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Quantum nonlinear spectroscopy of single
nuclear spins

Jonas Meinel 1,2,8, Vadim Vorobyov 1,8, Ping Wang3,4,8, Boris Yavkin1,
Mathias Pfender 1, Hitoshi Sumiya5, Shinobu Onoda 6, Junichi Isoya 7,
Ren-Bao Liu 3 & J. Wrachtrup1,2

Conventional nonlinear spectroscopy, which use classical probes, can only
access a limited set of correlations in a quantum system. Here we demonstrate
that quantum nonlinear spectroscopy, in which a quantum sensor and a
quantum object are first entangled and the sensor is measured along a chosen
basis, can extract arbitrary types and orders of correlations in a quantum
system. We measured fourth-order correlations of single nuclear spins that
cannot bemeasured in conventional nonlinear spectroscopy, using sequential
weak measurement via a nitrogen-vacancy center in diamond. The quantum
nonlinear spectroscopy provides fingerprint features to identify different
types of objects, such as Gaussian noises, random-phased AC fields, and
quantum spins, which would be indistinguishable in second-order correla-
tions. This work constitutes an initial step toward the application of higher-
order correlations to quantum sensing, to examining the quantum foundation
(by, e.g., higher-order Leggett-Garg inequality), and to studying quantum
many-body physics.

All information one can extract about a physical system is essentially
the statistics of measurement, quantified by correlations or
moments. It is correlations that distinguish different types of noises
or fluctuations. Higher-order correlations are particularly important
since different types of physical quantities often have similar or only
quantitatively different first- and second-order correlations1–3. For
example, all the higher order correlations of Gaussian noises can be
factorized into first- or second-order correlations of all possible
partitions4, and those of symmetric dichotomous telegraph noises
can be factorized into second-order correlations only in sequential
partitions5. Higher order correlations are recently used to study
many-body physics in cold atom systems6 and to reveal the non-
Gaussian fluctuations7. Measuring correlations of fluctuations in
physical systems is important to quantum science and technology.

The second-order correlation8–11 has enabled high spectral resolution
(1–100sHz) in atomic NMR11–14, using nitrogen-vacancy (NV) centers
in diamond15. Correlations of measurements can test quantum
foundations (such as Bell inequality16 and Leggett–Garg inequality17)
and identify the fundamental difference between classical and
quantum systems18–20.

Nonlinear spectroscopy21 is the most widely used approach to
determining correlations of fluctuations in a physical system. How-
ever, conventional nonlinear optical spectroscopy21 and magnetic
resonance spectroscopy22,23, which use classical probes such as elec-
tromagnetic waves, can only access certain types of correlations in a
quantum system24. The idea of quantum nonlinear spectroscopy25 was
recently proposed to use quantum probes such as entangled photons
to achieve sensitivities and resolutions beyond the classical limits26,27. It
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is shown28 that quantum sensing can extract arbitrary types and orders
of correlations in a quantum system by first quantum-entangling a
sensor and the object and then measuring the sensor1,29. Quantum
sensing30 has been applied to achieve nuclear magnetic resonance
(NMR) of single atoms31–33 and the second-order correlation
spectroscopy8–11 has been adopted to enhance the spectral
resolution11–14. However, quantum nonlinear spectroscopy (i.e., the
measurement of higher-order correlations) of single nuclear spins28 is
still elusive.

Quantum quantities, being operators, usually do not commute,
i.e., two quantities Â and B̂ may have a non-zero commutator
½Â, B̂� � ÂB̂� B̂Â≠0, in sharp contrast to classical quantities, whose
commutators always vanish. Therefore, quantum systems have
characteristic quantum correlations, which involve commutators of
quantities, such as the second-order one h½Â, B̂�i (in which 〈⋯〉

means the average over many repeated measurements) and the
third-order example hfÂ,½B̂,Ĉ�gi (where fÂ,B̂g � ÂB̂+ B̂Â denotes an
anti-commutator). Such quantum correlations can be used for the
classical-noise-free detection of quantum objects24. The classical
correlations reduce to the normal products when the operators are
replaced with classical quantities—C-numbers, while the quantum
one would vanish.

The rich structures of higher-order correlations are largely unex-
plored due to the limitation of conventional spectroscopy. In con-
ventional nonlinear spectroscopy, a weak classical “force” fi is applied
to a system at different times and/or locations, with a Hamiltonian
V̂ i = f iB̂i, and the change of a physical quantity Â (the response) is
measured. After time-dependent perturbation expansion of unitary
evolution of the system, the response of a quantum system to the Kth
order of the weak force is determined by a (K + 1)th order correlation
that involves only commutator, such as h½B̂1,½B̂2, . . . ½B̂K , Â���i since the
evolution of a quantum system is governed by the commutator of the
interaction operator and its density operator. The response of a clas-
sical system contains only the classical correlation such as 〈B1
B2⋯BKA〉. The correlations that involve anti-commutators, such as
hfB̂1,½B̂2,fB̂3, Âg�gi, do not show up in the response of a quantum system
to a classical force. Similarly, the noise spectroscopy can also extract
limited types of correlations1,34–41.

Quantum probes in lieu of classical forces can be utilized to break
the limits of conventional spectroscopy. Quantum light spectroscopy
(using, e.g., entangled photons) has been demonstrated to have both
high spectral and high temporal resolutions25,27. Quantum sensing
provides a systematic approach to extracting higher-order correla-
tions of arbitrary types28. A quantum sensor can establish entangle-
ment with a quantum target, by which a measurement of the sensor
constitutes a measurement of the target1,29. Specifically, one can per-
form a sequence of so-called weak measurements of a target by,
repeatedly, weakly entangling the sensor with the target and measur-
ing the sensor. By designing the initial state of the sensor and choosing
the measurement basis in each shot of measurement, one can extract
different types of correlations of the quantum target via statistics of
the sequential outputs28. In conventional magnetic resonance spec-
troscopy, one can in principle separate the spin system into a quantum
sensor and a target, but since the “sensor” is measured only at the end
of a control sequence, the extractable correlations are restricted to
those that can be coded by unitary quantum control or non-unitary
ones that can be constructed from unitary controls via, e.g., phase
cycling.

Here we demonstrate the extraction of fourth-order correlations
of single nuclear spins that cannot be measured in conventional non-
linear spectroscopy, using sequential weak measurement42,43 via an
atomic quantum sensor, namely, a nitrogen-vacancy center in
diamond15. This first attempt of quantum nonlinear spectroscopy via
quantum sensing already leads to non-trivial discoveries.We show that
quantum nonlinear spectroscopy provides fingerprint features to

identify different types of objects, such as Gaussian noises, random-
phased AC fields, and quantum spins, which would be indistinguish-
able in second-order correlations. The measured fourth-order corre-
lation unambiguously differentiates a single nuclear spin and a
random-phased AC field. It also provides a discrete count of the
number of spins (similar to the photon-count correlation for deter-
mining the number of quantum emitters).

Results
Protocol and modeling
The sensing protocol is shown in Fig. 1a. In each shot of the sequential
weak measurement, we prepare the sensor spin-1/2 in, e.g., the state |
x〉. We then measure the sensor spin σ̂θ = σ̂x cosθ+ σ̂y sinθ along the
direction eθ (in the xy-plane with an angle θ from the x-axis). The weak
interaction between the sensor and a quantum target V̂ ðtÞ= Ŝz B̂ðtÞ
(with Ŝz being the sensor spin along the z-axis and B̂ðtÞ the quantum
field from the target) can induce weak entanglement in an interroga-
tion time τ. The measurement on the sensor spin constitutes a weak
measurement of the target. The correlations of the target can be
extracted from the statistics of the measurement outputs (σ1,
σ2,…, σj,…) with σj = ±1. For example, the first moment Sj = hσji was
used to detect single nuclear spins31–33, and the second moment
Sij = hδσiδσji (with δσi � σi � hσii) was measured for high-resolution
atomic NMR11–14. Here we concentrate on the third moment
Sijk = hδσiδσjδσki: Not to be confused with the correlations in the
targets, theKth statisticalmoment of themeasurement outputs will be
referred to as the Kth order “signal”.

Let us first consider a classical noise B(t) along the z-axis. During
the interrogation time τ in the jth shot ofmeasurement, the sensor spin
precesses about the z-axis by an angle Φj ≈Bjτ [where Bj ≡B(tj)]. The
probability of output σj = ±1 of the measurement along eθ is
pjð± Þ=

1± cosðθ�Φj Þ
2 . For short interrogation time τ (in comparison to the

timescale and the inverse strength of the noise), in the leading orders
of coupling strength, the first moment is SCj = hpji≈ cosθð1� hΦ2

j i=2Þ
(where pj � p +

j � p�
j ), the second moment SCjk = hpjpki≈ sin2θhΦjΦki,

and the third moment

SCijk≈� sin2 θ cosθ
2

hδΦ2
i ΦjΦki+ hΦiδΦ

2
j Φki+ hΦiΦjδΦ

2
ki

� �
, ð1Þ

where δΦ2
j � Φ2

j � hΦ2
j i. Here we have assumed that the noise is

symmetric and therefore its odd-order correlations vanish. The phase
correlations are related to the field correlations by hΦjΦki= τ2CC

jk and
hΦiδΦ

2
j Φki = τ4CC

ijjk � τ4CC
ikC

C
jj with CC

jk � hBjBki and CC
ijkl � hBiBjBkBli.

The fourth-order correlations may be factorized into second-order
ones with pairing patterns characteristic of the noise type. For
example, a Gaussian noise allows all pairings,
CC
ijkl =C

C
ij C

C
kl +C

C
ikC

C
jl +C

C
il C

C
jk ,4 and anAC fieldwith a uniformly random

phase has CC
ijkl = ðCC

ij C
C
kl +C

C
ikC

C
jl +C

C
il C

C
jkÞ=2 (the same as Gaussian

noises, except for the factor 1/2) (see Supplementary Note 3). For a
noise oscillating with angular frequency ν0, different types of statistics
would yield the same second moment SCij / cosðν0tijÞ (with
tij � ti � tj). But the third moment SCijk (which contains the fourth-
order correlation of the noise) would have different fingerprint
patterns in its 2D spectrum eSCðνij , νjkÞ (obtained by 2D Fourier
transform in tij and tjk) for different types of noises (see Fig. 1b). In
particular, the Gaussian noise has 12 peaks of equal height at (0, ±ν0),
(±ν0, 0), ±(ν0, ν0), ±(ν0, −ν0), ±(ν0, 2ν0), and ±(2ν0, ν0), and the random-
phasedACfield has six peaks at ±(2ν0, ν0), ±(ν0,−ν0), and±(ν0, 2ν0) (see
Supplementary Note 3).

The key difference between a quantumnoise and a classical one is
that in the interaction V̂ = Ŝz B̂ðtÞ the noise B̂ðtÞ is an operator of the
target (see Fig. 1a). In the jth shot of measurement, starting from the
initial state ρ̂ðtjÞ= ρ̂BðtjÞ � ρ̂

S
(where ρ̂B=SðtjÞ is the target/sensor

state), the interaction leads to ρ̂ðtj + τÞ= ρ̂ðtjÞ+ τ
i ½V̂ ðtjÞ,ρ̂ðtjÞ�+
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τ2

2i2
½V̂ ðtjÞ,½V̂ ðtjÞ,ρ̂ðtjÞ��+ � � �. To separate the effects on the sensor

and those on the target, the commutator can be decomposed
as �i½V̂ ðtjÞ,ρ̂ðtjÞ�= � i½Ŝz ,ρ̂S� � 1

2 fB̂j,ρ̂BðtjÞg+ fŜz ,ρ̂Sg � 1
2i ½B̂j ,ρ̂BðtjÞ� �

2S�z ρ̂S � B+
j ρ̂B + 2S

+
z ρ̂S � B+

j ρ̂B, where B+ Â � ðB̂Â+ ÂB̂Þ=2 (essentially
the anti-commutator) reduces to the normal product if B̂ðtÞ is a clas-
sical field and B�Â � ðB̂Â� ÂB̂Þ=ð2iÞ (essentially the commutator)
vanishes if B̂ðtÞ is a classical field. By choosing tomeasure the sensor in
the basis of S+

z ρ̂S or S
�
z ρ̂S, one can select the target evolution driven by

the commutator or the anti-commutator, i.e., B�
z ρ̂B or B+

z ρ̂B, respec-
tively. Therefore, quantumcorrelations that contain a nested sequence
of commutators and anti-commutators of the noise operators can be
extracted. Considering a target (such as a nuclear spin) at high tem-
perature, i.e., ρ̂B being a constant, the second-order quantum corre-
lation TrðB +

j B
�
i ρ̂BÞ vanishes. The third momentum has both classical

and quantum contributions, Sijk = S
C
ijk + S

Q
ijk .

The classical part SCijk is the same as for classical noises (see the
“Methods” section and Supplementary Note 4), except that the pro-
ducts of classical variables should be replaced with anti-commutators
such as (tl > tk > tj > ti)

CC
ijkl =Tr B+

l B
+
k B

+
j B

+
i ρ̂B

� �
: ð2Þ

It should be noted that though the classical correlation in the
quantum object takes the same form as in a classical noise, it has a
fundamentally different origin. The correlations in the quantumobject

stem from the back-action of the weak measurement by the sensor,
which results from the weak entanglement and measurement of the
sensor on the basis of S�z ρ̂S. Importantly, the classical correlation CC

ijjk
of a quantum object in Eq. (2) does not contribute to conventional
nonlinear spectroscopy using a classical probe.

The quantum part SQijk = � 1
2 sin

2θ cos θτ4CQ
ijjk (see the “Methods”

section). For ρ̂B being a constant, the quantum correlation has only
one non-vanishing term (tk > tj > ti assumed, see the “Methods” section
for details)

CQ
ijjk =Tr B+

k B
�
j B

�
j B

+
i ρ̂B

� �
: ð3Þ

The importance of quantumness lies in the fact that without the
heralded polarization of the target by back-action frommeasurement
at ti, the commutators at tj would vanish24,28.

When the quantum object is a two-level system (such as spin-1/2
of 13C in diamond), the quantum correlations will double the third
moment since SQijk = S

C
ijk in this case (see the “Methods” section).

When the sensor is coupled to multiple (N) spin-1/2’s at high tem-
perature (see the “Methods” section), the classical correlation scales
as CC

ijjk ~N
2, and the quantum correlation CQ

ijjk ~N (since the com-
mutators between different spins vanish). With increasing the num-
ber, the quantum spins approach to a classical noise, with Gaussian
statistics (resulting from the summation ofmany independent binary
quantities). Figure 1c shows qualitatively different patterns in the

a

b c

Fig. 1 | Simulated third-order correlation spectra of different types of classical
and quantum noises. a The scheme of correlation measurement. A sensor spin is
initially prepared in the state |x〉, then its z-component Ŝz is coupled to a classical
noise B(t) or a quantum object by B̂ tð Þ, and the measurements along eθ are

correlated to determine the statistical moments, e.g., Sijk. b 2D spectra eS�νij ,νjk� of
the third moment Sijk for a Gaussian noise (upper) and a random-phased AC field
(lower). c 2D spectra of the thirdmoment for a sensor coupled uniformly toN spin-
1/2’s (N = 1, 2, 3, and 6).
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correlation spectra of a different number of spin-1/2’s with uniform
coupling.

Measurement of correlations
We employ the states ∣+ i= ∣0ei and ∣�i � ∣�1ei in the spin triplet of
an NV center in diamond as the sensor spin15. Each shot of weak
measurement is realized by the pulse sequence shown in Fig. 2a. We
optically pump the NV center spin into the state |+〉 and prepare it
into the state ∣xi= ð∣+ i+ ∣�iÞ=

ffiffiffi
2

p
by a π

2 microwave pulse. A sequence
of Knill dynamical decoupling XY (KDD-XY5) consisting of Np = 100
pulses modulates the interaction between the NV spin and a target
13C nuclear spin during the interrogation such that weak, tuneable
entanglement between the sensor and the target is induced. This
results in alpha = 0.189 pi interaction strength. The inter pulse time is
186.68 ns, including 68.67 ns for the pi pulse length. Measurement of
σ̂θ is realized by a π

2 rotation changing the eθ axis to the z-axis fol-
lowed by a projective measurement along the z-axis. To enhance the
readout fidelity, we use a SWAP gate to store the sensor spin state in
the 14N nuclear spin (which has been polarized in the initialization
step using SWAP gates as well) and repeatedly (M times) read out the
14N spin via a CNOT gate and spin-dependent fluorescence of the NV
center electron spin44,45. The statistical moments of themeasurement
Si, Sij, and Sijk are reconstructed from the photon counts (see the
“Methods” section).

Figure 2b shows the second-order signal Sij of a sensor coupled
to a 13C nuclear spin. Under an external magnetic field (B0 = 0.2502 T)
along the z direction (the NV axis) and dynamical decoupling control
of the hyperfine interaction, the quantum field from the 13C spin in
the interaction picture is effectively B̂ðtÞ=A?½̂Ixcosðν0tÞ � Îysin ðν0tÞ�
(see the “Methods” section) with the nuclear Zeeman frequency
ν0
2π ≈ 2:6795MHz. Therefore, Sij / CC

ij =
1
2 hfB̂i,B̂jgi / cosðν0tijÞe�γtij ,

oscillates at frequency ν0 with a measurement-induced decay9

(a rapid decay due to random hopping of the NV center state
has been removed—see Supplementary Note 9). For comparison,
Fig. 2c shows both the Fourier transform of the second-order sig-
nal for an AC field BðtÞ=B0cosðν0t +ϕÞ with a uniformly random
phase ϕ and that for a 13C nuclear spin. As shown in Fig. 2c, the
nuclear spin and the random-phased AC field lead to similar second-
order signals.

The third moment of the sequential measurements has qualita-
tively different patterns for a quantum spin and for a classical field.We
set the measurement angle θ ≈ 54.0037° tomaximize the amplitude of
the third-order signal (which is ∝sin2 θ cos θ). The 2D spectrum of the
third moment for a quantum spin target (Fig. 3a, b) clearly shows four
peaks at (νij, νjk)with ∣νij ∣= ∣νjk ∣= ν0 mod (2π/tc)with tc being the period
of each measurement shot. The difference in the heights of the diag-
onal and anti-diagonal peaks is probably due to the fast hopping
between different states of sensor spin (see Supplementary Note 6). In
contrast, the 2D spectrum for the random-phased AC field (Fig. 3c), as
expected, presents six peaks at (νij, νjk) = ±(ν0, 2ν0), ±(ν0, −ν0), and
±(2ν0, ν0) mod (2π/tc).

The quantum nonlinear spectroscopy has qualitatively different
patterns for different numbers of nuclear spins (Fig. 1c). In particular,
the height of the eight peaks at (0, ±ν0), (±ν0, 0), ±(ν0, 2ν0), or ±(2ν0,
ν0) relative to those at ±(ν0, −ν0) is a quantized number η = 1–1/N (see
Fig. 3d and Supplementary Note 5), which provides a discrete count
of the number of spins (similar to the determination of the number of
quantum emitters by the correlation g(2) of photon counts). The
relative height η averaged over the signals at the eight points is
about 0.12 ± 0.1 (Fig. 3d), indicating that the target detected by the
sensor is a single nuclear spin. Instead of roughly estimating the
number of nuclear spins by sensitivity46, our method can determine
the exact number if the couplings to different spins are of similar
strength.

The third moment contains the contribution of the quantum
correlation and hence can differentiate a quantum spin and a
classical noise. In particular, the second moments for a spin-1/2 at
higher temperature is Sjk = sin

2θ cosðν0tjkÞe�γtjk (with c0 being a
constant), the third-order signal for a quantum spin target is
Sijk = �rc20 sin

2θ cosθ sinðν0tijÞsinðν0tjkÞe�γtik (see the “Methods”
section), with r = 1 for a quantum spin target and rc = 1/2 for the
classical signal SCijk . The fitted result, as shown in Fig. 4d, yield
r = 1.13 with a standard deviation ≈0.368. The data confirms the
quantumness of the noise from the nuclear spin.

Discussions
The results above demonstrate that quantum nonlinear spectroscopy,
enabled by measurement via a quantum sensor, can extract

Fig. 2 | Statistics of sequential measurements on a sensor spin. a Protocol of
sequential measurement. The sensor spin and the ancilla are initialized by an
optical pump (green block being a pulse of 532 nm laser) and SWAP gates (repe-
ated twice for higher fidelity). Then the sensor spin is rotated by a π

2 pulse (blue
block), controlled by a dynamical decoupling sequence, and rotated again by a π

2

pulse (with a readout angle θ from the first π
2 pulse so that σ̂θ is measured). The NV

electron spin state is then stored in the 14N spin by a SWAP gate and the 14N spin

state is repeatedly read out through the electron spin via a CNOT gate and photon
counts. b Second moment Sij of sequential measurement of a sensor spin coupled
to a 13C nuclear spin. c Fourier transform of the second moment for a nuclear spin
(upper) and a random-phased AC field (lower). The extra small peak at lower
frequency in lower graph of c is not from the AC field, as checked by the depen-
dence of its amplitude on the measurement direction eθ (see Fig. S5 in Supple-
mentary Note 9).
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Fig. 3 | Quantum nonlinear spectroscopy of a nuclear spin and a random-
phasedACfield. a 2D spectrumof the thirdmomenteS�νij ,νjk� of anNV center spin
coupled to a nuclear spin. b The diagonal (orange symbols) and anti-diagonal
(purple symbols) slice of a. c 2D spectrum of the third moment eS�νij ,νjk� of an NV
center spin coupled to a random-phased AC field. d The calculated average height

(curve) of the eight peaks at (0, ±ν0), (±ν0, 0), ±(ν0, 2ν0), or ±(2ν0, ν0) relative to
those at ±(ν0, −ν0) as a function of the number of uniformly coupled nuclear spins.
The symbols are experimental values (green is from Fig. 3a and blue is from Sup-
plementary Fig. S12, measured with a different number of dynamical decoupling
pulses). Error bars are standard deviation.

a b

c d

Fig. 4 |Quantumcorrelationofa singlenuclear spin. a–c show the thirdmoment
Si,i+p, i+p+q as a function of p for q = 7, 8, and 9 in turn. The purple symbols are
experimental data. The orange curves are theoretical results with the fitting
parameter r being the ratio of the amplitude of the thirdmoment to the amplitude
squaredof the secondmoment (not shown). tc is the same as in Fig. 3a.dThe factor

r (purple symbols) obtained from fitting different data sets (see Supplementary
Note 11). The blue line is the mean value of r, and the shadow area is within one
standard deviation from the mean. The red (green) dashed line indicates the value
rQ = 1 (rC = 1/2) for the total (classical only) correlations.
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correlations of a quantum object that are inaccessible to conventional
nonlinear spectroscopy using classical probes and quantum correla-
tions that are missing in classical fields and cannot be retrieved by
conventional noise spectroscopy. The higher-order correlations pro-
vide fingerprint features for unambiguous differentiation of noises of
different kinds and for verification of quantumness.

Fourth–order correlations of a signal originated from the nuclear
spin bath, analogous to the g(2)(0) measurements of photon statistics,
allows to resolve the number of nuclear spins and particularly isolate
single spins. In this work, we demonstrated this technique in applica-
tion to a single nuclear spin. With multiple nuclear spins further
research is required to understand how unsimilar coupling affects the
correlation function, similar to the effect of dissimilarly bright quan-
tum emitters in quantum optical second-order correlation function
(g(2)(0)). In general, a more efficient readout such as the resonant
readout technique at low temperatures47 would help experiments by
improving the readout efficiency and reducing the unwanted deco-
herence of nuclear spins induced by the green laser light. This could
potentially open the way towards experimental observations of many-
body phenomena28.

Furthermore, the scheme can be generalized, by using, e.g.,
different initial states of the sensor spin, different measurement
bases, higher ordersmoments, and higher spins as sensors, to extract
arbitrary types and orders of correlations. In our current experi-
ments, the measurement basis is fixed in the whole measurement
sequence (along the axis with an angle θ from the x-axis). This pro-
tocol is relatively simple and also allows the fourth-order correlations
of the quantum target to be extracted through correlating mea-
surement outputs at three times (ti, tj, and tk). Such a configuration
for measuring the fourth order correlations is less demanding on the
measurement fidelity and the system stability (needed for a long data
acquisition time). However, the shortcoming is also obvious. First,
the Bj

� of the second measurement occur at the same time (namely,
B�
j B

�
j ), which limits the spectroscopy to be two-dimensional. Second,

more importantly, the measurement along a direction between x and
y axes (relative to the axis of the initial state) makes it impossible to
fully distinguish the contribution from the quantum and classical
correlations. Actually, in our fourth-order signal, the classical and
quantum correlations have equal weight. As shown in ref. 28, by
choosing a pair of orthogonal axes along which the sensor state is
initialized and is measured, one can selectively address the quantum
and classical correlation (given by the commutator B�

j and the anti-
commutator B +

j , respectively). Thus, one task for developing quan-
tum nonlinear spectroscopy is to improve the measurement fidelity
and the system stability such that in the sequence of weak mea-
surement, the initial state and measurement axis are individually
chosen in each shot of measurement and different types of correla-
tions are fully separated. Such improved capability would enable
screening of classical noise for ultrasensitive detection of quantum
objects24 and facilitate the test of quantum foundation17 using higher
order quantum correlations.

Information made available by quantum nonlinear spectroscopy
will be useful for quantum computing (by helping characterize and
optimally suppress noises), quantum sensing (by isolating quantum
objects from classical noise background), studying quantum many-
body physics (by detecting new types of fluctuations in mesoscopic
systems), and examining quantum foundation (by testing higher-order
Bell inequalities or Leggett–Garg inequalities with fewer, narrower, or
even no interpretation loopholes).

Methods
Setup and sample
The measurement is carried out with a confocal microscope setup
located in a room temperature bore of a superconductingmagnet (see
Supplementary Fig. S1). The magnet produces a field of 250mT,

aligned parallel to the NV axis, which results in a transition frequency
of about 4.1 GHz between |0〉 and |−1〉. The fluorescence light of the
NV centers is detected with an avalanche photo diode (APD). The
electron and nuclear spins are manipulated with the two channels of
microwaves. We have a typical Rabi frequency of 7MHz for the elec-
tron spin at full pulse amplitude.

The diamond sample used is a 2mm× 2mm×80μm, (111)-orien-
ted polished slice from a 12C-enriched (99.995%) diamond crystal13. The
single NV centers were created by electron irradiation. The typical
lifetimes for the NV centers in this slice are T *

2 ≈ 50μs (measured by
Ramsey interference) and T2 ≈ 300 µs (measured by spin echo).

For details of the setup and the sample see SupplementaryNote 1.

Measurement method
We use the NV center electron spin as the sensor and the nitrogen
nuclear spin as a quantummemory to enhance the sensing. Each shot
of measurement consists of three steps: initialization, sensing and
readout. The electron spin is optically initialized in state|0〉. The
electron spin is prepared with a (π/2)-pulse. We sense 13C nuclear
spins in diamond with a Knill pulse dynamical decoupling
sequence48, the KDDxy, where the time between pulses matches the
Larmor frequency of the 13C spin of interest. For KDD-XY5 we used
Np = 100, α = 0.189(4)π, and estimated Ax = 2π · 14.7(3) kHz. The esti-
mated Az < 2π ⋅ 100Hz, where α =Np � τ � Ax=π. Therefore, the super-
position state of the NV electron spin acquires a phase, conditioned
on the 13C state. The sensor state gets projected, orthogonal to the
preparation pulse, with a phase-shifted MW pulse. Lastly the optical
readout of the sensor spin is performed. Here we SWAP the electron
spin state and the 14N spin state, which is preserved during several
laser readouts, enabling single-shot readout44,45. To mitigate the
effect of decoherence because of the hyperfine interaction with
the target 13C when the NV center is in the excited states, we limit the
readout to 40 repetitions. The SWAP between the electron and the
memory spins consists of a weak MW pulse on the electron spin
conditional on the 14N state (CNOTe, with duration ∼4 μs) followed
by a conditional RF-pulse on thememory spin (CNOTn, with duration
∼50μs) and then another CNOTe. Each readout repetition consists of
one CNOTe and a laser pulse (0.3 μs).

Reconstruction of correlation from photon counts
The probability for sensor collapses to |0〉 (|−1〉) is denoted by p(+)
(p(−)). For weak noise, ðσÞ ≈ ½1 + σ cosðθ�ΦÞ�=2. The distribution of
photon counts of each measurement is

p nð Þ=p n∣+ð Þp +ð Þ+p n∣�ð Þp �ð Þ, ð4Þ

where pðn∣± Þ= 1
n! e

�n± nn
± is the Poisson distribution and n± is the

average number of photons detected for the spin state |0〉 or |−1〉,
respectively. The photon counts can be written as

n=n+ σd +wσ ð5Þ

with n = ðn+ +n�Þ=2 is the average photon count, d ≡ (n+ –n−)/2 is the
photon count contrast between the two spin states, and wσ ≡ n–nσ is
the intrinsic photon count fluctuation (due to spontaneous emission,
APD efficiency, etc.) satisfying the distribution pðwσÞ=pðnσ +wσ ∣σÞ
with zero mean value. The photon count fluctuation δni � ni � hnii is
related to the spin signal fluctuation δσi � σi � hσii by

δni = δσid +wσi
, ð6Þ

with the first moment of the photon counts being hnii=n +
hσiid ≈n+ c cosθ. The second and third moments are hδnjδnii=
d2hδσjδσii, and hδnkδnjδnii=d3hδσkδσjδσii, respectively, for i, j, k
being different. Here we have used the fact that the intrinsic photon
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count fluctuations wσj
are independent for different shots of

measurements.

Effective Hamiltonian under dynamical decoupling
The evolution during the interrogation in the interaction picture is
Û = T̂expð�i

R t + τ
t f ðuÞV̂ hf ðuÞduÞ= expð�iV̂τÞ, where f(u) is the modula-

tion function alternating between +1 and −1 due to the dynamical
decoupling sequence4 and V̂hf ðuÞ is the hyperfine interaction in the
interaction picture. By Magnus expansion for short period of time, the
effective coupling V̂ ðtÞ≈ τ�1

R t + τ
t f ðuÞV̂hf ðuÞdu. For the coupling to a

single 13C spin, V̂hf ðtÞ=AxŜz ÎxðtÞ with ÎxðtÞ= Îxcosðν0tÞ � Îy sinðν0tÞ.
Under the KDD, the effective coupling becomes V̂ ðtÞ≈A?Ŝz ÎxðtÞ13
with A? =2Ax=π.

Quantum correlations
The relation between the statistics (moments) of the sequential mea-
surement and the correlation of the noise field B̂ðtÞ can be directly
obtained by the perturbative expansion of the evolution during
interrogation time τ. We assume that the bath evolves freely between
two adjacent interrogation processes. As shown in Fig. 1a, the mea-
surements at different times, though conducted on a single NV center
spin in the experiment, can be viewed as performed independently on
different sensor spins fŜjg, each interacting with the target with
Hamiltonian V̂ j = Ŝj,zB̂j from tj to tj + τ. The initial state of the target and
the sensors can be written as ρ̂= ρ̂B � ρ̂1 � ρ̂2 � � � � with
ρ̂j = ∣xihx∣= Ŝj,x + 1

2 for the jth sensor spin and ρ̂B =2
�N being the density

operator of N nuclear spins at high temperature. The evolution due to
the interaction with the jth sensor can be expanded as

ρ̂ τð Þ= ρ̂+ τ
i

V̂ j, ρ̂
h i

+
1
2!

τ
i

� �2
V̂ j , V̂ j, ρ̂

h ih i
+ � � � ð7Þ

The first moment of the measurement is

Sj = hσ̂j,θi= cosθ� 1
2!
τ2TrS σ̂j,θ Ŝj,z , Ŝj,z , ρ̂j

h ih i� �
TrB B+

j B
+
j ρ̂B

� �
+ � � �

= cosθ 1� 1
2
τ2CC

jj + � � �
� �

:

ð8Þ

The second moment (for tj > tk) is Sjk = hδσ̂j,θδσ̂k,θi, where
δσ̂j,θ � σ̂j,θ � hσ̂j,θi. Since in the zeroth order of the fluctuation
hδσ̂j,θi =0, the second moment must contain at least one order of the
noisefield at each time. Thus, in the leading order of the noisefield, the
second moment is

Sjk ≈
τ2

i2
Tr δσ̂j,θ Ŝj,z , ρ̂j

h i� �
Tr δσ̂k,θ Ŝk,z , ρ̂,S

h i� �
Tr B+

j B
+
k ρ̂B

� �
= τ2 sin2 θCC

jk :

ð9Þ

The third moment Sijk = hδσ̂i,θδσ̂j,θδσ̂k,θi can be similarly
obtained as

Sijk ≈ � τ4 cos θ sin2 θ
2

CC
iijk � CC

ii C
C
jk +C

C
ijjk � CC

ikC
C
jj +C

C
ijkk � CC

ij C
C
kk +C

Q
ijjk

� �
:

ð10Þ

See Supplementary Note 4 for details.

Correlations of N uniformly coupled nuclear spins
The noise field from N uniformly coupled nuclear spins f̂Ing can be
written as B̂ðtÞ=∑N

n= 1 A?½̂In,x cosðν0tÞ+ În,ysinðν0tÞ� in the interaction

picture. With ρ̂B =2
�N , the second-order classical correlation is

CC
jk =Tr B +

j B
+
k ρ̂B

h i
=
1
4
NA2

?cos ν0tij
� �

e�γtjk ~OðNÞ, ð11Þ

where decoherence of nuclear spins (due to, e.g., back-action of the
weak measurement between tj and tk) is taken into account as the
exponential decay factor (see ref. 13). The fourth-order classical
correlation is

CC
ijkl � Tr B +

i B
+
j B

+
k B

+
l ρ̂B

� �
=CC

ij C
C
kl +

N � 1
N

CC
ikC

C
jl +C

C
il C

C
jk

� �
~O N2

� �
,

ð12Þ

which is the same as for a telegraph noise for N = 1 and approaches to
the Gaussian noise for N≫ 1. The second-order quantum correlation
CQ
ij =0 and the fourth order

CQ
ijkl � Tr B+

i B
�
j B

�
k B

+
l ρ̂B

� �
=

1
16

NA4
?sin ν0tij

� �
sin ν0tkl

� �
e�γtij�γtkl / N,

ð13Þ

which is much smaller than the classical correlation forN≫ 1. ForN = 1,
the classical contribution SCijk / CC

ijjk � CC
jj C

C
ik and the quantum one

SQijk / CQ
ijjk are equal, and the total third moment

Sijk =2S
C
ijk / sin ν0tij

� �
sin ν0tjk

� �
e�γtik : ð14Þ

Its 2D Fourier transform eSðνij ,νjkÞ has four peaks at ±(ν0, ν0) and
±(ν0, −ν0), with equal height.

Data availability
Data supporting the findings of this study are available within the
article and its Supplementary information and from the corresponding
authors upon request. Data for reproducing thefigures in themain text
will be available before the publication in a publicly accessible repo-
sitory with the link https://doi.org/10.18419/darus-3004.

Code availability
The custom code operating the experimental setup is available upon
request from the corresponding author.
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