.

Developmental and fixed STP. When simulating dev-STP, we first found the STP
parameters whose paired-pulse ratio (PPR, i.e. EPSP2/EPSP1) best matched experi-
mental data8. To this end, we started with STP parameters which give strong depression
and strong facilitation79. Next, we conducted a parameter sweep of the STP parameters
from strong depression to strong facilitation using a dense linear space between these
two conditions. We then simulated 50 Poisson input spike trains at 35Hz8, calculated
the average PPRs of each train for all STP parameters. We then used the STP parameter
values that best matched those observed experimentally8 for our simulations. These
parameter values are summarized in Table 2.

Calibrating the parameters for dev-STP. Using the STD and STF parameters given
in Table 2, we then calculated a set of 3600 parameter values spaced logarithmically
between the STD and the STF parameter values. Below we use d to denote the exact
developmental stage, i.e. d ∈ {1, 2, ⋯, 3600}. Log interpolation was used instead of
linear interpolation because a marginal change towards facilitation generates a
higher marginal change in PPR when closer to facilitation than to depression. For
each of the 3600 STP parameter values, each time we changed STP parameters, we
normalized the STP magnitude parameter A to equal

Aexc
c;d ¼ Aexc

c;d¼1

udðt ¼ 0Þ � Rdðt ¼ 0Þ

¼ Aexc
c;d¼1

Ud

ð5Þ

where Aexc
c;d¼1 is the baseline excitatory weight as defined by the each input channel

(see "Excitatory and Inhibitory tuning curves” below). The subscript c represents
the input channel number, and the subscript d∈ {1, 2, ⋯, 3600} are the parameter
values during specific developmental stages. This normalization fixed the ampli-
tude of the first PSP to the same value, regardless of the STP parameters, thus
keeping the baseline weight of excitatory synapses the same throughout develop-
ment during the simulation (see below for alternative normalizations). Note that
the initial value of u is set to U, the initial value of R is set to 1, and the total
excitatory weight for a first presynaptic spike is given by

wexcðt ¼ 0Þ ¼ wexc
STPðt ¼ 0Þ

¼ Aexc
c;d¼1Rdðt ¼ 0Þudðt ¼ 0Þ

¼ Aexc
c;d¼1

Ud
� 1 � Ud

¼ Aexc
c;d¼1

ð6Þ

Table 2 STP parameter values.

Synaptic dynamics Connection D (s) F (s) U f PPR

Depression exc. (young); inh. 0.3134 0.0798 0.3917 0.062 0.70
Facilitation exc. (adult) 0.0845 0.2959 0.1973 0.1168 1.24

Paired-pulse ratio (PPR) is given by dividing the second postsynaptic response by the first.

Table 1 Parameter values for conductance-based leaky
integrate-and-fire model.

Parameter Value

τ 20.0ms
R 100.0MΩ
C 200.0 pF
gleak 10.0 nS
τexc 5.0 ms
τinh 10.0 ms
Eexc 0 mV
Einh −70mV
Vrest −60mV
Vthresh −50mV
Vreset −60mV
τrefrac 4 ms
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regardless of the STP parameters, thus the baseline excitatory weight is invariant
across development in our simulations.

To start the dev-STP simulation, we used the baseline STD parameters given in
Table 2 at the beginning of the simulation, and slowly changed the parameters
from depressing to facilitating at excitatory synapses. Toward this end, we averaged
the postsynaptic neuron’s firing rate over a 500 ms window and monitored how
often it exceeded the ISP target rate of 5Hz by way of a variable xexceed that was
updated as follows

xexceed ¼
xexceed þ d rpost

rtarget
e ifrpost ≥ rtarget

xexceed � 1 ifrpost<rtarget

(
ð7Þ

where rpost is the postsynaptic firing rate and rtarget is the ISP target rate (see above).
We increment STP to the next set of more facilitating STP parameters when
xexceed ≤ 0. In other words, the STP parameters are incremented only when the
postsynaptic firing rate is equal to or below the ISP target rate for a sufficient
period of time, i.e., a time that is proportional to the degree to which the
postsynaptic firing rate has exceeded the target rate in the recent past. Changing the
excitatory STP to a more facilitating state raises the postsynaptic firing rate, which
increases xexceed, thus preventing further facilitating changes in STP until inhibitory
synaptic weights strengthen and subsequently decrease the postsynaptic firing rate
to the target rate, and the cycle starts over. Eventually, the STP parameter values
reach the final (experimentally observed8) STF parameter values (given in Table 2).

For both the fixed-STF and fixed-STD simulations, STP parameters at all
excitatory synapses were set to depression and facilitation (Table 2), respectively,
for the duration of the simulation.

Further, we quantified the level of “pathological activity” in all three models as
the cumulative difference between the observed firing rate and the target firing rate
for all input channels (Fig. 2g.i). We also considered the variability of firing rates,
i.e. the coefficient of variation (standard deviation divided by the mean) of the
firing rates averaged across 10 s bins using a sliding window (Fig. 2g.ii).

To ease the comparison of our results across figures we provide a supp. figure
highlighting the key results of dev-STP Fig. S1.

Variants of developmental STP model. We conducted additional simulations to
better demonstrate the behavior of the model under different conditions (see
summary of model variants in Table 3). Note that models without the proposed
combination of STP or ISP would result in high firing rates and potentially unstable
dynamics (Fig. 1e) while lacking some of the functional properties of dev-STP
(Figs. S18 and S19).

We provide a summary of how the different short-term dynamics look like in
Fig. S3 and how the different model parameters change across simulated
development in Fig. S4.

1. Fixed A to that of STD: First, we considered a simpler model in which the
synaptic scaling factor, A is fixed throughout development and set to the initial
value (i.e., that of STD) (Fig. S7). The results are qualitatively the same as for the
dev-STP, showing slightly faster STP development due to overall weaker scaling
factor (compare Fig. S7e with Fig. 2e).

2. Facilitation-depression STP: Next, we considered another variant of the dev-
STP model with adult STF that captures the degree of facilitation-depression
observed experimentally in adult animals in primary sensory cortices8 (see Fig. S3;
see Table 4 for the parameters used). In this model (Fig. S8) we get qualitatively the
same results as the original dev-STP model which uses stronger STF in adult. To
compensate for the weaker facilitation we observe a slightly faster rate of change in
the STP parameters over development (compare Fig. S8e with Fig. 2e).

3. Norm. A to steady-state 5Hz: Next, we tested a model variant in which we
normalized the steady-state PSP amplitudes when using a 5 Hz presynaptic Poisson
input (Fig. S9) instead of normalizing to the first PSP. STP parameters in this dev-
STP model were modified over development as described above. In this variant, the
fixed-STF model displayed a lower initial firing rate than that of the standard
model (Fig. S9b), failing to reach the ISP target rate and experimentally observed
firing rates in young animals28–31. Receptive field development in this variant is
otherwise qualitatively similar to our dev-STP model, if somewhat more slowly
(Fig. S9g).

4. Norm. A to steady-state 10Hz: In addition, we also normalized the steady-
state PSP of both STD and STF to be equal when using a 10Hz (instead of 5Hz as in
the standard model) presynaptic Poisson input (Fig. S10). In this case, STF was
weakened enough that fixed-STF in young animals exhibited firing rates near the
ISP target rate as observed experimentally28–31. However, because of weakened
STF, which caused the firing rate to stay below the target firing rate for ISP, which
leads to a lack of fine-tuned tuning curves over development (Fig. S10f–h). Note
that this is purely due to how the ISP learning rule is defined as commonly done in
the field, not our developmental model.

5. Predefined STP changes: We also tested a variant of our model in which the
developmental shift from STD in young neurons to STF in adult neurons was not
activity-dependent. Instead, we altered the dev-STP model to a model in which STP
changes occurred at fixed intervals of 3seconds (Fig. S11e). If these changes occur
too frequently, unstable dynamics unfolded so some fine tuning of how often STP
changes is required. This model variant also produced qualitatively similar results
to our standard dev-STP model (compare Fig. S11 and Fig. 2).

6. Dev-STP with stochastic release: Finally, we tested a variant of the dev-STP
model with stochastic excitatory and inhibitory synapses. Stochastic release using
an uniform distribution and the release probability u to sample release events. This
model variant produces results qualitative similar to the main dev-STP model and
also shows reduced jitter over development (Fig. S17).

Excitatory and inhibitory tuning curves. To calculate the excitatory and inhibitory
tuning curves, we monitored the excitatory and inhibitory conductances for each of
the 8 input channels separately, and calculated the respective currents using

Iexck ðtÞ ¼ gexck ðtÞðEexc � VðtÞÞ
Iinhk ðtÞ ¼ g inhk ðtÞðEinh � VðtÞÞ þ g leakðV rest � VðtÞÞ=K ð8Þ

where Iexck ðtÞ and Iinhk ðtÞ are the excitatory and inhibitory currents and gexck ðtÞ and
g inhk ðtÞ are the excitatory and inhibitory conductances of the k-th channel at time t,
respectively22. Eexc and Einh are the excitatory and inhibitory reversal potentials,
respectively. V(t) is the postsynaptic membrane potential at time t, gleak is the leaky
conductance, and Vrest is the resting membrane potential. After calculating the
excitatory and inhibitory currents for each channel at all time points, we averaged
the excitatory and inhibitory currents across 10seconds to generate the tuning
curves shown in the figures.

Output response dynamics across development. To measure how the neuron output
response changed over the course of simulated development, we stopped the dev-
STP simulation (Fig. 2) at 10 s, 500 s, 1000 s, 2,000 s, 10,000 s, and 30,000 s
simulated time and examined the response dynamics of the model neuron. For
each snapshot, we ran 50 step current trials with frozen parameters and compared
the average firing rates of the dev-STP scenario with those of the fixed-STD and
fixed-STF scenarios (Fig. 4b).

Table 3 Summary table of the various variants of dev-STP models and how these impact the different parameters.

Model name A U A ⋅U (first PSP) Inh. r.f. dev.

0. Standard dev-STP Increasing Decreasing Constant Yes
1. Fixed A to that of STD Decreasing Decreasing Decreasing Yes
2. Facilitation-Depression STP Increasing Decreasing Constant Yes
3. Norm. A to steady-state 5Hz Decreasing Decreasing Decreasing Yes
4. Norm. A to steady-state 10Hz Decreasing Decreasing Decreasing No
5. Predefined STP changes Decreasing Decreasing Constant Yes
6. Stochastic dev-STP Increasing Decreasing Constant Yes

Table 4 STP parameter values used for the facilitation-depression STP model.

Synaptic dynamics Connection D (s) F (s) U f PPR

Depression exc. (young); inh. 0.3134 0.0798 0.3917 0.062 0.70
Facilitation–depression79 exc. (adult) 0.2 0.2 0.25 0.3 1.42

Paired-pulse ratio (PPR) is given by dividing the second postsynaptic response by the first.
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To investigate how input tuning changed over development, we calculated the
cross correlations between the input and output rates for each of the 8 channels22.
We obtained the correlation range by subtracting the minimum from the
maximum correlation and normalized the range by dividing by the mean
correlation of all channels with the output (Fig. 4d).

Signal transmission across development. To investigate signal transmission across
development, we presented a 250 ms long 150 Hz input stimulus to the preferred
input channel every 100seconds of the dev-STP simulation (Fig. 2). We analyzed
the output firing rates during the first 50 ms after stimulus onset (phasic period)
and the remaining 200 ms afterwards (tonic period); Fig. 5b, c). We also tested a
double step-input stimulus, two 250 ms 150 Hz input stimuli separated by 250 ms
of spontaneous activity (Fig. 5d, e).

Temporal precision simulations. We compared the temporal precision of post-
synaptic spikes in our model with experimental observations26. To this end, we
stimulated the preferred channel (5) of the output neuron with a 200 ms step
current, imitating a pure tone in the preferred frequency in the auditory cortex26.
To quantify the temporal precision of the response, we calculated the standard
deviation of the delay between the stimulus onset and the first postsynaptic spike,
denoted as the jitter26. To allow comparison across different firing rates, we also
calculated a normalized jitter, i.e., the jitter’s coefficient of variation. The nor-
malized jitter was compared for different preferred channel stimulus strengths as
well as for varying spontaneous activity levels (Fig. 6c–e).

Short-term memory traces. To test for short-term memory properties, we used two
simulation protocols. In the "memory preloaded” trials, we stimulated the neuron
with a 300 ms long 150 Hz steady-state stimulus (a memory) in the preferred
channel. All remaining channels received spontaneous rates at 5Hz. After the
memory preloading period, the preferred channel input received spontaneous
firing rate inputs for a 300 ms delay period, followed by a weaker, 100 ms long
50 Hz "recall cue” stimulus. For "control” trials, the input channels of the neuron
only received the 100ms recall cue, to the preferred channel, without preloading.

We then compared the firing rates during recall between the memory preloaded
and control trials, to study the “silent” short-lasting memory effects in our model.
We tested this throughout simulated development, by freezing the dev-STP
simulation every 50s and simulating 500 trials of the memory preloaded
simulations and 500 trials of the control simulations.

Simulator. Simulations were conducted in Python using Brian Simulator 2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data analyzed in this study are included in a previous study26 (and its supplementary
information files).

Code availability
Code to reproduce our key findings is available at github.com/djia/dev-stp.
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