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Abstract: Bud endodormancy is an important, complex process subject to both genetic and epigenetic
control, the mechanism of which is still unclear. The endogenous hormone abscisic acid (ABA)
and its signaling pathway play important roles in the endodormancy process, in which the type
2C protein phosphatases (PP2Cs) is key to the ABA signal pathway. Due to its excellent effect on
endodormancy release, hydrogen cyanamide (HC) treatment is considered an effective measure to
study the mechanism of endodormancy release. In this study, RNA-Seq analysis was conducted on
endodormant floral buds of pear (Pyrus pyrifolia) with HC treatment, and the HC-induced PP2C gene
PpPP2C1 was identified. Next, software prediction, expression tests and transient assays revealed
that lncRNA PpL-T31511-derived Pp-miRn182 targets PpPP2C1. The expression analysis showed
that HC treatment upregulated the expression of PpPP2C1 and downregulated the expression of
PpL-T31511 and Pp-miRn182. Moreover, HC treatment inhibited the accumulation of ABA signaling
pathway-related genes and hydrogen peroxide (H2O2). Furthermore, overexpression of Pp-miRn182
reduced the inhibitory effect of PpPP2C1 on the H2O2 content. In summary, our study suggests that
downregulation of PpL-T31511-derived Pp-miRn182 promotes HC-induced endodormancy release in
pear plants through the PP2C-H2O2 pathway.

Keywords: Pyrus pyrifolia; endodormancy; hydrogen cyanamide; PP2Cs; LncRNA PpL-T31511;
Pp-miRn182; H2O2

1. Introduction

To cope with cyclic periods of environmental stress such as cold winters, perennial
deciduous trees developed a strategy of going dormant during evolution [1]. Based on
different stress contexts, plant dormancy was classified into three categories: parador-
mancy, endodormancy and ecodormancy [2]. Paradormancy occurs only in lateral buds
after elongation has stopped, which is imposed by apical dominance. In autumn, peren-
nial deciduous trees shed leaves, and the buds enter endodormancy, which is induced
by cold temperatures, short photoperiods or both [3,4]. Within the family Rosaceae, the
endodormancy of pear buds is induced by low temperatures [5]. Under natural conditions,
the release of buds from endodormancy is a temperature-dependent process, where a
genetically determined amount of accumulative chilling is required to break endodor-
mancy [6]. The endodormant buds cannot break endodormancy under insufficient chilling
accumulation during winter, which leads to unsuccessful flowering and reduced fruit
production [7]. When this chilling requirement is met, pear buds shift to ecodormancy. In
ecodormancy, pear buds are still repressed due to temporary environmental stresses, but
this state is released once the stressful conditions cease [3]. Due to global abnormal weather,
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unstable chilling accumulation has seriously affected endodormancy establishment and
release in many perennial deciduous trees, including pear trees, resulting in production
instability and economic losses. Therefore, identifying the molecular mechanism regulating
endodormancy may provide the basis for solving this key problem in agriculture.

Bud endodormancy in winter is of economic importance and widely studied. As an
effective chemical agent that could replace chilling accumulation and rapidly release buds
from endodormancy, 1.0% w/v hydrogen cyanamide (HC) has been widely applied to many
deciduous fruit trees such as grape (Vitis vinifera L.) [8], blueberry (Vaccinium spp.) [9],
peach (Prunus persica) [10] and pear (Pyrus pyrifolia) [11]. Additionally, HC treatment
combined with transcriptome analysis has been used as an effective method to reveal the
mechanism of bud endodormancy [12,13]. Phytohormones are physiological factors that
have been associated with bud growth and development. Metabolic pathways involved in
endodormancy induction associated with abscisic acid (ABA), ethylene and auxin were
identified by transcriptome analysis [14,15]. Gibberellic acid (GA), cytokinin, jasmonic
acid (JA) and brassinosteroid (BR) also participated in endodormancy [15]. Among then,
ABA has proved to be a crucial promoter involved in bud endodormancy [16]. It was
reported that the application of ABA inhibits endodormancy release and attenuates the
advancing effect of HC in grape buds [17]. HC treatment also decreased ABA levels, which
coincided with the expression trends of the genes involved in the ABA metabolism and
signaling pathways, according to transcriptome analysis [13,18]. Nine-cis-epoxycarotenoid
dioxygenase (NCED) is a rate-limiting gene for ABA biosynthesis. The cytochrome P450
CYP707A family is thought to be the key regulator in ABA metabolization. NCED was
upregulated prior to the onset of endodormancy along with an increase in ABA levels. With
endodormancy release, the expression of CYP707A was upregulated and the levels of ABA
content and NCED expression were decreased [11,19]. The dormancy-associated MADS-box
gene (DAM), a key factor involved in dormancy regulation in Rosaceae species [7,20,21],
has been reported to activate NCED expression by binding to the CArG motif in the
NCED promoter [11]. As major components of the ABA signaling mechanism, type 2C
protein phosphatases (PP2Cs) negatively regulate the ABA signaling pathway [22]. PP2Cs
involved in seed dormancy have been reported [23]. Both PYL/RCAR ABA receptors [24]
and protein DELAY OF GERMINATION1 (DOG1) [25] could form a complex with PP2Cs
that inhibits the activities of PP2Cs, resulting in seed dormancy in Arabidopsis thaliana.
Ectopic expression of wheat PP2C-a10 in Arabidopsis promoted seed germination [26]. In
pear buds, the levels of expression of PpPP2Cs decreased in endodormancy and then
increased in endodormancy release. PpPP2C-12 expression was inhibited in ABA-treated
buds [18]. One week after HC treatment, PpPP2C was upregulated and reached the highest
levels compared with water treatment [11]. Those results suggested that the upregulation
of PP2C was associated with endodormancy release.

In addition, energy metabolism was considered to be a key regulatory mechanism
involved in bud endodormancy release [8]. Oxidation and respiratory metabolism, which
provide energy for metabolic activities, were suggested to be involved in the release of
floral buds from endodormancy [27]. Under HC treatment, respiration intensity suddenly
decreased and then increased significantly one day later in dormant peach floral buds [28].
In addition, metabolites related to the tricarboxylic acid cycle (TCA) [9] and pentose
phosphate pathway (PPP) [28] were induced by HC treatment. Oxidation and respiratory
stresses trigger the production of reactive oxygen species (ROS), including hydrogen
peroxide (H2O2), which play a key role in plant growth and development [29]. In plants,
ROS act as signaling molecules of ABA and participate in calcium channels and stomatal
movement [30]. H2O2 accumulates during endodormancy and decreases during dormancy
release in endodormant floral buds of many plants [31]. This change in H2O2 content during
periods of endodormancy suggests that H2O2 acts as an important signaling molecule [32].
A transient increase in H2O2 levels was detected following the application of HC [33],
and considered the main reason for accelerated endodormancy release. Interestingly, the
relationship between PP2Cs and H2O2 has been shown during stomatal movement [34].
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As a major producer of ROS under stress in plants, plasma membrane-bound NADPH
oxidase (RBOH) is suppressed by PP2Cs through SNF1-related protein kinase (SnRK2) [35].
Although it is known that the ABA signaling pathway plays an important role in bud
dormancy, specific regulatory networks, such as the PP2C-H2O2 network, have not been
well studied.

Non-coding RNAs (ncRNAs) have recently attracted much attention because of their
ability to fine-tune gene expression at the transcriptional or epigenetic level [36]. As one
of the main types of ncRNAs, microRNAs (miRNAs) have been widely identified during
bud dormancy release by high-throughput sequencing in tree peony (Paeonia suffruticosa) [37],
Lilium pumilum [38] and Japanese pear (P. pyrifolia “Kosui”) [39]. In kiwifruit (Actinidia deliciosa),
miR172 interacts with APETALA2 (AP2) and is involved in dormancy release [40]. In pear,
miR6390 [41] and miR156 [42] were predicted to participate in endodormancy release. As an-
other major type of ncRNAs, long non-coding RNAs (lncRNAs, over 200 nucleotides in length)
have been suggested to play important roles in developmental stages and stress responses
in plants [43]. Interactions between lncRNAs and miRNAs are also widespread. LncRNAs
can function as precursors or targets of miRNAs to regulate plant metabolic processes [44].
Although little is known regarding the characteristic features of dormancy-related lncRNAs,
the publication of lncRNA data affecting floral bud dormancy in pear plants provides an
opportunity for further study of the regulatory mechanism of lncRNAs during endodormancy
release [45]. LncRNAs are considered to interact with miRNAs and affect the expression
of glutathione peroxidase genes, causing them to participate in the ROS scavenging system
during pear bud endodormancy [45]. In plants, ROS are crucial signaling molecules in the
ABA-PP2C signaling pathway. Therefore, whether lncRNAs are involved in the regulation of
PP2C-H2O2 network during endodormancy is worth exploring.

In this study, HC-induced PP2C genes during endodormancy in pear floral buds
were identified by RNA-Seq analysis. Through software analysis, the lncRNA PpL-T31511
was predicted to potentially function as the precursor of Pp-miRn182, which targets HC-
induced PpPP2C1. We investigated this possible lncRNA-miRNA-mRNA regulation mode
via fluorescence assays and expression tests. In addition, the promoting effect of ABA
treatment on H2O2 content was found, leading to our investigation of the effect of PpPP2C1
and PpL-T31511 on H2O2 content via transient transfection assay. The results indicated a
possible regulatory mechanism of lncRNA PpL-T31511 in the PP2C-H2O2 network in pear
floral buds during endodormancy, for which we provide a model.

2. Results
2.1. HC Treatment Induces Endodormancy Release

In this study, the dormancy status of lateral floral buds was measured on excised
one-year-old shoots of “Huanghua” pear (P. pyrifolia) cultivated in cold storage for 0 days,
15 days, 30 days and 45 days. Lateral floral buds of shoots, cultivated in cold storage
for 15 days, had transitioned to endodormancy (10.48% bud breakage was observed
under forcing conditions). After adequate chilling accumulation, more than 50% of floral
buds had broken on shoots cultivated in cold storage for 45 days (Figure S1). Thus,
lateral floral buds of shoots cultivated in cold storage for 45 days were determined to
be ecodormant. To identify differentially expressed genes (DEGs), HC treatment was
conducted on endodormant floral buds (cultivated in cold storage for 15 days). Twenty-one
days post HC treatment, the bud break rate was 93.05% (significantly higher than that
in the H-CK group), suggesting that floral buds were induced to endodormancy release
(Figure 1a). The bud break rates of ecodormant floral buds (cultivated in cold storage
for 45 days) were 29.07% and 50.23% in the ABA treatment group and water treatment
group (A-CK), respectively. The results showed that HC treatment effectively stimulated
endodormancy release and floral bud breakage in pear plants (Figure 1b). It was noted
in the experiment that some pear floral buds began to expand, and even proceeded to
burst, under HC treatment after 9 days. Therefore, samples from untreated buds, and those
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under HC treatment for 0.5 days and 3 days, were selected for subsequent RNA sequencing.
Samples treated with water for 0.5 days and 3 days were utilized as controls.
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Figure 1. Bud break rate of P. pyrifolia “Huanghua” after 21 days of treatment. (a) The bud break rate of endodormant pear
floral buds at 21 days after HC and water (H-CK) treatments. The photo on the right shows the floral bud breakage under
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selected for bud break tests. Data are presented as the mean ± standard error of three biological replicates; and * indicate
significant differences (p < 0.05, Tukey’s test) between samples.

2.2. Characterization of the HC-Treated Pear Floral Bud Transcriptome

To search for key genes involved in pear floral buds in response to HC, we performed
RNA-Seq analysis. A total of 15 samples, including three biological replicates at each
of the three time points (before treatment and 0.5 days and 3 days after treatment) from
the HC and H-CK treatment groups, were analyzed. A total of 646,715,158 clean reads
were retained after stringent quality assessment and data filtering. By filtering low-quality
sequences and those with residual rRNA, approximately 77.04 to 78.66% high-quality clean
reads were successfully mapped to the pear genome (Table S1).

FPKM (fragments per kilobase exon per million mapped fragments) was used to
measure gene expression levels in pear floral buds. To confirm the reliability of those
expression levels, ten differentially expressed genes were randomly selected for validation
and the results were highly consistent with the RNA-Seq data (Figure S2). To explore the
HC-responsive genes in pear floral buds, DEGs were screened with absolute fold change
value of |log2FC| ≥ 0.5 and false discovery rate (FDR) of ≤0.05. The DEGs that were
only induced by HC at 0.5 days (not induced by water treatment) were defined as early
HC-induced DEGs, and those that were only induced by HC at 3 days were defined as late
HC-induced DEGs. In total, 2336 early and 3527 late HC-induced DEGs were identified
(Table 1, Figure S3). It was noted that the number of late HC-induced DEGs was greater
than that of early HC-induced DEGs (details for the DEGs can be found in Table S2).

Table 1. Number of HC responsive DEGs.

DEG Set DEG Number Upregulated Downregulated

Early HC-induced DEGs 2336 1119 1217
Late HC-induced DEGs 3527 2017 1510

To further identify the function of HC-induced DEGs, Gene Ontology (GO) term and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the
identified DEGs were carried out. The results showed that large numbers of DEGs were
enriched in GO nodes associated with oxidoreductase activity (Figure 2a and Figure S4).
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Based on KEGG analysis, the “Flavonoid biosynthesis” pathway was identified as one
of the top ten enriched pathways in the “Metabolism” category (Figure S4, Table S3). In
addition, ROS scavenging system-related DEGs such as the glutathione S-transferase genes
(GSTs) and ascorbate peroxidase genes (APXs) were found in the glutathione metabolism
pathway (top 20 pathways), suggesting that ROS might be involved in the dormancy
release process in pear floral buds.
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Figure 2. Analysis of DEGs from pear floral buds induced by HC treatment. (a) GO analysis of HC responsive DEGs. The
most relevant oxidoreductase activity for DEGs is shown; the x-axis represents the number of DEGs. (b) The expression
heatmap of HC-induced PP2C genes with HC treatment in pear floral buds. (c) The expression heatmap of HC-induced PP2C
genes during the dormancy process; pear floral buds collected on 27 November 2019 were considered to be pre-dormant,
those treated with 4 ◦C (low temperature) for 15 and 30 days were considered to be endodormant, and those treated with
4 ◦C (low temperature) for 45 days were considered to be ecodormant.

Another notable observation was that PP2C genes were identified in the highly enriched
“Plant hormone signal transduction” pathway (in the “Environmental Information Processing”
category), and the highly enriched “cation binding” GO term. Based on this observation,
we screened PP2C genes from the HC-induced DEG set, and a total of 27 PP2C genes were
identified. According to the expression trend from the RNA-Seq data, most HC-induced PP2C
genes were upregulated by HC treatment (Figure 2b). We also checked the expression of those
genes during the dormancy process. The expression heatmap showed that nearly half of the
HC-induced PP2C genes were downregulated in endodormancy status and upregulated in
endodormancy release status (Figure 2c). Next, we focused on these PP2C genes and studied
their possible regulatory relationships with miRNAs or lncRNAs.
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2.3. LncRNA PpL-T31511-Derived Pp-miRn182 Targets PpPP2C1 Directly

To identify the regulatory relationships between HC-induced PP2C genes and miR-
NAs in pear plants, the sequences of HC-induced PP2C genes were submitted to the
psRNATarget program (Expect ≤ 5) (http://plantgrn.noble.org/psRNATarget/ accessed
on 26 October 2021) [46] to predict the target genes of miRNAs (the pear miRNA data
were obtained from our previous study [42]). PpPP2C1 (XM_009364194.2, a transcript
of ncbi_103952578) was predicted as the potential target gene of Pp-miRn182 (a novel
pear miRNA, AAUUUUGCAAACUAAAUGACAUG) (Figure 3a). More interestingly, the
lncRNA PpL-T31511 (identified in our previous study [45], NCBI: MW856021) was pre-
dicted to contain the functional unit pri-Pp-miRn182 (Figure 3b). In other words, PpL-T31511
(pri-Pp-miRn182) could be digested properly to form the precursor to Pp-miRn182 (pre-
Pp-miRn182, or Pp-MIRn182), and eventually to form the mature Pp-miRn182. Therefore,
we decided to focus our investigation on the interaction between PpPP2C1, Pp-miRn182
and PpL-T31511.
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HC. Data are presented as the mean ± standard error of three biological replicates; different letters indicate significant
differences (p < 0.05, Tukey’s test) between samples.

http://plantgrn.noble.org/psRNATarget/
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We constructed p1304-35S-PpL-T31511 and p1304-GFP-PpPP2C1 vectors. The expres-
sion of Pp-miRn182 was successfully detected in Nicotiana benthamiana leaves overexpress-
ing PpL-T31511, but not in wild Nicotiana benthamiana leaves. We co-infected these two
plasmids into onion epidermal cells using the transient transfection assay and detected the
fluorescence intensity of the GFP-PpPP2C1 fusion protein. Confocal microscopic examina-
tion revealed lower green fluorescence signals of the GFP-PpPP2C1 fusion protein in onion
epidermis cells with p1304-35S-PpL-T31511 overexpression than in onion epidermis cells
with p1304-35S-empty (control vectors) (Figure 4). This result indicated that the lncRNA
PpL-T31511-drived Pp-miRn182 inhibits the expression of the GFP-PpPP2C1 fusion protein.
Next, the expression patterns of PpPP2C1, Pp-miRn182 and PpL-T31511 in pear floral buds
were analyzed. The expression of PpPP2C1 appeared to increase during endodormancy
release, and it could also be induced by HC treatment for 3 days (Figure 3c,d). The expres-
sion trends of Pp-miRn182 and PpL-T31511 were completely opposite from that of PpPP2C1,
which was in line with the predicted relationship among them. These results suggested
that PpL-T31511-derived Pp-miRn182 targets PpPP2C1 directly.
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Figure 4. Confirmation of the interactions between PpPP2C1, PpL-T31511 and Pp-miRn182 from
transient expression analysis in onion epidermal cells. In onion epidermal cells co-infected with
p1304-35S-PpL-T31511 and p1304-GFP-empty vectors, it was found that green fluorescence signals
appeared in the cell nucleus and cytoplasm, indicating that GFP protein could be expressed in the
case of overexpression of PpL-T31511. In onion epidermal cells co-infected with p1304-35S-empty and
p1304-GFP-PpPP2C1 vectors, green fluorescence signals were detected in the cell nucleus, indicating
that the GFP-PpPP2C1 fusion protein could be successfully expressed. Few green fluorescence
signals were detected in onion epidermal cells co-infected with p1304-35S-PpL-T31511 and p1304-
GFP-PpPP2C1 vectors, indicating a significant inhibitory effect of PpL-T31511-drived Pp-miRn182 on
GFP-PpPP2C1 fusion protein. Scale bars, 100 µm.

2.4. Pp-miRn182-Mediated PpPP2C1 Is Involved in the ABA-PP2C-H2O2 Pathway

PP2Cs are key negative regulatory factors in the ABA signaling network, and form
exclusive interactions with PYL (ABA receptors) and SNF1-related protein kinase (SnRK2) [47].
SnRK2 promotes ROS generation by interacting directly with NADPH oxidase (RBOHD) [34].
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The ROS scavenging system-related DEGs identified in this study also suggested the possible
role of ROS in the endodormancy release response to HC treatment. Therefore, we focused
on the ABA-ROS signaling pathway. We first checked the expression of ABA-ROS signaling-
related genes in pear plants from the RNA-Seq data. PpPYL, PpSnRK2 and PpRBOHD were all
downregulated by HC treatment after 3 days, which was opposite that of PpPP2C1 under HC
treatment (Figure 5a). The results indicated a negative interaction between PpPP2C1 and the
ABA signal transduction pathway-related genes.

1 

 

 

Figure 5. Pp-miRn182-mediated PpPP2C1 is involved in the ABA-H2O2 pathway. (a) The expression of genes related to
the ABA signal transduction pathway in pear floral buds with HC treatment from RNA-Seq data. (b) qRT-PCR analysis of
PpPP2C1, Pp-miRn182 and PpL-T31511 in pear floral buds under ABA treatment. (c) Changes in H2O2 content after HC and
ABA treatments in pear floral buds. (d) H2O2 content in transgenic Nicotiana benthamiana leaves overexpressing PpPP2C1
and/or PpL-T31511. CK group represents leaves transiently co-infected with p1304-35S-empty and p1304-MCS35S-empty
constructs; group 1 represents leaves transiently co-infected with p1304-35S-empty and p1304-MCS35S-PpPP2C1 constructs;
group 2 represents leaves transiently co-infected with p1304-35S-PpL-T31511 and p1304-MCS35S-PpPP2C1 constructs. Data
are presented as the mean ± standard error of three biological replicates; different letters indicate significant differences
(p < 0.05, Tukey’s test) between samples.



Int. J. Mol. Sci. 2021, 22, 11842 9 of 18

We subsequently determined the expression of PpPP2C1, Pp-miRn182 and PpL-T31511
in pear floral buds under ABA treatment. All three were suppressed significantly by ABA,
which revealed a more complex regulation of PpPP2C1 (Figure 5b). Additionally, H2O2
content was measured in floral buds treated with HC and ABA. The level of H2O2 increased
significantly after 0.5 days of HC treatment and decreased rapidly thereafter. However,
the level of H2O2 in the H-CK group remained stable (Figure 5c). Under ABA treatment,
H2O2 content was maintained at a high level, while it was significantly reduced in the
A-CK group at 0.5 days (Figure 5c). These results further validated that ABA inhibits the
expression of PpPP2C1 and enhances the accumulation of H2O2.

To check the regulation of Pp-miRn182 in the PP2C-H2O2 pathway, we constructed
p1304-MCS35S-PpPP2C1 and p1304-35S-PpL-T31511 vectors and co-infected them into
Nicotiana benthamiana leaves using the transient transfection assay. Then, the H2O2
content was detected. Compared with CK group leaves (co-infected with p1304-35S-
empty and p1304-MCS35S-empty), the H2O2 contents in group 1 leaves (co-infected with
p1304-35S-empty and p1304-MCS35S-PpPP2C1) and group 2 leaves (co-infected with p1304-
35S-PpL-T31511 and p1304-MCS35S-PpPP2C1) were significantly decreased. In addition,
the H2O2 content in group 2 leaves was higher than that in group 1 leaves (Figure 5d). The
results indicated that PpPP2C1 has a significant inhibitory effect on H2O2, and PpL-T31511-
drived Pp-miRn182 could promote the accumulation of H2O2 by interacting with PpPP2C1.

3. Discussion

Bud endodormancy plays a decisive role in the phenology and yield of most plants,
especially temperate fruit trees. Insufficient endodormancy in warm winters will result in
poor bud quality and lower production in the next growing season [48]. HC is widely used
in perennial deciduous fruit trees in warm winter areas as a partial replacement for chilling
to effectively release bud endodormancy and promote bud bursting [13]. In addition, HC
treatment combined with transcriptome or metabonomics techniques are excellent ways
to provide new insights into the mechanism of bud endodormancy release [49,50]. As
a result of RNA-Seq analysis, HC was found to induce transient oxidative stress-related
genes in peach plants [10]. The increase in TCA metabolites was suggested to be crucial in
HC-promoted bud breaking in blueberry plants [9]. The cytokinin pathway was identified
as the most upregulated pathway in response to HC during bud dormancy in sweet cherry
plants [12]. In this study, HC treatment on endodormant pear floral buds resulted in
faster endodormancy release and a higher bud break rate (Figure 1a), as expected, which
is similar to the results found in “Kosui” pear plants [11]. During RNA-Seq analysis,
3136 upregulated HC-induced DEGs and 2727 downregulated DEGs were identified.
The number of upregulated DEGs is comparable to that of other plants [31]. It can be
speculated that more genes participate in bud endodormancy release and bud bursting.
Further expression and functional analyses of these DEGs will deepen our understanding
of the regulatory network of bud endodormancy.

Oxidative stress is considered an imperative component of the endodormancy release
process [8]. We found that early HC-induced DEGs were more enriched in “oxidoreductase
activity”, “oxidation-reduction process” and “oxygen binding” GO terms. In plants, ac-
etaldehyde dehydrogenase (ALDH) genes, the important genes related to oxidoreductase
activity, converts acetaldehyde to acetic acid with the byproduct nicotinamide adenine
dinucleotide (NADH) [51]. ALDH genes were abundant in the HC-induced DEGs in this
study. ALDH is involved in pyruvate metabolism and converts pyruvate during the TCA
cycle [52]. The pathways involved in carbohydrate and ATP metabolism in the TCA cycle
were stimulated during the endodormancy release phase or by HC treatment to produce
enough energy for bud bursting [10,53,54]. It can be speculated that ALDH may accelerate
the TCA cycle and endodormancy release by promoting the expression of genes related to
these pathways. The TCA cycle-related genes, such as glutamate decarboxylase, aspartate
aminotransferase, and acetyl-CoA carboxylase (Table S2), identified in this study may
support this. However, what signals or genes control energy metabolism during bud
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endodormancy? We think that determining this will help us better understand endodor-
mancy. As a proven endogenous hormone that promotes dormancy establishment and
maintenance, ABA inhibits TCA cycle isozymes in peach floral buds and affects respiration
processes [27]. Reduced TCA cycle enzyme activity and reduced mitochondrial respiration
were also found in other plants during endodormancy [55,56]. Notably, ROS production
was induced under hypoxic conditions [29]. During dormancy, the increase in the ROS con-
tent in buds was attributed to hypoxia and the inhibition of mitochondrial respiration [57].
In our previous study, the decrease in respiratory intensity during endodormancy was
examined. We detected a significant decrease in H2O2 levels after 3 days of HC treatment in
this study. However, the balance between TCA cycle activity and ROS production during
endodormancy remains unknown. We speculate that the activity of ALDH under HC treat-
ment promotes the TCA cycle, which in turn enhances mitochondrial respiratory intensity,
reduces the accumulation of ROS, and ultimately promotes endodormancy release. There-
fore, further exploration of the interaction between the TCA cycle and ROS will provide
a clearer understanding of the function of oxidative metabolism during endodormancy
in plants.

H2O2 is regarded as a signaling molecule that regulates the dormancy process [58].
The H2O2 level in dormant buds gradually increased with dormancy onset and decreased
rapidly with dormancy release in perennial deciduous trees [31]. Spraying H2O2 on
dormant buds promoted dormancy release in pear [59] and grape [60] plants. Interestingly,
a high level of H2O2 was detected in endodormant and ecodormant buds (A-CK for
0 days, Figure 5c) in this study. The transient increase in H2O2 levels was attributed to the
inhibition of catalase (CAT) by HC treatment [61]. CAT is a crucial enzyme in the ROS
scavenging system. This transient increase in the H2O2 level and inhibition of CAT activity
under HC treatment for 0.5 days were detected in our study (Figure S5). After 3 days of
HC treatment, H2O2 content decreased as CAT activity increased. Based on this evidence,
we speculated that an appropriately high level of H2O2 inhibited bud sprouting rather
than endodormancy release. The transient increase in H2O2 levels caused some defense
responses in endodormant buds, which accelerated the scavenging of H2O2 and led to
dormancy release and bud sprouting. More evidence is needed to support this hypothesis.

NADPH oxidase (RBOH) is a major producer of ROS in the context of the defense
response [62]. ABA promoted the accumulation of H2O2 by enhancing RBOH activity in
the guard cells of leaves. Interestingly, this relationship between ABA and ROS has been
reported not only in guard cells but also in dormant seeds [27]. Our study also showed that
ABA enhances the accumulation of H2O2 in endodormant buds. ABA treatment resulted
an increase in ABA content (data unpublished) and H2O2 content (Figure 5c) in pear buds.
HC treatment caused a temporary increase followed by a decrease in ABA and H2O2
content (Figure 5c). This trend also coincided with the expression trends of PpNCED and
PpROBH (Figure 5c and Figure S6). DAM was shown to promote ABA content in dormant
buds by upregulated expression of NCED [11]. We found that the expression of PpDAM
was continuously inhibited by HC treatment (Figure S6). This inconsistent expression trend
of PpDAM and PpNCED was also observed in “Kousui” pear plants [11]. It could be specu-
lated that the interaction between PpDAM and PpNCED was conditional. Further study of
the relationship between DAM and ABA is required. PP2C is a key negative regulatory
factor in the ABA-H2O2 pathway. The relationship between PP2C and ROS in dormant
buds is still unclear. Our results indicated that PpPP2C1 could act as an RBOH inhibitor,
leading to decreased H2O2 production, and that lncRNA PpL-T31511-derived Pp-miRn182
participated in the regulation of the PP2C-H2O2 pathway. In addition, we identified a novel
miRNA, Pp-miRn182, which was formed from the novel lncRNA PpL-T31511, and targets
PpPP2C1. Phytohormone balance was also involved in the induction of endodormancy.
Some reports have suggested that a transient spike in ethylene may be a pre-requisite
to induction of endodormancy by inducing NCED1 [63]. The dehydration-responsive
element binding protein (DREB)/C-repeat binding factor (CBF) family was identified as a
key regulator involved in endodormancy and breakage [63]. DREBs have been reported
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to positively and negatively mediate ABA responses [64]. A DREB homologous gene was
induced by ethylene treatment in leafy spurge, suggesting that the impact of ethylene on
DREB family members could play a role in ABA-mediated signaling leading to endodor-
mancy induction [14]. Overexpression of some members of the DREB1 class of AP2/ERF
has been shown to result in dwarfed phenotypes through regulating GA metabolism [65].
In this study, some DERBs induced by HC were identified. Further study of the regula-
tory network of phytohormone balance will deepen our understanding of endodormancy.
Based on the above results, we propose a hypothetical network model in endodormant pear
floral buds (Figure 6). In winter, the accumulation of both ABA and H2O2 in floral buds
is induced under chilling. ABA also upregulates the level of H2O2 by inhibiting PP2Cs.
PpL-T31511 is induced under chilling and acts as the precursor of Pp-miRn182 to reduce
the expression of PpPP2C1. Then, the H2O2 content in buds reaches a high level, resulting
in the establishment of endodormancy. After sufficient chilling accumulation, ABA and
PpL-T31511 are suppressed, and the expression of PpPP2C1 is upregulated. HC treatment
could also inhibit ABA content and promote the expression of PpPP2C1, resulting in a rapid
decrease of H2O2 content. In addition, HC induces a transient increase in H2O2 levels and
causes some defense responses in endodormant buds, which accelerates the scavenging of
H2O2. With the decrease in H2O2, floral buds release from endodormancy.
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pathway in pear endodormant floral buds under HC treatment. Arrows indicate a promoting
interaction; T-ends indicate an inhibiting interaction. Dashed lines denote an indirect interaction.

While this proposed network model needs more experimental evidence, it suggests a
possible role of lncRNAs in the PP2C-H2O2 pathway during endodormancy release. In
future work, the establishment of a suitable genetic transformation system for pear plants
will enable exploration of the function of lncRNAs. In addition, miRNA Pp-miRn182 was
specifically upregulated during endodormancy in pear floral buds, suggesting an important
role in the endodormancy process. A total of 160 transcripts were identified as target genes
for Pp-miRn182 in pear plants, including glutamate dehydrogenase, galactosyltransferase
and MYB (Table S4). Thus, the study of more Pp-miRn182 target genes will help to fully
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reveal the regulatory network of Pp-miRn182 in the endodormancy process. Furthermore,
the specific roles of lncRNA PpL-T31511, except for its role as a precursor of Pp-miRn182, in
endodormant pear buds are still unknown. Further study on PpL-T31511 would be helpful
to explore the regulatory mechanism of lncRNAs during the dormancy process.

4. Conclusions

In summary, we performed RNA-Seq analysis on pear endodormant floral buds
under HC treatment and found 27 HC-induced PP2C genes. LncRNA PpL-T31511 was
identified as the precursor of Pp-miRn182, which targets the HC-induced PP2C gene
PpPP2C1. Expression analysis demonstrated that PpPP2C1 was induced by HC treatment.
Transient assays showed that overexpression of PpPP2C1 repressed the production of
H2O2. Moreover, a high level of H2O2 was shown to be an inhibitor of bud sprouting.
Our study suggests that the PpL-T31511-PpPP2C1-H2O2 may play an important role in the
endodormancy process and bud bursting.

5. Materials and Methods
5.1. Plant Material and Treatment

Ten-year-old pear trees (“Huanghua”, P. pyrifolia) were grown in an experimental
orchard in Gaozhen Village, Jianning Town, Sanming City, Fujian Province, China (altitude,
318 m; latitude, 26◦84′37′′ N; and longitude, 116◦81′19′′ E). The yields of these pear trees
were stable, and they were regarded as being in the adult phase. These trees were not
pruned or chemically treated for more than a month before sampling. One-year-old shoots
(approximately 50–80 cm long and bearing 8–15 lateral floral buds) of pear trees were
collected on 27 November 2019 (based on production experience, lateral floral buds were in
paradormancy during this period) and placed in water in vials in cold storage (temperature:
4 ± 1 ◦C relative humidity: 75%). The water in the vials was changed every seven days.
After 15 days, 30 days and 45 days, the shoots were removed from cold storage in batches
in order to estimate the dormancy status of lateral floral buds and the follow-up treatments.

Forty-five shoots each cultured in cold storage for 15 days, 30 days, and 45 days were
collected, and placed in water in vials in a phytotron (kept under conditions of day/night:
14 h/10 h, temperature: 25 ± 1/20 ± 1 ◦C relative humidity 75%). The base of the shoot
was trimmed, and the water in the vials was changed every 3–5 days. After 21 days, the
percentage of bud breakage was determined to evaluate the dormancy status (Figure S7).
Green leaf tips enclosing visible flowers were used as a sign of bud breakage [66]. Lateral
floral buds of shoots after 21 days of cultivation with bud break rates ≥ 50% were defined
as being in the endodormancy release stage [67].

5.2. HC and ABA Treatments

Based on our previous study [45] and the results of this study (Figure S1), the lateral
floral buds cultivated in water in cold storage for 15 days were determined as being in
the endodormancy phase. Accordingly, the shoots cultivated in water in cold storage for
15 days were transferred to the lab. 1% w/v HC solution (Shengruisibio, Qingdao, China)
or water (defined as the H-CK group) was applied to lateral floral buds. After treatments,
the shoots were placed in water in a phytotron (kept under a day/night: 14 h/10 h,
temperature: 25 ± 1/20 ± 1 ◦C, relative humidity 75%). Three replicates were performed
for each treatment. Each biological replicate contained about 300 shoots. The base of the
shoot was trimmed, and the water in the flask was changed every 3–5 days. The percentage
of bud breakage was determined at 21 days after treatment. Forty-five shoots from each
treatment were selected for the bud break test. Lateral floral buds were collected from
HC-treated and water-treated shoots at 0.5 days, 3 days and 9 days after treatment. Lateral
floral buds before treatment were also sampled as a control. At every sampling point,
more than 50 shoots (approximately 500 floral buds) were harvested from each replicate
group for different measurements. After peeling off the external scales of the buds, floral
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bud primordium tissues were frozen immediately in liquid nitrogen and stored at −80 ◦C
until analyzed.

To further study the regulatory network between candidate genes, the shoots culti-
vated in water in cold storage for 45 days (were determined as being in the ecodormancy
phase, see Figure S1) were transferred to the lab and treated with 150 mg/L ABA (Solarbio,
Beijing, China) or water (defined as the A-CK group). The cultivation conditions and
sampling points were the same as those in the HC treatment above.

5.3. RNA Extraction, Library Construction and Sequencing

For RNA-Seq analysis, three biological replicates from each of the following sample
points were selected: the floral buds before HC treatment (named CK), 0.5 days and 3 days
after HC treatment (named as T1 and T2), and 0.5 days and 3 days after water treatment
(named TCK1 and TCK2). Total RNA from each sample was extracted with a TRIzol
reagent kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions.
The stand-specific RNA library was constructed by using the NEB#E7530 Ultra RNA library
prep kit from Illumina (NEB, Ipswich, MA, USA). Then, the cDNA fragments were purified
with a QiaQuick PCR extraction kit (Qiagen, Venlo, Netherlands) and ligated into Illumina
sequencing adapters. After agarose gel electrophoresis, suitable fragments were selected
as templates for PCR amplification, and sequencing was carried out by Gene Denovo
Biotechnology Co. (Guangzhou, China; http://www.genedenovo.com/, accessed on 18
March 2020) on an Illumina HiSeq2500 system (paired-end reads were generated).

5.4. Bioinformatics Analyses

Raw reads obtained from the Illumina HiSeq2500 system were further filtered to ex-
clude low-quality reads and reads containing adaptor sequences. The resulting high-quality
clean reads were aligned to pear ribosome data (ftp://ftp.ncbi.nlm.nih.gov/genbank/,
accessed on 18 March 2020) using Bowtie 2 (2.2.8) (local alignment; E ≤ 10–5), and those
that mapped to rRNA were removed. The remaining reads were further aligned to the pear
reference genome (from NCBI: https://www.ncbi.nlm.nih.gov/genome/12793, accessed
on 18 March 2020) using HISAT2.2.4 with “-rna-strandness RF” and other parameters set
to default. The mapped reads of each sample were assembled by using StringTie (version
1.3.1) [68,69] in a reference-based approach. FPKM values were utilized to normalize the
expression of each gene. Differentially expressed genes (DEGs) were identified between
pairs of samples (false discovery rate (FDR) ≤ 0.05 and |log2FC| ≥ 0.5) with DESeq2
software. The DEGs that were only induced by HC at 0.5 days or 3 days were defined as
HC-induced DEGs. Sequencing data were uploaded into the NCBI Sequence Read Archive
(SRA accession number: PRJNA715605).

5.5. Functional Enrichment Analyses

The HC-induced DEGs in this study were submitted to OmicShare online tools
(www.omicshare.com/tools, accessed on 4 April 2020) for GO term and KEGG enrich-
ment analysis. Pear background files of GO terms and KEGG pathways were obtained
from the GDR database (The Genome Database for Rosaceae, https://www.rosaceae.org,
accessed on 6 April 2020) [70]. The calculated p-value was subjected to FDR correction,
taking FDR ≤ 0.05 as a threshold. GO terms and KEGG pathways meeting this condition
were defined as significantly enriched GO terms and KEGG pathways.

5.6. Prediction of the Regulatory Relationship between HC-Induced PP2Cs, miRNAs and lncRNAs

The PP2Cs screened from the HC-induced DEG sets were defined as HC-induced
PP2Cs. “Huanghua” pear miRNA and lncRNA data were obtained from our previous
study [42,45]. The HC-induced PP2Cs and pear miRNA sequences were submitted to
the psRNATarget program (Expect ≤ 5) (http://plantgrn.noble.org/psRNATarget/, ac-
cessed on 23 April 2020) [46] to predict the candidate miRNAs that target HC-induced
PP2Cs. The lncRNA sequences were aligned to miRBase (version 21) [71] using BLAST to
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identify miRNA precursors. Sequences with greater than 90% alignment were considered
precursors of miRNAs.

5.7. Vector Construction

Total RNA were extracted (TRIzol reagent kit) from the same samples for RNA-Seq.
The sequences of PpPP2C1 and PpL-T31511 were obtained for “Huanghua” pear by using
a FastPfu SurperMix clone kit (TransGen Biotech, Beijing, China). Different vectors were
used for specific purposes. To validate the interaction of miRNA and genes, two vectors
pNC-Cam1304-35S (used to overexpress target genes, and does not contain any fluores-
cently labeled protein) and pNC-Cam1304-SubN (used to construct GFP-target gene fusion
protein, target genes can be inserted after GFP protein) were selected. To construct the PpL-
T31511 overexpression vector, part of the PpL-T31511 sequence (including the Pp-miRn182
precursor) was inserted into the NC frame of pNC-Cam1304-35S by using a Nimble Cloning
kit (Genepioneer, Nanjing, China) [72]. To construct the GFP-PpPP2C1 fusion protein, the
sequence of PpPP2C1 was inserted into the NC frame of pNC-Cam1304-SubN by the same
method. The recombinant vectors were designated p1304-35S-Pp-miRn182 and p1304-GFP-
PpPP2C1. The vector pNC-Cam1304-MCS35S (used to overexpress target genes, contain
GFP and GUS labeled protein) was utilized in transient transgenic plant construction
for PpPP2C1 overexpressing (Figure S8). The recombinant vector was designated p1304-
MCS35S-PpPP2C1. The primers used for gene amplification and vector construction were
designed with Primer5 software and were synthesized commercially (BioSune, Shanghai,
China) (details of the primers can be found in Table S5). All constructs were individually
transformed into Agrobacterium tumefaciens GV3101 using the heat shock method.

5.8. Transient Assays

Transient assays were performed with Nicotiana benthamiana leaves for Pp-miRn182
validation and H2O2 detection. To confirm precursors of Pp-miRn182, the p1304-35S-
Pp-miRn182 construct and p1304-35S-empty (as control) were individually infected into
Nicotiana benthamiana leaves via Agrobacterium-mediated transformation. At 3 days after
infection, the expression of Pp-miRn182 was detected via PCR. To study the regulation
between PP2C and H2O2, p1304-35S-Pp-miRn182 + p1304-MCS35S-PpPP2C1 constructs
were co-infected into Nicotiana benthamiana leaves, and H2O2 content was detected after
3 days. The p1304-35S-empty + p1304-MCS35S-empty constructs and p1304-35S-empty
+ p1304-MCS35S-PpPP2C1 constructs were also infected as controls. H2O2 content was
measured three times for every experimental condition.

For the fluorescence assay, onion epidermal cells were infected with p1304-35S-Pp-
miRn182 and/or p1304-GFP-PpPP2C1. Three days after infection, GFP-PpPP2C1 expression
was analyzed using an FV1200 laser scanning microscope (OLYMPUS, Tokyo, Japan). GFP
signals were collected using an emission filter BP505-530 nm with an excitation at 488 nm.

5.9. Measurement of H2O2 Content

H2O2 content was examined using a detection kit (H2O2-1-Y, Comin Biotechnology
Co., Suzhou, China) based on appropriate improvements. Approximately 0.05 g of fresh
plant tissue was quickly homogenized in acetone solution and centrifuged at 8000× g for
10 min at 4 ◦C Then, 100 µL of 5% titanium sulfate and 100 µL of concentrated ammonia
water were added to the supernatant (with acetone solution as a control) and centrifuged
at 4000× g for 10 min at 25 ◦C. The precipitate was extracted, and 1 mL of 2 mol/L sulfuric
acid was added to fully dissolve the precipitate. The solution was held at 25 ◦C for 5 min,
after which absorption was measured at 415 nm. In addition, CAT activity was examined
using a detection kit (CAT-1-W, Comin Biotechnology Co., Suzhou, China).

5.10. Quantitative Real-Time PCR for Validation

To confirm the RNA-Seq results, ten differentially expressed genes were randomly
selected for validation. The expression levels of PpPP2C1, PpL-T31511 and Pp-miRn182 in
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pear floral buds under HC and ABA treatment were also analyzed. Total RNA and miRNA
from the samples of HC and ABA treatments (including three replicated samples for each
treatment) were extracted, respectively. cDNAs synthesis of total RNA and miRNA were
performed according to TransScript miRNA First-Strand cDNA Synthesis SuperMix (Trans-
Gen, Beijing, China) Instruction Manual, respectively. Twenty-fold dilutions of cDNAs
were used as templates for quantitative real-time PCR (qRT-PCR). qRT-PCR was performed
using a Top Green qPCR SuperMix kit (TransGen, Beijing, China) on a Roche LightCy-
cler 96 system (Roche, Basel, Switzerland), according to the manufacturer’s instructions.
Quantification results were calculated using the relative quantification method (2−∆∆Ct).
The transcript levels of PpPP2C1, PpL-T31511 and ABA-ROS signaling-related genes were
normalized to that of PpActin, which has been widely used as an internal reference gene
for pear plants [66]. The transcript levels of Pp-miRn182 was normalized to that of 5S
rRNA, which has proved to be highly stable in our previous studies on pear miRNAs [73].
All primers were designed with Primer5 software and were synthesized commercially
(BioSune, Shanghai, China) (details of the primers can be found in Table S5).

5.11. Statistical Analyses

Each experiment was repeated at least three times. The significance of between-group
differences was analyzed using Tukey’s test. All statistical analyses were performed using
IBM SPSS software. p < 0.05 was considered to be statistically significant.
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