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Abstract: Burn injuries are among the most common peacetime injuries, with mortality ranging from
2.3% to 3.6%. At the same time, 85–90% of patients with burns are people of working age and children.
Burn injury leads to metabolic disorders and systemic inflammatory response, inefficient energy
consumption, and other physiological changes that can lead to dysfunction of organs and systems.
The most formidable complication of burn injuries is sepsis mediated by multiple organ failure, the
most common cause of poor prognosis in patients and has specific differences in these injuries. The
purpose of this article was to dwell in detail on the most promising immunobiochemical markers of
sepsis in the format of a mini-review, based on the main aspects of the immunopathogenesis of this
complication. The pathogenesis of a burn injury and any general pathological process is based on an
inflammatory reaction and large-scale changes in the skin and mucous membranes. This review is
devoted to the progress in understanding the main aspects of the immunopathogenesis of burn lesions
and the features of post-burn immune dysfunction, manifested by disorders in the innate and adaptive
immunity systems. Attention is focused on the role in the immunopathogenesis of the development
of systemic and local disorders in burn injury. Characterization of primary immunobiochemical
markers of burn injury (cytokines, growth factors, C-reactive protein, procalcitonin, presepsin, matrix
metalloproteinases, reactive oxygen species, nitric oxide, hemostasis parameters) is presented. The
problem of treating burn lesions is associated with constant monitoring of the condition of patients
and regular monitoring of specific immunobiochemical markers predicting sepsis for the timely
initiation of a specific therapy.

Keywords: burn injury; immunopathogenesis; innate and adaptive immunity; biomarkers

1. Introduction

Burn injury is one of the most common types of injuries in peacetime. Mortality from
burns in general ranges from 2.3% to 3.6%. At the same time, 85–90% are working-aged
people and children. Of the surviving patients, a significant proportion need long-term
medical, social, labor, and psychological rehabilitation [1–3]. Burns are among the most
common traumatic injuries globally, representing a global public health problem. According
to the WHO report for 2018, about 11 million cases of burns occur worldwide every year
while burn injuries cause approximately 180,000 deaths worldwide [1]. Two-thirds of
all cases of burn injuries occur in everyday life. Burns received as a result of military
operations are of high relevance. An increase in the group of injured persons with severe
and extremely severe lesions is apparent. Thus, more than 500,000 people seek medical
care, approximately 40,000 require hospitalization, and 4000 deaths are recorded per year
in the United States [1].

There are several types of burn injuries: chemical (acid and alkaline), electrical, and
thermal, which are the most common. Small burns cause superficial damage, mediating
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only local skin reactions. However, with prolonged and extensive heat damage, burns can
be extensive and cause systemic pathological reactions in patients [2,3].

A thermal (burn) wound (injuries) is an open injury or destruction of the skin, ap-
pendages, or mucous membranes. The severity, the nature of pathological changes, and the
prognosis of burn injuries mainly depend on the depth and the localization of burn wounds
and their area, the age and general condition of the organism, and several other factors mat-
ter. Extensive burns (severe burn injury or burn disease) are one of the most life-threatening
injuries with high mortality [2,4]. Burn disease is a specific pathological process that de-
velops after a thermal injury and is accompanied by damage to all self-regulating body
systems. The body’s response is manifested by neuro-reflex, neuroendocrine, and inflam-
matory systemic reactions. Burn disease develops in a pronounced form, with superficial
burns > 25–30% of total body surface area (TBSA) or deep burns > 10% TBSA [3,5].

The risk of infection, especially nosocomial infection, is significant for patients with
burn injury. The burn wound is fertile for colonization by endogenous and exogenous
origin microorganisms. It is believed that infectious complications cause up to 75% of all
deaths after thermal wounds. There is a risk of both local infection of the burn wound and
the development of sepsis in this case. Sepsis (systemic inflammatory response syndrome,
SIRS) is one of the most common causes of death in burn patients [4,6]. According to
the recommendations published in 2016 and highlighted at the 45th Critical Care Society
Congress of the Society of Intensive Care Medicine (SCCM), sepsis is defined as life-
threatening organ dysfunction caused by a dysregulated host response to infection. This
new definition emphasizes the primacy of the nonhomeostatic host response to infection,
the potential lethality that is considerably more than a straightforward infection, and the
need for urgent recognition [7]. Even a modest degree of organ dysfunction when an
infection is first suspected is associated with in-hospital mortality of over 10% [5]. The main
difference of burn sepsis is an increased risk of infection due to the loss of the skin as the
first line of defense against microbial invasion. Sepsis rarely occurs during the first week; it
more often develops several weeks or even months after a burn injury [6] (Figure 1).
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Figure 1. The classification of burns by degree is based on the depth of damage to the skin and
other tissues. 1st-degree burns involve only the outer layer of skin, the epidermis; 2nd-degree burns
involve the epidermis and some or all of the dermis; and 3rd-degree involve the entire dermis and
destroy the hair follicles and sweat glands.

Severe burn injury leads to significant disturbances in the hemostasis system, resulting
in the development of coagulopathy and disseminated intravascular coagulation (DIC
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syndrome) [7]. Coagulopathy in burn patients is defined as a developing dysfunction of
the hemostasis system, which is characterized by activation of procoagulant pathways,
increased fibrinolytic activity, and a decrease in natural anticoagulants, and is considered as
a risk factor for increased mortality both in the early and later periods after burn injury [7].
DIC syndrome is a complex and multifaceted disease characterized by activation of coag-
ulation and fibrinolysis pathways, consumption of coagulation factors, and depletion of
coagulation factors. DIC develops in patients with critically ill burns or patients with severe
burns (up to 3 degrees) and extensive damage > 10% TBSA [8,9]. Disorders of the hemosta-
sis system play a significant role in microcirculation disorders in severe thermal injury and
can also be one of the causes of multiple organ dysfunction syndrome (MODS) [7].

Considering the above, there is a great need to identify and monitor the development
of complications, including severe complications such as sepsis and septic shock, coagu-
lopathy, and DIC syndrome, in patients with burns. The authors of our mini-review are
doctors of laboratory medicine and clinical immunologists, who themselves repeatedly
faced the choice of diagnostic tactics when faced with the question of clinicians: sepsis or
not sepsis? Therefore, our manuscript is primarily addressed to combustiologists, who
often ask this question.

This review aims to reveal the modern features of the immunopathogenesis of burn
injuries and post-burn immune dysfunction and to determine the primary immunobio-
chemical markers of burn injuries and burn sepsis (cytokines, growth factors, C-reactive
protein, procalcitonin, presepsin, matrix metalloproteinases, reactive oxygen species, nitric
oxide, parameters of hemostasis).

2. Methods

Literature searches were conducted on PubMed, Web of Science, and EMBASE
(through 13 February 2022). Search criteria used were: (burn injury OR thermal injury
OR burn AND (contact thermal stimulation OR thermal injury OR burn injury OR local-
ized hyperthermia OR thermode) AND (immunopathogenesis OR prognostic markers OR
immunobiochemical markers OR predictor markers OR sepsis OR pathogenesis). Unpub-
lished articles and reviews were not considered. Authors (BGA, TAK) individually selected
all identified articles based on title and abstract. In the case of disagreement between the
authors regarding the relevance of the article, the senior author (NNB) made the final
decision Subsequently, the relevant articles were reviewed in full text to determine their
final eligibility.

When analyzing the data, special attention was paid to identifying and monitoring
the development of complications, including such severe ones as sepsis and septic shock,
coagulopathy, and DIC, in patients with burns. The purpose of this review is to identify
the modern features of the immunopathogenesis of burn lesions and post-burn immune
dysfunction, to determine the primary immunobiochemical markers of burn lesions and
burn sepsis.

As a result, 512 sources were found. Next, we searched for data on specific biomark-
ers of burn injury (cytokines, growth factors, C-reactive protein, procalcitonin, presepsin,
matrix metalloproteinases, reactive oxygen species, nitric oxide, parameters of hemostasis)
and their role in the immunopathogenesis of burn disease. Authors analyzed 258 articles,
of which 61 were selected for inclusion in this review. The included publications contained
data on the role of biomarkers such as cytokines, growth factors, C-reactive protein, procal-
citonin, presepsin, matrix metalloproteinases, reactive oxygen species, and nitric oxide; the
parameters of hemostasis in burn disease and sepsis complications; and studies that have
shown their prognostic role for the diagnosis and therapy of this pathology.

3. Results and Discussion
Modern Aspects of the Burn Injury and Burn Sepsis Immunopathogenesis

The basis of the immunopathogenesis of burn injury and any general pathological
process is an inflammatory reaction, ultimately aimed at restoring the structure and function
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of the damaged tissue. A feature of the inflammatory response in burn injury is the scale of
the skin and mucous membranes alteration. This barrier is damaged first in burns patients.
The intensity of the inflammatory reaction depends on the type of burn, its depth, and
the extent of the burned area. The cumulative injury of a thermal burn causes a severe
inflammatory response, which leads to impaired immune function and vice versa. Immune
system dysfunction caused by a burn injury exacerbates the inflammatory response. It
can lead to a systemic inflammatory response (hyperinflammatory) or sepsis and increase
mortality risk [10].

Dysfunction of the immune system in burn injuries is manifested by disorders in
the innate and adaptive immunity systems. These disorders occur already in the initial
post-burn period and are recorded for a long time. Post-burn immune dysfunction is a
hallmark of critically ill burn patients. In general, immune dysfunction in severe burn injury
and burn sepsis is characterized by a systemic (hyperinflammatory) immune response and
immunosuppression. While the former causes tissue damage, the latter predisposes to
infections [11,12].

Numerous experimental and clinical studies indicate that burn injuries are associated
with immunosuppression [13–18]. Innate immune cells (monocytes/macrophages, neu-
trophils, dendritic cells, natural killer (NK), natural killer T cells (NKT)) are among the first
to react to burns. Liver cells (hepatocytes, liver stellate cells, Kupffer cells, bile duct epithe-
lial cells) participate. The reaction of immunocompetent and liver cells is expressed in the
synthesis of cytokines, chemokines, adipocytokines, and other mediators (catecholamines,
cortisol, reactive oxygen species (ROS)), mediating both a local inflammatory response
and a systemic inflammatory process [16,17]. Considerable evidence of a disturbance of
the functional activity of monocytes/macrophages, neutrophils, and NK cells is presented,
and the role of these cells in the development of post-burn immune dysfunction has been
shown in experimental and clinical studies [16,19,20].

Dysfunction in the system of adaptive immunity from the first days after thermal
in-jury is manifested by a decrease in the total content of T-lymphocytes, with a decrease
in the content of CD3+, CD4+, and CD8+ T-lymphocytes in the peripheral blood and a
disorder of their functional activity [13]. As for the subpopulation of lymphocytes, several
studies reflect the role of CD3+ CD4+ T-helpers, including Th-1 (T-helpers type 1) and Th-2
(T-helpers type 2) and Th17 (T-helpers type 17), CD3+ CD8+ T cells, and NK and NKT cells
in burn injury and sepsis. In particular, it was shown that a decrease in the total number of
T-lymphocytes in severe burn injuries was revealed due to the subpopulation of T-helper
type 2 (Th-2) [13,16].

Researchers have recently paid particular attention to the role of subpopulations
of γδ T cells, Th17, and Treg cells (regulatory T cells) in the immunopathogenesis of
burns. The subpopulation of γδ T cells, which belongs to the cells of innate immunity,
predominates in the skin and epithelial tissues. It is assumed that γδ T cells have different
immunopathogenetic significance for burn injury. On the one hand, they contribute to
increased survival, as evidenced by the increased mortality observed in mice γδ T cells
that are deficient. However, on the other hand, γδ T cells are associated with subsequent
immune dysfunction and damage to peripheral organs. In general, it is believed that the
activation of γδ T cells after a burn is a protective function due to their participation in immune
surveillance, tissue repair, and wound healing. Thermal injury patients with severe systemic
inflammatory responses have an increased circulating γδ T cells concentration [17,18].

Regarding Th-17, there is growing evidence supporting the role of these cells in the
immune response after a burn. These cells are involved in local and systemic immune
responses as early as 3 h after a burn injury. Evidence shows increased IL-17 and IL-22 by
these cells at the burn site and in the systemic circulation [21]. Th-17 cells have been shown
to protect against local and systemic post-burn infections [21].

Hanschen et al. [22] evidenced the damaging effect of burn injury on Treg cells. The
authors of another work resolved the issue of the involvement of Tregs in sepsis-induced
immune paralysis [23]. They showed that elevated Tregs-produced cytokines and activation
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markers might play an essential role in the pathogenesis of sepsis and mortality of burned
patients [23].

Thus, the basis of the pathogenesis of burn injury and any general pathological
process is an inflammatory reaction. Dysfunction of the immune system in thermal injuries
is manifested by disorders in the innate and adaptive immunity systems. All stages in the
development of inflammation and the immune response are regulated by cytokines, which
mediate both the local and systemic inflammatory processes. The balance of cytokines and
other mediators plays a decisive role in regulating wounds’ initiation, progression, and
resolution. A disbalance between pro- and anti-inflammatory systems can lead to either
destructive hyperinflammation or paralysis of the immune system and the development of
sepsis after burn injury [12].

Figure 2 shows the scheme of post-severe burn injury and burns sepsis pathogenesis.
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Figure 2. The scheme of post severe burn injury and burn sepsis pathogenesis. Note: DAMPs—
damage-associated molecular patterns, PAMPs—pathogen-associated molecular pattern molecules,
NK—natural killer, IL-2—interleukin 2, IFN-γ—interferon γ, Th-1—helper T lymphocyte 1, Th-2—
helper T lymphocyte 2, MODS—multiple organ dysfunction syndrome (Figure by authors).

A comprehensive study of the burn injury and burn sepsis immunopathogenesis
is an urgent task, the solution of which, at the present level, is necessary to prevent
complications due to an abnormal immune response, and to develop methods for effective
treatment of burns, including methods for modulating the protective potential of the
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macroorganism. The most crucial aspect for predicting the response to a burn injury, the
likelihood of complications, assessing the processes of wound healing, and, ultimately,
individual treatment of each patient is the monitoring of several immunobiochemical
parameters (markers).

4. Immunobiochemical Markers of Burn Injury and Burn Sepsis

Numerous biologically active substances are involved in the immunopathogenesis
of the development of systemic and local disorders in burn injury. Up to 200 biomarkers
associated with burn injury have been identified. There are systemic and local biomarkers
of burn injury. An evaluation of both is essential for understanding wound healing mecha-
nisms and predicting the severity of burn injury patients and the therapy’s adequacy. These
include biomarkers associated with metabolism, inflammation, and wound healing [24–27].

Taking into account immunopathogenesis, among the most important (key) immuno-
biochemical markers (or sensors) are:

• Cytokines and growth factors;
• Acute-phase proteins;
• Matrix metalloproteinases;
• Reactive oxygen species;
• Nitric oxide;
• Parameters of the hemostasis system [13,28–37].

These and other vital biomarkers are presented in Table 1.

Table 1. Immunobiochemical markers of severe burn injury and burn sepsis.

Markers Biomarker Level (Parameter) Ref.

Cytokines (proinflammatory IL-1α, IL-6, TNFα)

Levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) increase
within 24–48 h after a burn
Levels of anti-inflammatory cytokines (IL-1 receptor antagonist, IL-4, IL-10,
IL-11, and IL-13) are reduced (in cases with sepsis levels that are
significantly higher than cases without sepsis)

[27,30]

C-reactive protein (CRP) Levels increased in cases with sepsis [34–36]

Procalcitonin (PCT) and presepsin Levels increased in cases with sepsis [32,38–43]

Growth factors (IGFBR-1, IGFBR-3, YGF, bFGF,
IGF-1, TGF) Levels increased [30–33]

Matrix metalloproteinases (MMP-1, 2, 3, 9, etc.) Activity increased [44–48]

Reactive oxygen species (ROS) Levels increased due to oxidative stress [49–52]

Nitric oxide (NO) Levels increased [19,53]

Parameters of the hemostasis system
(platelets, fibrinogen, D-dimer, protamine sulfate,
fibrin degradation products, activated partial
thromboplastin time, prothrombin time, and
thrombin time)

Abnormal coagulation parameters:
- thrombocytopenia 24–48 h after burn;
- hypercoagulability and was attributed to high levels of fibrinogen and
thromboplastin due to tissue lysis;
Signs of coagulopathy and DIC syndrome

[54–61]

Inflammatory markers (IL-1β, Il-6, IL-8, TNFα,
INFχ, IL12h70, Il-17, Il 2, Il-4, IL-5, IL-10,
IL-13, IL-7

Levels increased [61,62]

Stress marker (adrenaline, noradrenaline,
dopamine, cortisol) Levels increased [63–65]

Hormones (leptin, progesterone, insulin,
thyroid hormones) Levels increased; levels of thyroid hormones lowered [61,66]

Structural proteins (proteasome, type IV collagen,
lfminin-5, pyrodinoline, deoxypyrodinoline) Levels vary depending on the severity of the burn injury and sepsis [67–69]

4.1. Cytokines

The most critical biomarkers of burn injuries include cytokines due to their signifi-
cant role in immunopathogenesis. An important role belongs to both proinflammatory
(IL-1α, IL-1β, IL-6, IL-8, IL-12, TNFα, IFNγ, etc.) and anti-inflammatory (IL-4, IL-10, etc.)
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cytokines in the development of burn inflammation. The proinflammatory cytokines are
involved in the mechanisms of chronization of the burn wound, having a significant im-
pact on the course and outcome of inflammatory-reparative processes. The function of
anti-inflammatory cytokines is to inhibit the excess synthesis of the central proinflam-
matory cytokines, which contributes to the restriction of the area of damage. Increased
pro-inflammatory cytokines (TNF-α, IL-1, IL-6, etc.) prolong the inflammatory phase,
leading to the chronization of burn wounds or hypertrophic scars [27].

Extensive burn injuries accompanied by an increased inflammatory response are
characterized by an imbalance between proinflammatory and anti-inflammatory cytokines.
The magnitude and dynamics of changes in proinflammatory cytokines reflect the severity
of the burn disease and the nature of the healing of the burn. Most researchers note a
significant increase in the level of these cytokines in the blood serum immediately after
the burn and a decrease by 2–3 weeks [13,26,28,29]. According to other authors, elevated
serum levels of pro- and anti-inflammatory cytokines were observed after the severe burn
injury within 6–8 months, indicating sepsis complications [30].

These data suggest that cytokines have great potential for predicting burn disease
outcomes and early diagnosis of burn sepsis.

4.2. Growth Factors

Growth factors play an essential role in the tissue’s reparation and wound healing,
affecting cell migration, proliferation, and angiogenesis. An increase in serum hepatocyte
growth factor (HGF) has been reported, promoting wound healing and angiogenesis
stimulation in burned pediatric patients [31].

Moreover, an increased level of growth factor (TGFα), which affects cell migration, cel-
lular proliferation, and angiogenesis [32], epidermal growth factor (EGF) [33], and fibroblast
growth factor (BFGF) [32] has been noted. As for the proinflammatory colony-stimulating
factors G-CSF and GM-CSF, elevated serum levels persisted for three years after severe
burn injury [30].

4.3. Acute-Phase Proteins

Protein C or C-reactive protein is one of the central components of the acute phase,
the generally recognized “gold marker” of inflammatory processes, which correlates with
the severity of the inflammatory process and is a highly sensitive indicator of tissue
damage. C-reactive protein is an important prognostic marker and an early predictor of
sepsis in patients with severe thermal burns [34,35]. The burn disease is accompanied by
dysproteinemia due to hypoalbuminemia, an increase in the blood levels of acute-phase
proteins (CRP and fibrinogen) [36].

According to Jeschke, on the second day after severe burn injury, CRP values were
observed in patients with a fatal outcome compared with survivors. These authors also
found that if a patient had CRP values greater than 20 mg/dL on days 11–16 after burn
injury, there was a 50% chance the patient would die [34]. The elevated levels of CRP were
observed for a long time (up to 6 months), and with an increase in the area of burns, high
levels were also observed [34].

Important biomarkers of systemic inflammation initiated by infection in burn sepsis
are the blood levels of procalcitonin (PCT) and presepsin. PCT is a polypeptide that is
an inactive precursor of calcitonin. The main inducers of its synthesis are endotoxins of
Gram-negative bacteria, and TNF-α and IL-6. Among a large array of laboratory tests,
PCT emerged as the leading biomarker to indicate the presence of systemic infection
accurately and time-effectively. There is no single diagnostic value of PCT indicating sepsis
development. However, as most studies follow, a value above 1.0 ng/mL is taken as a
guide [37,38].

Several authors have testified to an increased level of PCT in burn sepsis [32,38–40]. So,
Lavrentieva et al. [39] found that the PCT cut-off level of 1.5 ng/mL had the highest sensitiv-
ity (82%) and specificity (91.2%) in septic patients with severe burn injury. Mokline et al. [40]
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found that five days after burn injury, the PCT serum concentration was significantly dif-
ferent between infected and non-infected patients (5.44 ± 6.23 and 0.41 ± 0.64 ng/mL,
respectively). The authors concluded that PCT levels correlate closely with sepsis severity,
could have a prognostic value in the outcome, and repeated measurements were more
useful than single values [40].

Presepsin is a circulating protein that increases rapidly in the blood during systemic
infections, sepsis, severe sepsis, and septic shock. It was first described at the beginning of
the 20th century in Japan. Further international multicenter studies have shown that:

(1) The mechanism of increasing PSP levels is fundamentally different from the mecha-
nism of increasing proinflammatory markers such as TNF-α, IL-6, IL10, PCT, and CRP;

(2) During the induction of systemic inflammation, the increase in PSP occurs earlier and
faster than the increase in other markers of sepsis [41].

Presepsin is normally present in very low concentrations in the serum of healthy
individuals. In response to bacterial infections, its concentration increases within 2 h,
according to the severity of the disease. The cut-off levels for sepsis have been reported
between 400 and 600 pg/mL; its concentration significantly correlates with the severity of
sepsis syndrome and in-hospital mortality [42].

In burn patients, a higher presepsin cut-off may be used to test for the presence of
bacteremia [38].

Therefore, procalcitonin and presepsin are the important biomarkers of systemic
inflammation initiated by infection in burn sepsis. Egea-Guerrero et al. [43] believe that
the role of PCT in identifying infectious processes in critically burned patients is superior
to CRP.

4.4. Proteases: Matrix Metalloproteinases

Proteases are enzymes responsible for the hydrolysis of proteins, primarily catalyzing
the degradation reactions of the extracellular matrix. Matrix metalloproteinases (MMPs)
and their inhibitors (tissue inhibitors of metalloproteinases—TIMPs), also called acute-
phase proteins, play a fundamental role in extracellular matrix remodeling in normal and
pathological states [44]. Changes in the extracellular matrix are involved in the pathogenesis
of burn wounds. In particular, MMPs mediate such biological processes as inflammation,
tissue remodeling, and angiogenesis. As a rule, the level of MPPs increases in the wounds
since they are necessary to destroy the wound lodge, contributing to the healing of the
wounds and the formation of scars [44].

It has been shown that MMPs levels were higher in non-healing wounds compared to
well-healing wounds [45]. A significant increase in MMP-2 was noted from 3 to 21 days
after the burn [46], and increased ProMMP-1, MMP-3, and MMP-9 levels were pointed out
for the first three weeks after the severe burn injury [47].

Dysregulation of MMPs led to prolonged inflammation and delayed wound healing.
Therefore, MMPs are essential biomarkers for assessing wound healing in burns.

4.5. Reactive Oxygen Species (ROS)

Many processes associated with the oxidation of biological molecules are accompa-
nied by reactive oxygen species (ROS) generation. ROS, which is formed in the area of
inflammation, includes free radicals, in particular, superoxidanion radical (O2−˙), hydroxyl
radical (OH˙), hydrogen peroxide (H2O2), singlet oxygen (‘O2), etc.

The response to a burn injury depends on the balance between free radical production
and detoxification. On the one hand, free radicals produced by activated neutrophils
have an antimicrobial effect and a beneficial effect on wound healing. On the other hand,
excessive formation of ROS and products of lipid peroxidation (LPO) in severe burn injury
is accompanied by oxidative stress and is associated with the development of systemic
inflammatory response, immunosuppression, promotion of the development of bacteremia
and sepsis, and systemic tissue damage [48,49].
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ROS and LPO slow down tissue regeneration processes and reduce the viability of
fibroblasts and keratinocytes, which can be regarded as a sign of unfavorable wound
healing. The uncontrolled formation of ROS by neutrophils and macrophages occurs in
the early stages of the wound process and the acute period of burn disease [48]. Several
authors note increased ROS production in the bloodstream during severe burn injury [50].

4.6. Nitric Oxide (NO)

As a biomarker, the wound pressure is indicative of the level of nitrogen oxide. Ni-
tric oxide (NO) is an essential prognostic biomarker in assessing the severity of burn
injury and wound healing. NO takes part in inflammation mechanisms, performing both
proinflammatory and anti-inflammatory functions. The authors consider NO an essential
factor in immunological reactivity necessary for implementing cytoprotective regulatory
processes at the level of the cell and the whole macroorganism involved in antimicrobial
protection [51,52].

Numerous experimental and clinical studies testify to changes in the activity of NO
generation and its function during thermal injury. The authors believe that the deprivation
of NO activity leads to disruption of the healing process. The integrated monitoring
of NO, MMP, and the level of bacterial load will help accelerate the healing of chronic
wounds [19,53].

Characterizing the hemostasis system as a whole, the authors note that in the first 48 h
in patients with thermal injury, the procoagulant potential increases, and the parameters of
the fibrinolytic cascade indicate both hyper- and hypofibrinolysis [7].

4.7. Parameters of the Hemostasis System

Assessment of the risk of coagulopathy and DIC syndrome in patients with a burn
injury is the most crucial diagnostic purpose in combustiology. Severe burns (with a TBSA
of more than 30%) are associated with severe coagulopathy [7]. Signs of coagulopathy have
been noted on admission to the hospitalization in 39.3% of patients with severe burns [54].
In five weeks after burns injury, R. H. Bartlett et al. observed coagulopathy in patients with
extensive burns (with a TBSA of 30–68%) [55].

The most important indicator of the development of coagulopathy is a significant
increase in the level of D-dimer and fibrin cleavage products [56]. Numerous reports have
shown that D-dimer levels in burn patients are significantly elevated on admission to
hospital [57–59].

Disorders in the fibrinolysis system are also observed in proportion to the injury
severity in burn patients [59,60].

Characterizing the hemostasis system as a whole, the authors note that in the first 48 h
in patients with thermal injury, the procoagulant potential increases, and the parameters of
the fibrinolytic cascade indicate both hyper- and hypo-fibrinolysis [7].

Thus, assessing the risk of developing coagulopathy and DIC syndrome in patients
with severe thermal injury is the most crucial diagnostic task in combustiology.

5. Conclusions

Thus, numerous biologically active substances related to inflammatory mediators are
involved in the immunopathogenesis of the development of local and systemic disorders
in burn injury. Cytokines, growth factors, C-reactive protein, procalcitonin and presepsin,
matrix metalloproteases, reactive oxygen species, nitric oxide, structural proteins [70]
and hemostasis parameters have the most significant importance in burn injury. These
immunobiochemical markers are considered prognostic biomarkers in the assessment of
the severity of burn injury and wound healing and, ultimately, in the personalized therapy
of burn patients.

Studies on the search for new biomarker candidates and methods for their detection
allow not only the prediction of wound healing but also open new potential targets for
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therapy in burns. However, additional studies are required to develop clinically significant
diagnostic tests to understand the biological reaction to a burn injury.
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