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Peter Höller, Eugen Trinka, and Yvonne Höller
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High-frequency oscillations (HFOs) in the electroencephalogram (EEG) are thought to be a promising marker for epi-
leptogenicity. A number of automated detection algorithms have been developed for reliable analysis of invasively recordedHFOs.
However, invasive recordings are not widely applicable since they bear risks and costs, and the harm of the surgical intervention of
implantation needs to be weighted against the informational benefits of the invasive examination. In contrast, scalp EEG is widely
available at low costs and does not bear any risks. However, the detection of HFOs on the scalp represents a challenge that was
taken on so far mostly via visual detection. Visual detection of HFOs is, in turn, highly time-consuming and subjective. In this
review, we discuss that automated detection algorithms for detection of HFOs on the scalp are highly warranted because the
available algorithms were all developed for invasively recorded EEG and do not perform satisfactorily in scalp EEG because of the
low signal-to-noise ratio and numerous artefacts as well as physiological activity that obscures the tiny phenomena in the high-
frequency range.

1. Introduction

Epilepsy is one of the most frequent chronic neurological
diseases affecting an estimated number of 6 million people of
all age ranges in Europe and approximately 65 million
people worldwide [1]. It significantly impacts not only
a patient’s health status but also quality of life factors, such as
education, employment, social activity and integration, or
mobility. *e yearly treatment costs associated with epilepsy
and its major psychiatric and somatic comorbidities add up
to 15.5 billion in Europe or 2,000–11,500 per patient [2].

In spite of more than 15 antiepileptic drugs employing
different modes of action to suppress or prevent seizures,
with frequent mild-to-severe adverse effects, around ∼30%
of patients, particularly suffering from focal epilepsy, remain
resistant to drug treatment [1].

Epilepsy surgery is an important treatment option in
view of this considerable percentage of pharmacorefractory
cases. *e intervention aims at removing the entire epi-
leptogenic zone—a necessary condition in order to achieve

postsurgical seizure freedom [3]. For successful surgical
treatment, it is therefore critical to determine the epilep-
togenic zone as precisely as possible. *ere is, however, no
diagnostic modality available today to unambiguously de-
lineate the epileptogenic zone. It, thus, remains a theoretical
construct that has to be estimated and assessed using a
combination of diagnostic concepts based on a variety of
parameters.

*roughout the last one and a half decades, increasing
attention has been paid to fast and ultrafast electroen-
cephalographic (EEG) oscillations as a measurable electro-
physiological component of potentially pathological brain
activity. Motivated by studies that consistently report
a traceable correspondence between the postsurgical out-
come and resection of brain tissue identified as a generator
of high-frequency oscillations, frequency bands beyond the
80Hz threshold as well as oscillations in the fast-gamma
band (40–80Hz) have been attracting considerable attention
during the last decade throughout the epilepsy research
community.
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In fact, a number of recent studies have shown that the
resection of areas that have been identified to generate
(pathological) oscillations well beyond the 80Hz boundary
of conventional EEG recordings leads to favourable post-
surgical results [4–6]. In particular, in patients with temporal
lobe epilepsy, which is the most common type of drug-
resistant epilepsy, the removal of brain tissue exposing the
highest rates of high-frequency oscillations (HFOs) led to
improved surgical outcomes [7], suggesting that HFOs may
be a reliable and accurate (spatial) marker that should be
taken into account in presurgical evaluation of patients [8].
It is important to note at this point that there is no precise
specification of “HFO” commonly agreed upon. Reduced to
a common denominator, it subsumes activities in frequency
bands above 80Hz, physiological as well as pathological, and
of diverse origin, categorised into ripples, “R,” 80–250Hz,
and fast ripples, “FR,” 250–500Hz [9, 10].

It was discovered that pathological interictal FR HFOs
[11] delineate the seizure onset zone (SOZ) largely in-
dependent of and much more specific and accurate than
epileptic spikes [12], as well as more reliably than an un-
derlying, potentially noncongruent lesion [13]. Despite the
still evolving understanding of the important role of high-
frequency activity in the physiological context, such as
memory consolidation, processing of sensory input, alert-
ness, and arousal, today fast and ultrafast EEG activity is
widely recognised as a promising marker of epileptogenicity
[4, 8, 10].

2. Physiological HFOs

Studies have set out to examine the generator mechanisms of
pathological HFOs in view of their meaning and relevance
for the disease pattern [14]. Indeed, HFOs have been
identified to reflect medication effects and disease activity
and may suggest conclusions on disease severity [15, 16].
Although, compared to interictal spikes, HFOs were found
to show a higher level of correlation with seizures and expose
a more stable localisation, assessed ictally versus interictally
[17], and their suitability as a predictive marker in the
preictal period could not be confirmed [18].

It is possible that the small effect sizes for good post-
surgical outcome when resecting HFO-generating areas [4]
are due to the fact that physiological HFOs coexist with the
pathological version and therefore obscure the clinical
significance of these phenomena. It has been evidenced that
fast oscillation also plays a major role in physiological states
and processes, such as alertness or long-term memory
consolidation [19, 20]. *e coexistence of physiologic and
pathologic HFOs was reported for kainic acid-treated rats
and patients with epilepsy [21, 22]. It is difficult to determine
whether HFOs represent pathologic (epileptic) or regular
physiologic activity in epileptic patients [23–26]. For ex-
ample, HFOs in the hippocamus are associated withmemory
consolidation in humans (e.g., [19, 20, 27]), but they were
also associated with temporal lobe epilepsy in multiple
studies [4].

Several studies focused on ways to reliably distinguish
pathological HFOs from physiological HFOs based on the

alertness level or sleep stages [28, 29], the relation to spikes
and slow oscillations [30, 31], oscillatory background activity
[32], duration and peak frequency [33], characteristics of
connectivity and log power [34], or morphology [35].
However, none of these approaches claimed to reliably dis-
tinguish pathologic HFOs from physiologic HFOs—there
always remains a significant overlap between the two phe-
nomena. It remains an open question of whether computa-
tional intelligence could pave the way for a reliable distinction
of pathological versus physiological HFOs. Nevertheless, for
this purpose, it is inevitable to establish a ground truth or
a valid strategy by which a model could be trained.

3. Scalp EEG and HD-EEG

A majority of studies on HFOs are based on intracranially
recorded data. Due to important factors, such as cost or
inherent risk of invasive procedures, the question whether
HFOs are detectable using scalp EEG has been steadily
moving into the focus of research.

Considering the plain number of studies, surface HFOs
appear to have been comparatively disregarded for a long
time. Difficulties in detecting genuine pathological fast
oscillations—their recognition and distinction from, for
example, muscle and filter artefacts is nontrivial—and,
according to early studies, their rare measurable occurrence
in only a small percentage of patients [12] might be reasons.

Similar to intracranial HFOs, surface fast oscillations are
characterised by their low sensitivity but considerable
specificity. Although research is still required to establish
concepts to accurately distinguish genuine fast oscillations
from artefacts in surface recordings [5], a positive correla-
tion between fast oscillation rates and spike rates and
a significantly higher frequency of occurrence inside than
outside the SOZ confirm their relevance as a noninvasive
marker of epileptogenicity. Studies by Melani et al. [36] and
van Klink et al. [37] set scalp HFOs into context with
measured spike rates and observe that consistent with
findings based on intracranial data, scalp HFOs are less
sensitive but more specific than epileptic spikes, with the
highest HFO rates cooccurring with the highest IED rate.

Fast oscillations on the scalp have been identified in
several studies [36, 38, 39], and the suitability of surface-
recorded fast oscillations to demarcate seizure-generating
tissue and to indicate its epileptogenic potential seems
meanwhile undoubted [5, 39]. Despite considerable varia-
tions in the amplitude of the electric potential distribution
on the scalp for any given extent of generator, caused by the
local curvature of the cortex, thickness of the skull, and
distance between the cortical surface and skull, it has been
shown that, in general, the amplitude of background activity
decreases with increasing frequency [40]. According to the
authors’ reasoning, it is consequently likely that small
generators of high-frequency activity could produce scalp
signals that could be detected with a reliability similar to
other interictal epileptic discharges (IEDs). Nevertheless, the
signal amplitude must be greater than noise, which might be
possible as alongside with the drop of signal power, the noise
level also diminishes [41].
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More recent studies on fast oscillations in scalp re-
cordings extended the frequency coverage below the com-
mon HFO band specifications and focused on the frequency
band between 40 and 200Hz; thus, the more general term
“fast oscillations” is proposed (Table 1).

It has been a commonly accepted assumption that at least
6–10 cm2 of cortical tissue is required to generate epileptiform
discharges that are measurable on the scalp and distin-
guishable from background activity, due to factors such as the
conductive properties of the human skull or distance between
the generator and measurement sites [51]. However, there
might be likely cases for which the superposition of non-
spatially contiguous generators could generate signals from
smaller sources that result in a detectable potential on the
scalp, as long as the potential is directly recorded from the
right spot and as long as the signal-to-noise ratio is good
enough [41]. Individual generators of high-frequency oscil-
lations with a probable extent of 1 to 2 cm2 [40] were sup-
posed to be too small to produce activity observable in scalp
EEG recordings. It is possible that this regional restriction
explains the fact that initially only a few studies set out to
assess the detectability of HFOs using scalp EEG and that
these studies reported to identify fast oscillations in a very
small percentage of epileptic patients, only [12, 52].

Recent studies approach the question whether and via
which mechanisms small generators can be seen on the scalp
from different perspectives. A study recorded the EEG si-
multaneously from subdural grids and scalp EEG [45]. *e
study results suggest that HFOs originating from small
patches of cortical tissue are in fact visible in the scalp EEG,
provided that the signal-to-noise ratio is sufficiently large.
Models that investigate the correlation of subdural voltage
distributions and projections to the scalp lend this obser-
vation a theoretical foundation [40].

*e studies [45] and [41] suggest that the rare occurrence
of scalp HFOs may be due to spatial undersampling using
conventional 10–20 setups and infer that a denser mesh of
electrodes may be necessary to systematically study scalp
HFOs. Apart from an extended coverage, high-density EEG
systems (also referred to as “dense array” or “dEEG”) offer
a finer-grained spatial resolution. *e denser mesh of
electrodes is considered an advantage in terms of sensitivity
to high frequencies and their specific, rather local propa-
gation patterns [45, 53], a conclusion which, however, was
controversially discussed at the Second International
Workshop on High-frequency Oscillations in Epilepsy,
Freiburg, Germany, March 10–12, 2016.

Although a considerable number of publications exploit
high-density EEG, with a majority of them focusing on source
localisation (PubMed query results obtained in June 2017
reported 371 studies. Roughly one-third of them cover the
localisation of signal sources), a targeted electronic literature
search for HFO detection and high-density scalp EEG in
PubMed (http://www.ncbi.nlm.nih.gov/pubmed; search
string: (“hfo” or “high-frequency oscillations” or “high fre-
quency oscillations” or “fast oscillations” or “ripples”) and
(“HD-EEG” or “high-density” or “high density” or “dense-
array” or “dense array” or “high-resolution”) and (“electro-
encephalography” or “eeg” or “electroencephalogram”))

performed in June 2017 revealed only a small set of nine
studies, a single one of which was found to actually elaborate
on the use of high-density scalp EEG for detecting high-
frequency oscillations in epilepsy patients, although on
a theoretical basis [45].

A number of recent studies set out to detect fast oscil-
lations noninvasively in the MEG (e.g., [54–56]), with its
typically dense mesh of sensors. However, MEG is associated
with high costs, while long-term or bedside recordings are
not possible. *us, high-density scalp EEG remains an open
and demanding field when it comes to analysing actual
patient data. *e assumed small size of cortical generators
and, relative to invasive data, poor signal-to-noise ratio are
frequently stated as reasons for unsatisfactory HFO analysis
results in scalp recordings, like challenging visual identifi-
cation as well as the set of widespread analytical detection
strategies.

Up to now, investigations in scalp HFOs generally focus
on ripples and so far failed in reliably detecting pathological
oscillations in the frequency range above 200Hz, which is
more likely a consequence of the small-scale genesis and
local propagation of high frequencies [53, 57], rather than
caused by the frequency-dependent signal attenuation
properties of the tissue [58]. Remarkably, a proof-of-concept
study by Pizzo et al. [48] postulates that it may even be
possible to detect extracranial fast ripples (>250Hz) using
subdermal electrodes. In a modelling study by von Ellen-
rieder et al. [40], simulations of signal sources of small extent
and their electric potentials that make use of extremely
detailed head models to analyse the noise patterns in dif-
ferent frequency bands support this assumption.

However, even for lower frequencies, it remains unclear
whether the signal measurable on the scalp originates from
the same structures and has the same generator mechanisms
as data recorded invasively. Probably, phases of occasional
synchronisation of larger regions are what becomes de-
tectable on the surface [12].

To conclude, scalp HFOs would be an asset to clinical
practice, but their detectability represents the largest chal-
lenge. Visual identification is prone to errors and extremely
time-consuming, thus calling again for automation.

4. Automated HFO Detection

Apart from the considerable amount of time it takes even for
an expert neurologist to identify and categorise fast oscil-
lations, the process is obviously prone to subjective per-
ception and bias [38]. Automated diagnosis of epilepsy [59],
automated detection of epileptic spikes [60], automated
seizure detection [61], and even seizure prediction [62] were
supported by advanced algorithms from digital signal
processing, often alongside with artificial intelligence. *ese
technical advances have also been introduced into HFO
research and proposed concepts and algorithms for auto-
mated detection of HFOs [38, 63–80]. We replicated an
example for a recent algorithm in Figure 1.

It was proposed to group detectors by their first pro-
cessing stage, either by filtering the EEG to the HFO fre-
quency band or by time-frequency analysis [41]. Another
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possible distinction would be in analytical algorithms, relying
on certain heuristics such as the frequency band and the
amplitude of the HFOs, and as a second group in the algo-
rithms that involve artificial intelligence, relying on the features
that are fed into the machine in order to build an adequate
model for a given pattern. Machine-learning techniques vary
to a large extent based on the way themodel is trained. Support
vectormachines were suggested to be useful for HFO detection
[81–83], but also linear discriminant analysis [84], as well as
artificial neural networks [68, 85]. We expect that systematic
research within this field could open up new perspectives
beyond the analytical approach.

It is possible that the use of machine learning might be
able to work through characteristics that are not so much
dependent on the amplitude of the HFOs and the signal-to-
noise ratio so that a broader use of HFO detection in routine
scalp EEG could become possible one day. Especially con-
volutional neural networks raised the hope that one day we
get a deeper understanding by posing our questions to
a well-trained network for EEG analysis [86]. Nevertheless,
deep-learning networks need extremely large amounts of
data containing thousands of samples—this is a goal that
can be achieved only in a concerted multicentric approach
with large, shared databases. Finally, this speculation needs
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Figure 1: Definition of region of interest according to Burnos et al. [64]. *e signal is high-pass filtered (finite impulse response, Blackman
windowed sinc) with a cutoff frequency of 80Hz. A Hilbert transform of the filtered signal (blue) yields a complex output with a 90-degree
phase-shifted imaginary part (red).*e absolute value of the Hilbert transform is used to generate the signal’s envelope (black).*e standard
deviation of the signal’s envelope is the baseline for deriving the threshold for delimiting regions of interest as a first step. As depicted in the
figure, closely neighbouring regions are concatenated to form a single one.

Table 1: Epilepsy-related HFOs in conventional surface EEG and MEG.

Reference Frequency range Detection Context
Kubota et al. [42] 300–900Hz Visual MEG benign rolandic epilepsy
Kobayashi et al. [43] 93.8–152.3Hz Visual Idiopathic partial epilepsy
Andrade-Valenca et al. [12] 40–200Hz Visual Comparison to spikes
von Ellenrieder et al. [38] 40–200Hz Auto Autodetection
Iwatani et al. [44] 30–150Hz Visual Spasms in West syndrome
Melani et al. [36] 40–200Hz Visual Comparison to spikes
Zelmann et al. [45] 80–300Hz Auto/visual Intracranial versus scalp HFOs
Miao et al. [46] 80–500Hz TF+ visual Absence epilepsy
Chaitanya et al. [47] 80–250Hz Visual Absence epilepsy
Pizzo et al. [48] >250Hz Visual Scalp fast ripples
van Klink et al. [37] 80–250Hz Visual Scalp ripples and spikes
van Klink et al. [49] >80Hz Visual MEG virtual sensors
Schwimmbeck et al. [50] 80–250Hz Auto/visual Intracranial versus HD-EEG
TF: time-frequency analysis; auto: automated algorithmic detection.
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well-designed tests before entering the clinical arena in the
form of a new clinical tool.

Most of the presented algorithms are based on spectral
analyses of the data (using fast Fourier transform or wavelet
techniques), either as part of an analytical approach or as
a feature that is being used to train a model. It is understood,
however, that these time-frequency models are not sufficient
to distinguish pathological oscillations from physiological
oscillations and that they are prone to errors when sharp
transients cooccur with HFOs [81]. Supported by a steadily
consolidating understanding of the generator mechanisms
and propagation patterns of fast oscillations [26], this led to
coherence measures, network and connectivity analyses,
graph theoretical analysis, and related information theoretic
approaches [14, 87–91]. *e idea behind these advanced
measures is that the characteristics of pathological HFOs
differ from artefacts and physiological HFOs. For example,
an artefact on the surface is detectable simultaneously over
a large subset of the electrodes, while in contrast, scalp HFOs
are detectable only over a small area. Measures of synchrony
(i.e., connectivity) would therefore detect high synchrony
over a large number of channels for artefacts, which could be
a distinguishing feature. Another idea could be that the
information content of pathological HFOs differs from that
of physiological HFOs. Pathological tissue in the hippo-
campus is known to generate signals with low informational
content, while signals recorded from healthy tissue are
highly complex [92]. It could be investigated whether the
pattern of HFO occurrences, that is, the inter-HFO time,
distinguishes pathological HFOs from physiological HFOs.
We would expect that pathological HFOs occur at a more
regular pace.

A general problem of investigations in differentiation
between pathological and physiological HFOs is the lack of
a ground truth, which could be mitigated by using simulated
data [82]. Moreover, heuristics were proposed to distinguish
between these two categories. One possibility is to distin-
guish physiological HFOs from pathological HFOs based on
their occurrence during cognitive effort or based on the
location of occurrence. In brain regions such as the motor
cortex, the visual cortex, and the hippocampus, we do expect
physiological HFOs. Finally, the absolute ground truth
would be relation of removal of HFO-generating tissue to
good surgical outcome. If we could label the HFOs according
to whether they were removed or not and according to
whether the removal leads to a good outcome, we could
relate this information to the categorisation of the HFOs of
being pathological or not. Nevertheless, the obstacle here is
that, in practice, the removal of tissue might include both,
physiological and pathological HFOs. Moreover, while it is
the current hope that the generation of HFOs may occur
exactly within the epileptogenic zone, they could also rise
from related areas. In the end, what could bring us a step
forward is merging the knowledge among these approaches
and generating a close-to-gold standard ground truth.

Although automated detection methods could also apply
to surface recordings, most activities are based on invasively
collected data. Only von Ellenrieder et al. [38] yielded re-
markable results with automated HFO detection on scalp

EEG, while most other publications involving scalp EEG
relied on visual detection of HFOs. Most importantly, the
effect sizes of resecting automatically detected HFOs versus
resecting visually detected HFOs from invasive EEG in re-
lation to surgical outcomes are comparable [4].

Nevertheless, currently we are lacking clinically ap-
proved tools for automated detection; that is, there are no
software packages that are easy to use and validated by
clinical trials so that their use within the standard clinical
software by clinical staff is possible [41]. In contrast, there
exist a large variety of open-source tools which are often
MATLAB based and which where developed with research
as the primary target application area, such as, for example,
RIPPLELAB [93]. Other software such asMEEGIPS [94] was
developed to integrate with the clinical workflow, but still,
development of automated detection methods for a broad
applicability in surface EEG is needed to render these tools
more useful and to justify the long and costly process of
clearance for clinical use.

Reliable automated detection is highly warranted in
long-term recordings and becomes crucial for high-density
recordings such as with magnetoencephalography or HD-
EEG. But the performance of automated detection with
high-density techniques is highly questionable.

5. Outlook

Even though principal methodological considerations on
automation-supported HFO detection likewise apply to
invasive and scalp recordings, again, almost all published
activities are based on invasively collected data.*e potential
benefits due to the noninvasiveness of scalp EEG—lower
risk, lower costs, and the possibility to include larger patient
populations with different types of epilepsies as well as to
conduct longitudinal studies—are unquestioned.

Whether the use of high-density EEG instead of con-
ventional (10–20) systems as utilised in related recent re-
search in combination with specifically adapted computer-
supported detection mechanisms that take into account also
the differentiation between pathological and physiological
HFOs can be considered a promising step ahead which may
broaden the use of scalp HFOs as biomarkers remains to be
assessed. Particular challenges for HD-EEG-tailored de-
tection algorithms must be considered: the large number of
channels in high-density EEG recordings, the comparatively
low signal-to-noise ratio, and a variety of artefacts that do
not occur to the same extent in invasive recordings.

We encourage the implementation of the following
approaches into research programs and funding of the re-
spective efforts, in order to propel automated HFO detection
into clinical routine:

(i) Clinical and technical research is often done by
separate teams, and it would be highly beneficial if
the precious data being collected at large clinics or
within multicentric efforts could be the base for
high-level data analysis of technical experts. For
example, deep-learning networks need thousands of
datasets but can draw amazing conclusions based on

Computational Intelligence and Neuroscience 5



the information contained in these giant volumes of
signal data. *erefore, we suggest that databases
with human-annotated data should be published.
Such databases are already available for seizure
prediction and detection, allowing contests between
expert teams [62, 95, 96]. *e necessary protection
of privacy and security should be supported by
dedicated services and clear guidelines.

(ii) Simulated data can help to explain phenomena and
to explore the limits of the algorithms [97]. Simu-
lation studies could serve as a standard test set, just
as open-access or shared datasets do.

(iii) Since today we do not know how to distinguish
pathological HFOs from physiological HFOs, we
cannot expect that even the best model could solve
this problem for us. We need some heuristics by
which we can feed some initialising information
into a machine, such as the relation between HFO
removal and surgical outcome or the functional
relevance of HFOs due to their activation during
tasks or due to their localisation. Machines which
are trained based on the merged information from
these three heuristics could come closer to the
answer we aim to obtain.

(iv) Several recent publications implemented artificial
intelligence into automated HFO detection algo-
rithms [68, 81–85]. We assume that new de-
velopments, for example, the use of convolutional
deep-learning networks [86], in combination with
the necessary large databases could identify new
perspectives on the detection of HFOs.
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[9] J. Bruder, M. Dümpelmann, D. Lachner Piza, M. Mader,
A. Schulze-Bonhage, and J. Jacobs-Le Van, “Physiological
ripples associated with sleep spindles differ in waveform
morphology from epileptic ripples,” International Journal of
Neural Systems, vol. 27, no. 7, article 1750011, 2017.

[10] B. Frauscher, F. Bartolomei, K. Kobayashi et al., “High-
frequency oscillations (HFOs): the state of clinical re-
search,” Epilepsia, vol. 58, no. 8, pp. 1316–1329, 2017.

[11] J. Jacobs, P. LeVan, R. Chander, J. Hall, F. Dubeau, and
J. Gotman, “Interictal high-frequency oscillations (80-500Hz)
are an indicator of seizure onset areas independent of spikes in
the human epileptic brain,” Epilepsia, vol. 49, no. 11,
pp. 1893–1907, 2008.

[12] L. Andrade-Valenca, F. Dubeau, F. Mari, R. Zelmann, and
J. Gotman, “Interictal scalp fast oscillations as a marker of the
seizure onset zone,” Neurology, vol. 77, no. 6, pp. 524–531,
2011.

[13] J. Jacobs, P. LeVan, C. Chatillon, A. Olivier, F. Dubeau, and
J. Gotman, “High frequency oscillations in intracranial EEGs
mark epileptogenicity rather than lesion type,” Brain, vol. 132,
no. 4, pp. 1022–1037, 2009.

[14] E. van Diessen, J. Hanemaaijer, W. Otte et al., “Are high
frequency oscillations associated with altered network to-
pology in partial epilepsy?,”NeuroImage, vol. 82, pp. 564–573,
2013.

[15] M. Zijlmans, J. Jacobs, R. Zelmann, F. Dubeau, and J. Gotman,
“High frequency oscillations and seizure frequency in patients
with focal epilepsy,” Epilepsy Research, vol. 85, no. 2-3,
pp. 287–292, 2009.

[16] M. Zijlmans, J. Jacobs, R. Zelmann, F. Dubeau, and J. Gotman,
“High-frequency oscillations mirror disease activity in pa-
tients with epilepsy,” Neurology, vol. 72, no. 11, pp. 979–986,
2009.

[17] M. Zijlmans, J. Jacobs, Y. Kahn, R. Zelmann, F. Dubeau, and
J. Gotman, “Ictal and interictal high frequency oscillations in
patients with focal epilepsy,” Clinical Neurophysiology,
vol. 122, no. 4, pp. 664–671, 2011.

[18] J. Jacobs, R. Zelmann, J. Jirsch et al., “High frequency os-
cillations (80-500Hz) in the preictal period in patients with
focal seizures,” Epilepsia, vol. 50, no. 7, pp. 1780–1792, 2009.
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