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Gaze is an important social cue in regulating human and non-human inter-

actions. In this study, we employed an adaptation paradigm to examine the

mechanisms underlying the perception of another’s gaze. Previous research

has shown that the interleaved presentation of leftwards and rightwards

gazing adaptor stimuli results in observers judging a wider range of gaze devi-

ations as being direct. We applied a similar paradigm to examine how human

observers encode oblique (e.g. upwards and to the left) directions of gaze. We

presented observers with interleaved gaze adaptors and examined whether

adaptation differed between congruent (adaptor and test along same axis)

and incongruent conditions. We find greater adaptation in congruent con-

ditions along cardinal (horizontal and vertical) and non-cardinal (oblique)

directions suggesting gaze is not coded alone by cardinal mechanisms. Our

results suggest that the functional aspects of gaze processing might parallel

that of basic visual features such as orientation.
1. Introduction
Accurately perceiving the direction of another person’s eye gaze plays an

important social function [1], with evidence linking abnormal gaze behaviour

to certain clinical populations (e.g. autism and schizophrenia). Gaze direction

communicates information about the mental state, emotion and interest of

another individual which can be used to understand the environment and

the likely thoughts and future behaviour of that individual (for a review, see

[2]). For example, direct gaze can communicate friendliness [3] or threat [2]

and averted gaze can communicate avoidance [4] or interest in a particular

location in the environment [5].

Most studies, however, have investigated the perception of gaze along a single

cardinal axis, the horizontal [6–9]. Much less attention has been devoted in

understanding coding mechanisms for vertical and non-cardinal (diagonal) gaze

directions. Seminal single cell experiments by Perrett et al. [10] revealed that differ-

ent cells respond to direct gaze and averted gaze in vertical and horizontal

directions, respectively, suggesting the existance of channels coding gaze directed

towards the left, right, up, down and straight-ahead. Hypothetically, these cardi-

nal dimensions (horizontal and vertical) would be sufficient to encode all eye

directions. The existence of more than two (cardinal) channels could provide us

with greater sensitivity to detect small deviations in another’s gaze, however, it

remains an open question as to whether these non-cardinal channels exist.

As far as we are aware, only one study has explored gaze processing where

eyes deviate in diagonal directions [11]. Gaze judgements were up to 48 per

cent less accurate for gaze in diagonal directions relative to cardinal directions,

and there was a tendency to bias diagonal gaze directions towards the cardinal
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axes [11]. However, it must be noted that these authors used

a triadic paradigm involving three entities; a ‘sender’(1) who

looked at an object of interest (2) and a ‘receiver’(3) who had

to judge which object the sender was looking at. This is con-

trasted to much of the research on gaze that uses a dyadic

paradigm where there are two entities; a ‘sender’ (1), and a

receiver (2) who judges the direction of gaze of the ‘sender’

[6,7,10,12,13].

Preferential processing of cardinal directions has also been

observed in studies of basic visual attributes, including motion

[14,15] and orientation. For example, judgements of the orien-

tation of lines is more accurate near the cardinal axes when

compared with the diagonal axes [16]; and when oriented

lines are presented under uncertainty, there is a tendency to

judge them as tilted towards cardinal directions [17,18].

Thus, it appears there may be something unique about cardi-

nal dimensions in both basic vision and gaze processing (gaze

sensitive channels which are tuned along cardinal directions;

[11]). Whether in the case of gaze, this reflects an absence

of channels coding non-cardinal dimensions remains to be

established, however.

Adaptation is a tool frequently used in vision research to

examine underlying neural mechanisms (e.g. in colour pro-

cessing; [19]). Adaptation causes a loss in responsiveness of

the mechanisms which code the adapting stimulus [7,20].

A number of studies have examined perceptual changes

after gaze adaptation. For example, adapting to interleaved

leftwards and rightwards stimuli led to an increase in the

range of gaze directions either side of direct gaze categorized

as direct (the cone of direct gaze; [9]): i.e. small leftwards and

rightwards deviations were more likely judged as being

direct following adaptation [6].These effects persisted despite

changes in the size of the test face, suggesting that adaptation

is not occurring within low-level visual mechanisms that

respond to contrast, but rather reflects the adaptation of

high-level gaze-processing mechanisms [6]. However, high-

level adaptation of face-processing mechanisms has been

found to follow a similar time course of build-up and decay

as low-level adaptation, suggesting that analogous neural

mechanisms might be involved in high- and low-level

adaptation [21,22].

In this paper, we used a similar adaptation paradigm to

investigate whether only two cardinal mechanisms (horizontal

and vertical) exist to encode all gaze deviations. Stimuli were

faces with eyes deviated along the horizontal, vertical and

two non-cardinal (diagonal) axes: RU/LD (right-up/left-

down) and LU/RD (left-up/right-down). Participants adapted

to eyes deviated 158 in one direction interleaved with eyes

deviated 158 in the opposite direction along the same axis.

After adaptation, participants were tested with stimuli along

the same axis (congruent trials) or the perpendicular axis

(incongruent trials). We investigated the presence of a non-

cardinal gaze mechanism by comparing the cone of direct

gaze on congruent and incongruent conditions. The reasoning

is as follows; after adaptation to gaze on one non-cardinal axis,

both cardinal axis mechanisms should be less responsive since

adapting along the RU/LD axis adapts left, right, up and down

directions. Similarly, adaptation along the LU/RD axis also

results in (equal) adaptation of the two cardinal mechanisms.

Therefore, if mechanisms exist along cardinal axes only, there

should be no difference in the width of the cone of direct

gaze between congruent and incongruent conditions along

the non-cardinal axes.
2. Material and methods
(a) Apparatus and stimuli
A Dell XPS computer running MATLAB (MathWorks Ltd) was used

for stimulus generation, experiment control and recording subjects’

responses. The programs controlling the experiment incorporated

elements of the PsychToolbox [23]. Stimuli were displayed on a

Sony Trinitron 20SE monitor (1024 � 768 pixels, refresh rate:

75 Hz) driven by the computer’s built-in NVIDIA GeForce GTS

240 graphics card. The display was calibrated using a photometer

and linearized using look-up tables in software. At the viewing dis-

tance of 57 cm, one pixel subtended 2.2 arcmin. Two authors and

six naive volunteer subjects (four females in total) aged between

23 and 57 years participated in the study. All participants had

normal or corrected to normal vision. All experiments adhered to

the Declaration of Helsinki guidelines.

Stimuli were grey scale synthetic faces (four males and four

females) created with DAZ software (http://www.daz3d.com/).

The hair was cropped and the face was presented within a circu-

lar aperture in the middle of the monitor (see figure 1 for sample

face). The stimuli subtended 15.18 � 11.28 and were viewed in a

dimly lit room. The original eyes in the faces were replaced using

GIMP software by greyscale eye stimuli created using MATLAB. The

deviation of each eye was then independently controlled using

MATLAB procedures that gave us precision down to the nearest

pixel for eye rotation along any axis.
(b) Procedure: adaptation
As discussed, adaptation to interleaved stimuli of opposite sign

causes a widening in the cone of direct gaze [6]. We sought to

determine (i) whether adaptation effects were measurable

along the different axes of gaze and (ii) whether adaptation

resulted in a wider cone of direct gaze following congruent adap-

tation compared with incongruent adaptation. Cones of direct

gaze were measured in the following order:

— Pre-adaptation baseline. The baseline cone of direct gaze along

each axis was measured in two separate runs, once using

female probe faces and once using male probe faces. Stimuli

were presented using a method of constant stimuli with

nine different directions of gaze selected from the set:

(2128, 268, 238, 218, 08, 18, 38, 68, 128). Each stimulus was

presented for 400 ms followed by a grey screen that lasted

600 ms during which no response was recorded. The next

trial was only initiated after a response was made following

the 600 ms wait period. Timings for the measurement of the

pre-adaptation baselines were reduced compared with the

study of Calder et al. [6] in order to minimize the overall dur-

ation of the full experiment. However, we ensured that the

inter-stimulus interval (minimum of 600 ms) was long

enough to avoid any potential motion or after-image cues.

Each direction of gaze was sampled 12 times per run.

— Adaptation. This stage involved adapting and testing to congru-

ent and incongruent stimuli for each of the four axes. Between

different adaptation conditions, observers took a break of at

least 2 h to prevent any carryover adaptation effects. The adap-

tation was in figure 1. In part figure 1a, the subjects adapted to

eyes deviated at þ158 for 4000 ms (in one direction along the

axis tested) followed by a grey screen for 200 ms, then eyes at

2158 (the opposite direction along the axis tested) for 4000 ms.

This was repeated for each of the four faces (presented at

random) for a period of 1 min.

This was followed immediately by a top-up adaptation and

probe (figure 1b). In figure 1b, four faces (two at þ158 and two

at 258) were presented for 1300 ms each, followed by a blank

screen for 200 ms and then the probe stimulus presented for

500 ms. The probe stimuli were 33 per cent larger than, and

http://www.daz3d.com/
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Figure 1. Adaptation and probe stimuli shown along a cardinal (horizontal) axis. (a) consists of a series of faces alternating between þ158 and 2158 gaze
direction presented for a total of 1 min. This was immediately followed by (b) (the top-up phase) that lasted 6000 ms. At the end of (b) a probe face of a different
sex and larger size to the adaptation faces was shown and the observer responded using the number keys. Only for illustrative purposes, the figure shows two
probes for the two conditions: congruent condition in the bottom ( probe is along horizontal axis) and incongruent condition in the top ( probe is along vertical axis).
L, R, U and D correspond to left, right, up and down, respectively.

rspb.royalsocietypublishing.org
ProcR

SocB
280:20131049

3

opposite gender to the adapting stimuli to increase their saliency

and to minimize the adaptation of low-level mechanisms [6].

There was a 200 ms grey screen wait period following the obser-

ver’s response. Each probe deviation angle was sampled 12 times

in figure 1b (four faces � three presentations each). Congruent

and incongruent adaptation conditions were run twice separately

(once adapting with female faces and adapting with male faces)

in a random counterbalanced order across observers.

— Post-adaptation baseline. The baseline cones of direct gaze

were measured at least 2 h after adaptation, and gender

tested was presented in a counterbalanced order to the

pre-adaptation sequence.

(c) Procedure: measuring the cone of direct gaze
The observers’ task in each stage was always the same; to indi-

cate whether the direction of gaze in the probe face was direct

or averted using number keys. Stimuli were presented along

four axes and different number keys to record the observer’s

response were used accordingly: for the horizontal axis response

keys were ‘4’ (left), ‘5’ (direct) and ‘6’ (right), for the vertical axis

response keys were ‘2’ (up), ‘5’ and ‘8’ (down), for the LU/RD
axis response keys were ‘1’ (left-up), ‘5’ and ‘9’ (right-down)

and for the RU/LD axis response keys were ‘3’ (right-up), ‘5’

and ‘7’ (left-down). These different axes correspond to stimuli

whose deviations were along the horizontal, vertical, oblique at

þ458 (RU/LD) or oblique at 2458 (LU/RD).

Each observer’s data within the same condition and axis were

compiled across runs and logistic functions were fitted to the pro-

portion of ‘left’ and ‘right’ responses (for the horizontal axis).

A function for ‘direct’ responses was calculated by subtracting

the sum of the ‘left’ and ‘right’ responses from one. These three

functions were fitted as an ensemble using the Nelder–Mead sim-

plex method [24] implemented via Matlab’s fminsearch function

to minimize residual variance. The separation between the cross-

over points of the ‘direct’ and the ‘left’, and ‘direct’ and ‘right’

responses, respectively, is taken as the cone of direct gaze. A simi-

lar procedure was employed along the three other axes, plotting

the proportion of RU/LD axis; LU/RD axis or ‘down’ and ‘up’

(vertical axis) responses.

(d) Statistical analysis
Effect sizes are reported using Cohen’s d for 1 d.f. tests [25] and

partial eta-squared ðh2
pÞ for all other tests.



Table 1. Mean cone of direct gaze when adapting and testing along
cardinal axes. Note. H and V stand for the horizontal and vertical axes,
respectively. Values are the mean width in degrees of visual angle,
standard deviations of the mean in brackets.

adapt H adapt V

probe H 9.568 (2.178) 6.418 (1.728)

probe V 7.338 (2.758) 10.488 (1.998)
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Data are available from the University of Sydney, Clifford

Lab.
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Figure 2. Adaptation effects on cone of direct gaze for congruent and incon-
gruent conditions with adaptation and testing on cardinal axes. (a) Cones of
direct gaze measured in observer 6 along the vertical axis under three differ-
ent adaptation conditions (congruent, solid lines; incongruent, dashed lines;
baseline, grey lines). (b) Adaptation data for all observers. Congruent and
incongruent cones of direct gaze were divided by average baseline (average
of pre- and post-adaptation baselines). The dotted line represents a line of
equality where congruent and incongruent adaptations have the same effect
on cone of direct gaze. The vertical and horizontal solid lines represent lines
of equality where incongruent and congruent adaptation, respectively, do not
vary from baseline cone of direct gaze. Point labelled (a) represents the data
in the top panel.
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3. Results
(a) Cardinal axes: left/right and up/down
The cone of direct gaze was measured along cardinal axes

under four conditions and widths are reported in table 1.

Figure 2a plots the cones of direct gaze for one naive observer

(O6) along the vertical axis after congruent adaptation (solid

curve), incongruent adaptation (dashed curve) and in the aver-

age baseline (pre- and post-adaptation baselines: grey curve).

This observer shows selective effects of adaptation: the cone

of direct gaze in the congruent condition is wider than baseline,

whereas incongruent adaptation only moderately increased

the cone of direct gaze.

Figure 2b plots the cone of direct gaze after congruent

adaptation (divided by baseline) against the cone of direct

gaze after incongruent adaptation (divided by baseline) for

all observers. Data points above the line of equality (dotted

line) represent conditions where congruent adaptation

resulted in a larger cone of direct gaze than incongruent

adaptation. All the data for the cardinal axes fall above this

line. Using a 2 � 2 repeated measures ANOVA, we find

that the cone of direct gaze did not vary according to adapt-

ing axis (averaged over probe axis conditions), F1,7 , 0.01,

p . 0.9, d , 0.01, or according to probe axis (averaged over

adapting axis conditions) F1,7¼ 2.17, p . 0.15, d ¼ 0.52. Con-

gruent adaptation (adapt/probe horizontal or adapt/probe

vertical) resulted in a significantly wider cone of direct gaze

than incongruent adaptation (adapt horizontal/probe vertical

or adapt vertical/probe horizontal), on average, F1,7¼ 42.26,

p , 0.01, d ¼ 2.30. Tests of simple effects revealed that the

cone of direct gaze was significantly wider after congruent

adaptation relative to incongruent adaptation when the

probe was horizontal, F1,7¼ 27.75, p , 0.01, d ¼ 1.86, and

when the probe was vertical, F1,7¼ 13.38, p , 0.01, d ¼ 1.29.

(b) Non-cardinal axes: left-up/right-down and
right-up/left-down

Table 2 reports the cone of direct gaze along non-cardinal

axes measured in four conditions. Figure 3a plots data for

one of the authors (O2) on the LU/RD probe axis, who

showed a larger cone of direct gaze for congruent adaptation

relative to incongruent adaptation.

Using a 2 � 2 repeated measures ANOVA, we find that

the cone of direct gaze did not significantly differ according

to adapting axis (LU/RD; RU/LD, averaged over probe

axis conditions), F1,7 ¼ 0.67 p . 0.4, d ¼ 0.29, or according

to probe axis (LU/RD; RU/LD, averaged over adapting
axis conditions) F1,7 ¼ 0.66, p . 0.4, d ¼ 0.29. Congruent

adaptation (adapt/probe (LU/RD) or adapt/probe (RU/

LD)) resulted in a significantly larger cone of direct gaze

than incongruent adaptation (adapt (LU/RD)/probe (RU/

LD) or adapt (RU/LD)/probe (LU/RD)), on average,

F1,7 ¼ 24.11, p , 0.01, d ¼ 1.73. This can be visualized in

figure 3b, where all but two data points for the non-cardinal

axes fall above the line of equality (dotted line). Tests of

simple effects revealed that the cone of direct gaze was signifi-

cantly wider after congruent adaptation relative to incongruent

adaptation when the probe was LU/RD, F1,7¼ 9.14, p , 0.02,

d ¼ 1.07, but narrowly missed significance when the probe

stimulus was RU/LD, F1,7¼ 4.32, p ¼ 0.076, d ¼ 0.73.
(c) Adaptation relative to baseline
To determine whether adaptation changed the size of the

cone of direct gaze, we compared average baselines with

adaptation data in a 4 � 3 repeated measures ANOVA exam-

ining the effects of axis of the probe (horizontal, vertical,

LU/RD and RU/LD) and adaptation condition (congruent
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Figure 3. Adaptation effects on the cone of direct gaze for congruent and
incongruent conditions with adaptation and testing on non-cardinal axes.
(a) Cones of direct gaze measured in observer 2 along the LU/RD axis
under three different adaptation conditions (congruent, solid lines; incongru-
ent, dashed lines; baseline, grey lines). (b) Adaptation data for all observers.
Congruent and incongruent cones of direct gaze were divided by average
baseline (average of pre- and post-adaptation baselines). The dotted line rep-
resents a line of equality where congruent and incongruent adaptations have
the same effect on the cone of direct gaze. The vertical and horizontal solid
lines represent lines of equality where incongruent and congruent adaptation,
respectively, do not vary from baseline cone of direct gaze. Point labelled
(a) represents the data in the top panel.

Table 2. Mean cone of direct gaze when adapting and testing along oblique
axes. Note, LU/RD stands for the left and up to right and down axis. RU/LD
stands for the right and up to left and down axis. Values are the mean width
in degrees of visual angle, standard deviations of the mean in brackets.

adapt LU/RD adapt RU/LD

probe LU/RD 10.168 (2.578) 7.258 (1.848)

probe RU/LD 7.618 (2.648) 9.298 (1.628)
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L R

average
pre
post

Figure 4. Baselines measured before ( pre) and after ( post) adaptation
(with an average of pre and post). R, L, U, D, RU, LU, RD, LD correspond
to right, left, up, down, right and up, left and up, right and down, left
and down data points, respectively. The cone of direct gaze is represented
by the distance between two points on an axis: L and R (horizontal) or U
and D (vertical) or LU and RD or RU and LD. Numbers correspond to the
deviation of the stimuli eyes from the origin in degrees of visual angle.
Error bars represent the 95% confidence interval of the mean for the average
of pre- and post-baselines.
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adaptation, incongruent adaptation and no adaptation); the

no adaptation condition was the average of pre- and post-

baselines (see last column in table 3). There was no significant

difference in the cone of direct gaze according to the axis

tested, averaged across adaptation conditions, F3,21 ¼ 1.68,

p . 0.2, h2
p ¼ 0:19.

There was a significant effect of adaptation condition on

the cone of direct gaze, averaged across axes (F2,14 ¼ 36.31,

p , 0.001, h2
p ¼ 0:84), but the interaction was not significant

suggesting this effect did not differ according to axis tested,

F6,42 ¼ 0.65, p . 0.6, h2
p ¼ 0:09. Contrasts revealed the cone

of direct gaze was significantly larger after congruent adap-

tation relative to mean baseline, averaged across the

different axes, F1,7 ¼ 42.23, p , 0.001, d ¼ 1.07, and when

the horizontal (F1,7 ¼ 48.34, p , 0.001, d ¼ 2.46), vertical

(F1,7 ¼ 40.98, p , 0.001, d ¼ 2.26), LU/RD (F1,7 ¼ 20.11,

p , 0.001, d ¼ 1.58) and RU/LD (F1,7 ¼ 9.23, p ¼ 0.019,

d ¼ 1.07) axes were analysed separately. Data points in

figures 2b and 3b above horizontal solid line represent occur-

rences where congruent adaptation resulted in a larger cone
of direct gaze relative to baseline. Note that all but two

data points (shown in figure 3b) are above the horizontal line.

Furthermore, there was no significant difference in the

cone of direct gaze when incongruent adaptation and base-

line conditions were compared, averaged over all axes

(F1,7 ¼ 1.35, p . 0.2, d ¼ 0.41), and when the horizontal

(F1,7 ¼ 0.43, p . 0.5, d ¼ 0.23), vertical (F1,7 , 0.01, p . 0.9,

d , 0.01), LU/RD (F1,7 ¼ 0.34, p . 0.5, d ¼ 0.21) and

RU/LD (F1,7 ¼ 0.058, p . 0.4, d ¼ 0.27) axes were analysed

separately. In figures 2b and 3b, the vertical (solid) line

represents conditions where incongruent adaptation is not

different to baseline. The data are clustered around the

vertical solid line in both figures indicating incongruent

adaptation did not result in a different cone of direct gaze

relative to baseline. Overall, the cone of direct gaze was

increased for the congruent but not incongruent conditions

relative to baseline for both the horizontal and vertical axes

and for both the non-cardinal axes.

(d) Pre- and post-adaptation baselines
Figure 4 plots the pre- and post-adaptation baselines, averaged

across all observers (values in table 3). Pre- and post-adaptation

baselines (averaged over axis) were not significantly different

when compared in a (4 � 2) repeated measures ANOVA,

F1,7¼ 1.91, p . 0.05, d ¼ 0.49. The interaction was not signifi-

cant, F3,21¼ 0.9, p . 0.4, h2
p ¼ 0:11. However, there were



Table 3. Mean cone of direct gaze for baselines measured before ( pre)
and after ( post) adaptation. Note, H, V, LU/RD, RU/LD stands for the
horizontal, vertical, left and up to right and down, and right and up to left
and down axes, respectively. Means are in degrees of visual angle, standard
deviation of the mean shown in brackets.

axis pre post average

H 6.868 (2.828) 5.288 (0.888) 6.158 (1.768)

V 8.318 (3.458) 6.518 (1.118) 7.338 (1.778)

LU/RD 7.158 (2.918) 6.718 (1.928) 6.918 (2.018)

RU/LD 7.498 (3.118) 6.558 (1.748) 7.008 (2.208)
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significant differences in the cone of direct gaze between differ-

ent axes, averaged over time of testing, F3,21 ¼ 3.50, p ¼ 0.034,

h2
p ¼ 0:33. The cone of direct gaze on the horizontal was nar-

rower than the vertical, F1,7¼ 6.51, p ¼ 0.038, d ¼ 0.90, and

the non-cardinal axes (on average), F1,7¼ 6.14 p ¼ 0.042,

d ¼ 0.88 which did not significantly differ in size, F1,7¼ 0.09,

p . 0.7, d ¼ 0.10, averaged over time of testing. The cone of

direct gaze was not significantly different when the vertical

axis was compared with the non-cardinal axes (on average),

F1,7¼ 1.44, p . 0.2, d ¼0.35, averaged over time of testing.
4. Discussion
We find that adaptation is greater in congruent conditions

compared with incongruent conditions for stimuli presented

on cardinal and non-cardinal axes. We also report that congru-

ent, but not incongruent, adaptation results in a significantly

wider cone of direct gaze relative to baseline. Finally, in the

absence of adaptation (baseline) the cones of direct gaze on

the two non-cardinal axes and the vertical axes were similar

in size and all significantly wider than the cone measured on

the horizontal axis.

Our finding that adaptation along non-cardinal axes

depends on adaptor-test congruence supports the existence

of at least one non-cardinal mechanism that codes gaze.

This is because adapting along either non-cardinal axis

should have the same effect on cardinal mechanisms, such

that if gaze is coded in terms of cardinal mechanisms alone,

congruent and incongruent adaptation along non-cardinal

axes would result in cones of direct gaze of a similar width.

Instead our data indicate the existence of at least one channel

tuned to gaze along an oblique axis. It is important to note

that we do not refute that cardinal axes may play a unique

role in gaze (as suggested by [11]), simply that gaze is not

coded exclusively by these cardinal mechanisms.

As mentioned previously, all gaze directions could in prin-

ciple be sufficiently be coded by two cardinal mechanisms.

However, the results here indicate there must be at least one

non-cardinal mechanism coding for gaze. There are many

possible configurations for processing gaze directions with

the presence of a gaze mechanism operating along a non-

cardinal axis. For example, there may be one cardinal and

one non-cardinal mechanism, or a configuration involving

three or more mechanisms. Presumably, a greater number of

mechanisms would lead to an enhanced ability to resolve

gaze directions accurately.

FMRI adaptation in humans [26] and previous electro-

physiological recordings in monkeys [10] have revealed
specific neural mechanisms that respond to different direc-

tions of gaze along the vertical and horizontal axes (in

heads that were either forward facing or rotated). Yet, these

experiments have not explored the specific angular tuning

of such neurons. For example, a neuron responding to a

‘left averted’ gaze might actually have a preferred direction

of ‘left and slightly up’. More detailed physiological exper-

imentation is needed to determine the relative prevalence

and properties of cardinal and non-cardinal gaze sensitive

cells. It is possible that the distribution of gaze neurons

may mirror that seen in the coding of orientation, where

there is a continuum of mechanisms tuned to different orien-

tations, with a greater prevalence of mechanisms that code in

cardinal directions [27–29]. Indeed, there is already evidence

that cells tuned to head orientation are more likely to exhibit a

preference for cardinal head orientations (full face, back of

head and left and right profiles) than intermediate orien-

tations [30]. As far as we are aware, however, this has not

been addressed for gaze direction.

An analysis of the baseline data reveals that a similar

range of eye gaze deviations are categorized as direct along

the vertical and two non-cardinal axes (oriented at þ458
and 2458 to the horizontal), while a more narrow range of

eye gaze deviations are categorized as direct along the hori-

zontal (figure 4). This is consistent with Vida & Maurer

[13], who report narrower cone of direct gaze on the horizon-

tal axis relative to the vertical axis. Additionally, our

estimates of the cone of direct gaze along the horizontal

(and vertical) axis, 6.158 (and 7.338), are similar to earlier esti-

mates, 5.498 (and 6.968, [13]) and 5.68 [31].

Specific gaze directions can communicate valuable social

information. For example, direct gaze can indicate approach

emotions (in the subject of interest) such as anger and joy,

whereas averted gaze can indicate avoidance emotions such

as sadness and fear [32]. Looking up and slightly averted to

one side can indicate the subject is thinking [33], and averted

gaze can also elicit mistrust in the observer [34]. Our results

may bear on certain clinical populations who display an abnor-

mal ability to represent and/or interpret the social meaning of

specific gaze directions, such as people with autism [35–37],

schizophrenia [38], social phobia [39], Turner’s syndrome [40]

and William’s syndrome [41]. For example, school-aged chil-

dren with autism are reported to perform more poorly than

typical children when asked to make fine-grained judgements

on gaze direction [35] or to identify the target of another’s gaze

[42]. Since additional gaze mechanisms could increase the abil-

ity to make accurate judgements of gaze direction, the reduced

ability to make accurate judgements of gaze direction in school-

aged children with autism might be accounted for by the

absence of one or more non-cardinal mechanisms for gaze.

People with autism have also been shown to lack normal

adaptive mechanisms coding for social stimuli such as facial

identity [43] and gaze [37]. It has been suggested that these

results are consistent with a deficit in incorporating prior

knowledge into the processing of such social stimuli [44].

It has recently been shown that normal adult observers have a

prior expectation that another’s gaze is directed towards them

[45]. However, the findings of Pellicano et al. [37] and Mareschal

et al. [45] are all based on stimuli in which gaze varied along the

horizontal. Future work using non-cardinal stimuli such as

those employed here would allow a fuller characterization of

the normally functioning gaze-processing system and the

deficits associated with autism spectrum disorder.
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