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Introduction
Type 1 diabetes (T1D) is an autoimmune disease in which β cells of  the pancreas are destroyed, result-
ing in a life-long dependence on exogenous insulin (1). As some residual β cell function is present upon 
diagnosis, the preservation of  remaining β cell function is the primary therapeutic goal when treating 
recent-onset (RO) T1D. The goal of  immunotherapies is to establish and maintain a tolerogenic immune 
state. While, to our knowledge, no therapies to date have preserved β cell function beyond 1 year in all 
treated RO T1D subjects (2–19), a subset of  subjects respond better than others in many of  these trials. 
Understanding immune states and immunological changes associated with treatment and outcome can 
help improve tolerance-inducing strategies that prolong clinical benefit.

An emerging mechanism in slower autoimmune disease progression (20) and better response to ther-
apy is T cell exhaustion (21, 22). An expansion of  TIGIT+KLRG1+ (double positive; DP) CD8+ T cells, 
described as partially exhausted, was linked to good clinical outcome in trials of  anti-CD3 mAb teplizumab 
in RO and at-risk subjects in T1D (22). Other successful biologic therapies for T1D did not trigger obvi-
ous accumulation of  DP cells (23, 24), nor were they observed in bulk transcript profiles from untreated 
subjects (25), demonstrating context specificity. However, exhausted autoreactive CD8+ T cells were also 
linked to rate of  progression in established T1D (26).

Alefacept is a LFA-3-Ig fusion protein that binds CD2 (27), disrupts CD58-mediated costimulation of  
T cells (28), and selectively depletes memory/effector T cells (29–33) via NK-mediated antibody–mediat-
ed cytotoxicity (ADCC) (31). The T1DAL study was a phase 2, double-blind, placebo-controlled trial of  
alefacept in RO T1D patients diagnosed within 100 days leading up to enrollment in the trial. Alefacept 
resulted in significant preservation of  endogenous insulin production in 30% of  treated subjects after 2 
years compared with placebo (11, 15). Alefacept treatment altered immunological profiles and induced 

Clinical trials of biologic therapies in type 1 diabetes (T1D) aim to mitigate autoimmune destruction 
of pancreatic β cells through immune perturbation and serve as resources to elucidate immunological 
mechanisms in health and disease. In the T1DAL trial of alefacept (LFA3-Ig) in recent-onset T1D, 
endogenous insulin production was preserved in 30% of subjects for 2 years after therapy. Given 
our previous findings linking exhausted-like CD8+ T cells to beneficial response in T1D trials, we 
applied unbiased analyses to sorted CD8+ T cells to evaluate their potential role in T1DAL. Using RNA 
sequencing, we found that greater insulin C-peptide preservation was associated with a module 
of activation- and exhaustion-associated genes. This signature was dissected into 2 CD8 memory 
phenotypes through correlation with cytometry data. These cells were hypoproliferative, shared 
expanded rearranged TCR junctions, and expressed exhaustion-associated markers including TIGIT 
and KLRG1. The 2 phenotypes could be distinguished by reciprocal expression of CD8+ T and NK cell 
markers (GZMB, CD57, and inhibitory killer cell immunoglobulin-like receptor [iKIR] genes), versus 
T cell activation and differentiation markers (PD-1 and CD28). These findings support previous 
evidence linking exhausted-like CD8+ T cells to successful immune interventions for T1D, while 
suggesting that multiple inhibitory mechanisms can promote this beneficial cell state.
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potentially tolerogenic changes in the T cell compartment. CD4 effector memory and central memory T 
cells (TEM and TCM cells, respectively) were depleted and CD4+FOXP3+CD127lo Tregs were preserved, 
resulting in an increased ratio of  Tregs to memory T cells.

Given that exhausted CD8+ T cells (TEX cells) have been associated with response to other T cell tar-
geting therapies (22), we explored the possibility that alefacept had immunomodulatory effects on residual 
CD8+ T cells by performing a detailed analysis of  the phenotype and function of  CD8+ T cells following 
therapy and relating their biological signatures with clinical outcome. Using integrated RNA sequencing 
(RNA-seq) and CyTOF analysis, we identified and describe 2 CD8 phenotypes that correlated with clinical 
response: one, whose frequency was maintained and whose phenotype was defined by higher CD57 expres-
sion, and another, whose frequency recovered after therapy in treatment responders and whose phenotype 
was defined by higher PD-1 expression. These cells were phenotypically distinct from one another, but both 
shared characteristics of  the DP cells previously seen in responders to teplizumab (anti-CD3) in the AbATE 
trial (22), including high inhibitory receptor (IR) expression and hypoproliferation following anti-CD3/anti-
CD28 stimulation. These results expand on the evidence that therapeutic modulation of  CD8 populations 
with features of  exhaustion or terminal differentiation are linked to preservation of  β cell function in T1D.

Results
Alefacept was shown to deplete CD2hi CD4+ and CD8+ TEM and TCM subsets in all subjects in the T1DAL 
trial; however, these changes were not associated with therapy response as measured by maintenance of  β 
cell function (15). While most T cell populations were depleted consistently across all subjects, the CD8+ 
TEM cells showed notable variability in the extent of  depletion, suggesting that differential changes related to 
response could exist in this compartment. Additionally, previous evidence indicated that expansion of  CD8+ 
TEX cells was linked to better outcomes in T1D clinical trials of  biologic agents (22). We therefore hypoth-
esized that phenotypic and functional changes occurring after treatment in T1DAL subjects’ CD8+ T cells 
would identify biologically and therapeutically relevant signatures of  response.

To address this hypothesis, we obtained frozen peripheral blood mononuclear cells (PBMCs) that were 
isolated from trial subjects at 5 time points: immediately before treatment, twice during the course of  treat-
ment, and twice up to 2 years after treatment (Figure 1A). As previously described (11, 15), 49 RO T1D sub-
jects were enrolled and randomly assigned to receive alefacept (n = 33) or placebo (n = 16). Sorted CD8+ T 
cells from 30 of  these subjects were analyzed by bulk RNA-seq. Following quality control and filtering, tran-
script data from 26 of  these subjects were included in gene expression analysis. Additionally, PBMCs from 
treated and placebo subjects were analyzed by flow and mass cytometry (Table 1). Subjects were selected 
to maximize response variability and, therefore, included subjects with the greatest C-peptide preservation 
(responders) or loss (nonresponders) at week 104. Neither the RNA-seq nor the cytometry cohorts differed 
significantly from the original cohort of  33 subjects in terms of  age, sex, and response (Table 1 and ref. 15).

A CD8+ T cell activation and exhaustion-related gene signature was associated with response to alefacept. We 
applied weighted gene coexpression network analysis (WGCNA) to postprocessed gene counts in order to 
discover modules of  coregulated genes via an unsupervised approach (34). WGCNA is an unbiased cluster-
ing method that identifies sets, or modules, of  correlated genes with the assumption that genes whose expres-
sion is highly correlated are likely involved in the same biological functions or pathways. We reasoned that 
WGCNA would identify immunological pathways or functions that were linked to therapy response. The 
analysis included samples from the end of  the trial (2 years after treatment) given that the greatest disparity 
existed in outcomes at this time point. This also enabled evaluation of  long-term remodeling of  the CD8+ T 
cell compartment that might point to persisting, long-term alterations related to better response.

We performed WGCNA on the top 5000 most variable genes across all available week 104 samples 
(n = 24; Supplemental Table 1; supplemental material available online with this article; https://doi.
org/10.1172/jci.insight.142680DS1). The analysis identified 6 distinct gene modules, ranging in size from 
62 to 738 genes (Figure 1B). An additional module, labeled as the gray module by WGCNA, included the 
remaining, uncorrelated genes. Module eigengenes (weighted combination of  module gene expression lev-
els) were correlated with C-peptide change (defined as the slope from random-effects model fitted to 4-hour 
AUC from baseline through the end of  the trial). Of  these 7 modules, only the blue module was significant-
ly correlated with response (n = 738 genes; correlation P < 0.05), indicating that higher expression of  the 
genes in this module occurred in subjects with prolonged C-peptide preservation (Figure 1, C and D). Giv-
en that higher blue module gene expression was seen in those with better outcomes at the end of  the trial, 
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Figure 1. CD8+ T cell activation and exhaustion-associated gene signature was associated with response to alefacept. (A) Schematic diagram shows analysis 
workflow. (B) WGCNA cluster dendrogram is shown for analysis of 5000 most variable genes in CD8 samples (n = 24; including 2 placebo). (C) Pearson correlation 
between module eigengene and C-peptide change. Significance of correlation was determined by Student’s asymptotic 2-tailed t test. Only the blue module was 
significantly correlated with C-peptide change (*P < 0.05). Correlation and significance calculations included all 24 subjects used for WGCNA module generation. 
(D) Graph shows blue module eigengene expression versus C-peptide change at week 104 across the same 24 subjects (r = 0.47, P = 0.023, FDR = 0.14). Pearson 
correlation and the corresponding 1-tailed t test of correlation significance were performed using cor.test function in R. (E) Change from baseline median expres-
sion of blue module genes in responders, partial responders, and nonresponders over time. See Supplemental Table 1 for sample numbers per group and visit. 
Significant differences at week 52 and 104 were seen between responders and nonresponders (*P < 0.05). Significance was determined by repeated-measures 
1-way ANOVA, with multiplicity adjustment applied to P values. (F) A selection of significantly enriched terms identified by GO enrichment analysis of blue mod-
ule genes are shown with their respective enrichment P value (–log10[FDR]). (G) Blue module genes categorized as “leukocyte activation” by GO analysis were 
clustered using string (string-db.org) and visualized in Cytoscape. Inhibitory marker names colored red.
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we wanted to evaluate if  this difference occurred only 2 years after treatment or showed divergence between 
groups earlier in the trial. To evaluate the dynamics of  blue module expression over the course of  the trial, 
change from baseline median module gene expression was determined for all available samples per visit 
(Supplemental Table 1 and Figure 1E). Median blue module gene expression declined in nonresponders at 
week 52, while remaining higher in responders over the course of  the trial (Figure 1E). This module was 
not correlated with age (Supplemental Figure 1), indicating that increased expression of  these genes was 
not the result of  an age-related immune state.

Gene ontology (GO) analysis was applied to the blue module to identify enriched functional pathways with-
in the gene set. Of the 837 significantly enriched GO terms (FDR < 0.01), 114 terms were related to T cell acti-
vation, differentiation, cytotoxicity, and apoptosis (Figure 1G). These terms included the genes CD38, EOMES, 
GZMB, TIGIT, LAG3, KLRD1, and CD160, among other IR genes and genes associated with T cell activation 
responses (Figure 1G). Because of the high diversity of functional pathways associated with blue module genes, 
we hypothesized that the response signature could be arising from more than one CD8+ T cell population.

Increased frequency of  CD8+ TEM cell populations with high IR expression was associated with beneficial 
clinical response to alefacept. First, we evaluated the CD8+ TEM cell populations expressing cytotoxic and 
exhaustion-associated markers by flow cytometry analysis (Supplemental Figure 2), given that the gene 
signature identified by WGCNA included many IR genes, as well as previous evidence that exhaust-
ed-like cells have been associated with immunotherapeutic response in T1D (22). Within the CD8+ 
TEM cell compartment (CD45RO+CCR7–; Supplemental Figure 2), there was an increased frequency 
of  cells that were KLRG1+TIGIT+, CD57+, or Granzyme B+, with the highest frequencies found in sub-
jects with favorable clinical outcomes (Figure 2A). The change in frequency of  these cells from baseline 
to the end of  the trial correlated with the rate of  change of  C-peptide in treated subjects (Figure 2B) 
but not in placebo subjects (Supplemental Figure 3), suggesting that maintenance or relative increases 
in these CD8+ TEM cell phenotypes may contribute to the role of  alefacept in preserving β cell func-
tion. This association with response was specific to CD8+ T cells, as neither the change in total NK 
cell frequency (CD3–CD56+) nor CD57+ NK cell frequency (CD3–CD56dimCD57+) differed between 
response groups (Supplemental Figure 4). In other experiments, we investigated whether PD-1+CD8+ 
TEM cell frequencies would also stratify subjects by treatment response and found that these cells 
did not significantly differ over the course of  the trials between placebo, responder, and nonresponder 
groups. To further refine and characterize the CD8 subsets associated with response, we performed high- 
dimensional CyTOF analysis of  activation, differentiation, and exhaustion markers on total CD8+ T cells 
in 12 alefacept-treated subjects, followed by unsupervised clustering and data visualization with Rphe-
nograph and t-SNE. Of  the 23 clusters defined by Rphenograph, 16 of  them contained at least 1% of  
the total cells and were included in subsequent analyses. Hierarchical clustering of  the subsets according  
to marker intensity revealed the presence of  multiple naive and memory-like CD8 clusters, including 

Table 1. Cohort demographics for RNA-seq and cytometry analyses

Bulk CD8 RNA-seq 
n (% of cohort)

CyTOF 
n (% of cohort)

Flow Cytometry 
n (% of cohort)

Age group 
  12–15 years
  16–35 years

5 (19%) 
21 (81%)

3 (25%)
9 (75%)

3 (19%)
13 (81%)

Sex
  Female
  Male

12 (46%)
14 (54%)

5 (42%)
7 (58%)

7 (44%)
9 (56%)

Response group
  Responder
  Nonresponder
  Partial responder

7 (27%)
9 (35%)

10 (38%)

6 (50%)
6 (50%)

0

7 (44%)
9 (56%)

0
Total n in cohort 26 12 16

Values indicate n of cohort (% of total n of cohort). RNA-seq sample numbers indicate the number of subjects with data 
at 1 or more visit after filtering low-quality libraries. Cohort subsets did not differ significantly in age, sex, or response 
from the complete alefacept-treated cohort (n = 33) described in Rigby et al. (11), as determined by Fisher’s exact test.
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populations expressing high levels of  IRs like PD-1, likely corresponding to subsets of  the response-asso-
ciated, IR-high CD8+ TEM cells seen by flow cytometry (Figure 2A and Figure 3A).

We compared frequencies of  the 16 clusters between response groups over time through the end of  the 
trial (Supplemental Figure 5). An initial decrease was seen in the frequencies of  several memory CD8 clus-
ters across both response groups. For example, cluster 3 (CD25+CD127+), cluster 1 (KLRG1+CD161+), and 
cluster 20 (PD-1+) decreased from baseline to week 35 across subjects. Several naive CD8 clusters, including 
cluster 9 (CD127+CCR7+) and cluster 15 (CD38+CCR7+), increased in frequency during the same time frame 
(Figure 3 and Supplemental Figure 5). These changes corresponded to the previously described depletion of  
TEM cells by alefacept and reflected an expected change in population proportions that occurred across all 
treated subjects in the weeks following therapy (11, 15).

While these broad, posttreatment alterations to the CD8+ T cell compartment occurred across subjects 
regardless of  outcome, differences in the frequency changes of  2 IR-high clusters, clusters 12 and 20, were 
observed when comparing responders with nonresponders (Figure 2B and Supplemental Figure 5). Although 
nonresponders had significantly more cells in cluster 12 at baseline, the frequency of  these cells declined 
following treatment in nonresponders but was maintained at approximately baseline levels in responders 
over time. Frequency of  cells in cluster 20 declined in all subjects following therapy but recovered more 

Figure 2. Increased frequency of memory CD8 subsets correlated with beneficial response to alefacept. (A) Longitudinal analysis of KLRG1+ΤIGIT+, Gran-
zyme B+, and CD57+ is shown as the change from baseline percentage of CD8+ TEM in responders (n = 7; red), nonresponders (n = 9; blue), and placebo (n = 
12; yellow). Differences between groups were analyzed by repeated-measures 1-way ANOVA with baseline adjustment and Bonferroni multiple comparison 
correction.*P < 0.05, **P < 0.01, ***P < 0.001. C1, cycle 1 of treatment; C2, cycle 2 of treatment. (B) Plots show correlation of the C-peptide change with 
the change of %KLRG1+TIGIT+, Granzyme B+, and CD57+ CD8+ TEM from baseline to week 104 in responders (n = 6) and nonresponders (n = 7). Spearman 
correlation were performed with FDR adjustment for multiple comparison.
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extensively by week 104 in responders than nonresponders (Figure 3B). Baseline frequency of  cells in cluster 
3 (CD45RA+CD25+) was also associated with response (Supplemental Figure 5); however, this population 
declined in both treatment groups and did not significantly differ between them after treatment. We therefore 
chose to focus further analyses on clusters 12 and 20 due to their positive correlation with good response, 
which could indicate a mechanistic role for them in alefacept’s efficacy against T1D onset.

Both clusters 12 and 20 expressed CD45RO but not CD45RA, confirming their memory lineage, and 
they also expressed TIGIT, T-BET, KLRG1, CD244, CD122, and EOMES (Figure 3, A and C). Although 
both clusters grouped closely on the t-SNE map, forming a large cluster of  TEM cells, they could be dis-
tinguished from one another by higher expression of  CD57 and Granzyme B on cluster 12 and higher 
expression of  PD-1 on cluster 20 (Figure 3A). Cluster 20 expressed moderate levels of  CD27, which could 
indicate a transitional memory phenotype.

Figure 3. Two CD8+ memory 
T cell subsets identified by 
CyTOF analysis were associated 
with beneficial response to 
alefacept. (A) Heatmap shows 
median expression for each 
cluster that contained at least 
1% of total cells. Color indicates 
column Z-score calculated from 
cluster median expression. 
Arrows denote the 2 IR-high 
clusters that correlated with 
response, clusters 12 and 20. 
Analysis included 12 subjects (6 
responders [R]; 6 nonresponders 
[NR]). (B) Change from baseline 
percent of cells in clusters 12 
and 20 plotted over time in 6 R 
and 6 NR. Differences between 
groups were analyzed by repeat-
ed-measures 1-way ANOVA with 
baseline adjustment and FDR 
multiple comparison correction. 
*P < 0.05. (C) t-SNE was used 
to visualize CyTOF data at a 
single-cell level. Expression 
intensity (asinh of MI) is colored 
on t-SNE plots for PD-1 and CD57 
(top). Overlay of cluster 12 and 
20 cells shown on density plot, 
color-coded as orange and pur-
ple, respectively (bottom).
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Cluster 17 expressed high levels of  CD57 and GZMB, as well as moderate levels of  exhaustion-associated 
markers TIGIT and CD244 (Figure 3A and Supplemental Figure 6). However, this cluster also expressed 
CD45RA and HELIOS, suggesting a more activated, TEMRA-like phenotype inconsistent with functional 
exhaustion. Cluster 11, another CD45RA–CD45RO+ memory CD8 cluster, expressed low levels of  KLRG1 
and CD244. However, expression of  functional activation markers like HELIOS and CD161 suggests that 
cluster 11 was not functionally exhausted in spite of  moderate expression of  IRs and exhaustion-associated 
transcription factors. Clustering analysis, therefore, enabled us to distinguish clusters 12 and 20 from other 
IR-expressing and cytotoxic cells. Cluster 12 appeared to be a subpopulation of  the CD57+ and GZMB+ TEM 
cells characterized by flow cytometry analysis, while Cluster 20 likely corresponded to a PD-1hi subset of  the 
TIGIT+KLRG1+ TEM cell population (Figure 2A).

Finally, we correlated the frequencies of clusters 12 and 20 with expression of blue module genes to deter-
mine if  patterns of gene expression and cell frequencies supported the hypothesis that both the RNA-seq and 
cytometry response signatures were arising from the same populations of cells (Supplemental Figure 7 and Sup-
plemental Figure 8). Positive correlations existed between the blue module gene expression and frequencies of  
clusters 12 and 20, as well as clusters 3 and 17 (Supplemental Figure 8). Significant correlations existed between 
other cluster frequencies and modules (Supplemental Figure 9); however, the lack of response associations 
between these modules and clusters led us to focus further analysis on the blue module and clusters 12 and 20.

Although only the correlation between cluster 20 and blue module gene expression reached signifi-
cance, the trend toward a positive correlation supported the hypothesis that an elevated proportion of  these 
cells likely contributed to the observed elevation in blue module gene expression in responders. However, 
these positive correlations were not exclusive to clusters 12 and 20. The diverse gene pathways represented 
in the blue module (Figure 1F) suggested that multiple cell types likely contributed to the total signature, 
which is supported by the positive correlations between blue module gene expression and frequencies of  
clusters 3 and 17, in addition to clusters 12 and 20 (Supplemental Figure 8 and Supplemental Figure 9).

Together, these results suggest that maintenance of  CD8 cells with terminal, exhausted-like phenotypic 
signatures was linked to better therapy response.

CD57+ and PD-1+ response-associated CD8+ T cells were hypoproliferative and expressed features of  NK function 
and T cell activation. To further characterize the phenotype and function of  cells in clusters 12 and 20, we 
defined these populations as CD45RA–PD-1+CD8+ (cluster 20) and CD45RA–CD57+CD8+ (cluster 12) 
(Figure 4A). Hypergate was used to confirm that these markers were the most likely to yield sorted subsets 
with the highest possible purity (Supplemental Figure 10; ref. 35). Sorting only CD45RA–CD8+ T cells 
excluded the naive CD57+CD45+ population (cluster 17) from the sorted CD57+ population. PD-1 was 
selected as the primary identity marker for cluster 20, given that its expression was a distinct feature of  
cluster 20, with only low expression on a small percentage of  cells in clusters 11 and 12 (Figure 3, A and C, 
and Supplemental Figure 6). The upstream CD8 sort was performed as shown in Supplemental Figure 2.

To enable comparison with exhausted-like and nonexhausted cells, we also sorted 2 populations to serve as 
positive and negative controls for the exhaustion phenotype, as previously described (22). These included CD8+ 
memory T cells that coexpressed the IRs TIGIT and KLRG1 (DP) and CD8+ memory T cells that expressed 
neither of these receptors (double negative; DN). We then performed bulk RNA-seq, followed by differential 
gene expression analysis (DGEA) and rotation gene set testing on the sorted populations.

DGEA revealed higher expression of  IRs and exhaustion-associated genes, including KLRG1, TIGIT, 
and EOMES, in both PD-1+ and CD57+ T cells relative to DN cells (Figure 4B). Also relative to DN cells, 
both PD-1+ and CD57+ T cells were enriched for blue module genes, confirming that these cells likely 
contributed to the gene expression response signature seen in the bulk CD8 RNA-seq analysis (Figure 4C).

To determine the extent to which these populations’ gene expression profiles aligned with profiles of  
DP cells, we defined the DP-associated gene set by contrasting our sorted DP and DN cells using limma 
and selecting genes whose expression was significantly higher in DP relative to DN cells (adjusted P < 
0.05). We then used this set of  DP-associated genes in an enrichment analysis comparing PD-1+ and CD57+ 
T cells with the DN population. Both populations were highly enriched for DP-associated genes relative to 
DN (Supplemental Figure 11). These results confirmed that both PD-1+ and CD57+ T cells have features 
associated with exhaustion, consistent with the high IR expression seen on clusters 12 and 20 by CyTOF 
analysis and elevated DP and CD57+CD8+ TEM cells seen by flow cytometry.

To directly test proliferative activity of  PD-1+ and CD57+ T cells, we stimulated CD8 memory T cell 
subsets in vitro with anti-CD3 and anti-CD28 mAbs and measured Ki67 expression at day 4 as a measure 
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Figure 4. CD57+ and PD-1+ response-associated CD8+ T cells were hypoproliferative and expressed features of exhaustion. (A) Representative plots illustrate 
sorting strategy to isolate memory (nonnaive CD8 excluding CD45RA+CCR7+) CD8+ T cell populations (CD57+/–, PD-1+/–, and KLRG1/TIGIT+/–). (B) Volcano plots 
show differentially expressed genes contrasting PD-1+ (right) and CD57+ (left) with DN cells. Genes canonically associated with exhaustion, as well as key mark-
ers of clusters 12 and 20, are highlighted and labeled. (C) Enrichment barcode plots contrast CD57+ and PD-1+ populations with KLRG1/TIGIT–double negative 
cells in their expression of blue module genes. P value from rotation gene set analysis roast in R. (D) Ki67+ cell frequency in each of the sorted CD8 subsets 
(week 104 samples; n = 6) following 4 days of stimulation with plate-bound anti-CD3/soluble anti-CD28. Data are presented as mean ± SEM. P values were 
calculated using 1-way ANOVA, and results are displayed for comparisons of CD57+, PD-1+, and KLRG1–TIGIT– (DN) frequencies. *P < 0.01, ***P < 0.001.
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of  proliferation (Supplemental Figure 12 and Figure 4D). Both PD-1+ and CD57+ subsets were hypoprolif-
erative relative to total memory, PD-1–, CD57–, and DN control populations (Figure 4D).

Because CD57 has canonically been used as a marker of  senescence, we tested for enrichment of  genes 
related to telomere maintenance, DNA replication, and senescence in the CD57+ relative to PD-1+ T cells 
(Supplemental Figure 13). We defined a telomere-associated gene set (n = 175) derived from overlap between 
the Molecular Signatures Database(MSigDB; http://www.gsea-msigdb.org/gsea/msigdb/index.jsp) “telo-
mere organization” set and any REACTOME pathways. We also divided these genes into functionally dis-
tinct subsets including histones, polymerases, DNA repair, and replication for gene set testing. Enrichment 
analysis with roast showed that, of  the total telomere-related gene set and the functional gene sets, only the 
polymerase genes were significantly enriched in either population, with increased enrichment in PD-1+ T 
cells relative to CD57+ T cells (P = 0.01). Two additional, previously defined gene sets associated with p53 
and senescence were also tested for enrichment (36). Both gene sets showed low levels of  enrichment in 
PD-1+ versus CD57+ T cells, with 1 set reaching statistical significance (Supplemental Figure 14). Together, 
these results indicate that, while the CD57+ T cells were hypoproliferative, they did not upregulate genes 
related to the processes involved in classical senescence.

CD57+ and PD-1+ TEM cells shared a subset of  TCRs but differentially expressed features of  NK function and T cell 
activation. To determine if  these cells represented 2 clonally related states of  exhaustion, we evaluated TCR 
sharing to identify potential clonal relationships. We adapted procedures we developed previously for single 
cell analysis for bulk RNA-seq (37, 38). In preliminary experiments, these procedures were able to accurately 
detect known, high-abundance rearranged TCR-α (TRAV) and -β (TRBV) chain complementarity-determin-
ing region 3 (CDR3) regions (junctions) in bulk T cell profiles. We applied these procedures to our bulk RNA-
seq profiles from the sorted PD-1+ and CD57+ T cells. Circos plots linking rearranged junctions showed TCR 
junction sharing between CD57+ and PD-1+ T cells from 2 of  3 subjects (Figure 5A). One of  these subjects 
also shared a TCR junction between different visits, suggesting clonotype persistence.

Although there was no junction sharing between the few subjects in this study, we sought to determine 
if  these shared TCRs were public (found in other individuals) or private specificities. Since our bulk pro-
files do not provide TCR pairing information, we were unable to directly determine antigen specificity of  
these TCRs. We therefore performed sequence comparisons by BLAST analysis against the National Center 
for Biotechnology (NCBI) nonredundant protein database (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (Sup-
plemental Table 2). We found that rearranged TRAV (TRAV26-2-CILPLAGGTSYGKLTF) and TRBV 
(TRBV7-8-CASSLGQAYEQYF) chains detected in donor 1 at week 104 perfectly matched a well-character-
ized immunodominant TCR recognizing EBV (39). Using PCR analysis, we found measurable EBV DNA 
in peripheral blood from this donor at week 104, but not week 52, suggesting that failure to control EBV 
was associated with likely expansion of  EBV-specific CD8+ TEX cells. Together, our results suggest that the 
CD57+ and PD-1+ populations shared common precursors in some subjects.

We next directly compared PD-1+ and CD57+ T cells by DGEA to distinguish the populations from 
one another. PD-1+ T cells expressed high levels of  the genes CD28, IL2, CD27, and PDCD1, while CD57+ 
T cells expressed higher levels of  NK cell receptor (NKRs) genes, including FCGR3A, LILRB1, KLRD1, 
and multiple iKIR genes (KIR2DL1, KIR2DL2, KIR3DL1, KIR3DL2; Figure 5B). iKIRs are membrane 
proteins with inhibitory isoforms that bind HLA class I molecules (40). Signature genes from CD57+ T 
cells comprised a highly interconnected network of  genes classically found in NK cells, but also in termi-
nal effector CD8+ T cells (41) (Figure 5C).

GO analysis of  the genes more highly expressed in CD57+ T cells showed enrichment of  terms 
related to NK cell function, as well as cytotoxic functions characteristic to both NK and CD8+ T cells 
(Figure 5, D and E). This gene signature suggests functional similarities between the response-associated 
CD57+ CD8 cells and NK cells. In contrast, genes more highly expressed in PD-1+ T cells were enriched 
for annotation terms suggesting T cell costimulation (CD28, CD40LG), proliferation (IL2), and differenti-
ation (IL23A, FOXP3; Figure 5, F and G). Notably, the elevation of  these activation-related genes in the 
PD-1+ T cells is relative, and although they appeared to be more active than the CD57+ T cells, they had 
lower expression of  activation pathways and reduced proliferative capacity compared with nonnaive and 
populations with exhausted-like phenotypes (Figure 4).

Finally, to further assess the differences in functional pathways between PD-1+ and CD57+ T cells, 
we compared their enrichment for 111 previously defined gene sets using gene set enrichment analy-
sis (GSEA) (42). Several highly overlapping cytotoxicity-associated modules, including GZMB.mod and 
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Figure 5. CD57+ and PD-1+ T cells shared a subset of TCRs but differentially expressed features of NK cytotoxicity and T cell activation. (A) Each segment 
of the Circos plot represents a TCR junction found in PD-1+ (green) or CD57+ (gray) cells from the 4 sorted samples. Color bars denote donors. Arcs connect 
junctions shared between samples. (B) Differentially expressed genes identified by limma analysis contrasting PD-1+ (left) and CD57+ (right) cells. Genes 
whose differential expression reached significance are highlighted in blue and red (logFC > 1; FDR-adjusted P < 0.1). (C) Network shows connected network 
of genes expressed significantly higher in CD57+ than PD-1+ cells. Key NKRs are highlighted in red. (D) Selection of enriched pathways in CD57+ cells are 
shown with respective significance of GO term gene overrepresentation in set. (E) Relative expression of pathway-associated genes in CD57+ and PD-1+ 
cells, calculated as the mean scaled expression of the gene across all samples. (F) Selection of enriched pathways in the genes differentially expression in 
PD-1+ cells, determined as in D. (G) Relative expression of pathway-associated genes in PD-1+ and CD57+ cells, analyzed as in E.
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CD244.mod, were enriched in CD57+ T cells relative to PD-1+ T cells. Modules associated with T cell acti-
vation, inhibition, and differentiation, such as CD28.mod and CTLA4.mod, were more highly enriched 
in PD-1+ T cells (Supplemental Figure 15).

Discussion
Using a combination of  transcriptomics, cytometry, and functional assays, we performed a detailed analysis  
of  the phenotype and function of  residual and recurrent CD8+ T cells following alefacept therapy in RO 
T1D subjects. This systems-level approach identified a response-associated CD8+ T cell signature that was 
defined by activation- and exhaustion-associated gene expression and higher frequency of  2 related, but 
unique, CD8 memory phenotypes. These IR-expressing cells expressed features of  exhaustion but were 
phenotypically distinct from one another, distinguishable by high reciprocal expression of  PD-1 or CD57. 
The divergent inhibitory phenotypes of  these cells, including iNKR expression by the CD57+ T cells, 
point to a possible role for multiple inhibitory systems driving effector CD8+ T cells toward an inhibited or 
exhausted state that could be beneficial in the context of  T1D and other autoimmune diseases.

We show that the sorted CD57+ and PD-1+ T cells shared some rearranged TCR sequences, a common-
ly used measure of  T cell clonality. This finding suggests that CD57+ and PD-1+ T cells shared a common 
lineage. However, because of  the limited scope of  our observations, we are unable to discriminate between 
different models for how CD57+ and PD-1+ T cells are derived from a common ancestral precursor. Larger 
studies utilizing single cell RNA-seq and samples taken over time will be required to clarify these lineage 
relationships. Such studies may also clarify TCR pairing and antigen specificity of  exhausted cells. Inte-
grating knowledge of  lineage relationships and antigen specificity will lead to a fuller understanding of  the 
relationship of  exhausted cells in T1D progression and response to therapy.

The hypoproliferative DP cells described in the AbATE trial (22, 43) were defined by their expression 
of  the transcription factor EOMES, effector molecules, and multiple IRs, including TIGIT and KLRG1, 
and they were found to expand after treatment. The subtypes of  CD8+ T cells associated with response 
to alefacept, however, were distinct from these DP cells. First, the population dynamics differed in that 
clusters 12 and 20 did not expand from baseline frequencies but, rather, were maintained or recovered to 
baseline levels after treatment in responders as compared with nonresponders. Therefore, while both drugs 
may induce or spare a favorable, tolerogenic CD8+ T cell phenotype, the dynamics of  these cells may reflect 
differences in drug mechanisms. Teplizumab targets CD3 and, as an agonist of  the receptor, could activate 
cells and thereby induce exhaustion. In contrast, alefacept targets CD2hi cells and therefore depletes acti-
vated effector memory subsets. It is possible that alefacept also acts by inhibiting costimulation by blocking 
CD2 signaling, thereby inducing functional inhibition rather than depletion (15). Tregs were also spared, 
so this — combined with functional inhibition of  effector cells — may have promoted a more tolerogenic 
immune state in alefacept responders. We note, however, that we have not detected Treg signatures in either 
previous (22, 24) or the present studies of  biologic therapies in T1D.

The CD57+ T cells expressed features of cytotoxicity not seen in canonically exhausted cells. Expression 
of CD57 on the surface of CD8+ T cells increases during T cell differentiation and is considered a marker of  
cytotoxic function (44–46). CD57 is expressed by heterogeneous populations of memory T cells and termi-
nally differentiated effector T cells (45–47). CD57+CD8+ T cells have been described as senescent in chronic 
HIV infection (47) and in other diseases with chronic immune stimulation such as rheumatoid arthritis and in 
transplantation (44–46). During chronic viral infections, senescent T cells express CD57, KLRG1, and killer cell 
immune globulin-like receptors and are capable of producing a significant amount of effector cytokines (48). In 
T1D, elevated expression of CD57 and CD95 has been described in β islet cell–specific CD8+ T cells of patients 
with newly diagnosed T1D compared with healthy controls, and these cells are present in subjects with higher 
levels of C-peptide (49), raising the possibility that these cells participate in a protective, rather than pathogenic, 
role. In a follow-up study, the same group showed that change in β cell–specific CD8+ TEM cells expressing 
CD57 was positively correlated with C-peptide change in subjects younger than 12 years of age. Autoreactive 
CD57+ effector CD8+ memory T cells bore the signature of enhanced effector function (higher expression of  
Granzyme B, killer-specific protein of 37 kDa, and CD16 and reduced expression of CD28) compared with 
their CD57– counterparts, and network association modeling indicated that the dynamics of β cell–reactive 
CD57+CD8+ TEM cell subsets were strongly linked (50). These results suggest that cytotoxic, CD57+CD8+ TEM 
cells may play a protective role during the early stages of T1D and in subjects who maintain higher C-peptide 
over time. However, they have not been identified in all subjects with high or maintained levels of C-peptide (26).
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Alternatively, the protective effect of  CD57+CD8+ T cells observed here and in previous trials could 
reflect the loss of  cytotoxic function in a subset of  terminal, cytotoxic CD57+ T cells. Increased expression 
of  inhibitory receptors, including iNKRs, concurrent with a reduction in activation markers like CD28 and 
HELIOS, as well as loss of  proliferative capacity, could be indicative of  the expansion or maintenance of  
a dysfunctional, exhausted-like CD57+CD8+ T cell subset in subjects with better outcomes in T1D. Our 
observation of  multiple phenotypically distinct CD57+ clusters by CyTOF analysis (Figure 3A) suggests 
that CD57 marks multiple functionally discrete cell types spanning a range of  functional ability and that 
cytotoxic function itself  may not be the protective mechanism at play in this and other trials.

The higher frequency of cluster 12 in nonresponders at baseline may suggest that a higher frequency of  
CD57+ exhausted-like CD8+ T cells is predictive of a negative outcome. Alternatively, the consistent frequency of  
cluster 12 in responders over time suggests that maintenance of a small terminal CD57+ population, as opposed 
to the depletion of it, may be beneficial to therapy response and outcome. A beneficial role for CD57+CD8+ T 
cells is also supported by the manual gating analysis of GZMB+ and CD57+ CD8+ T cells (Figure 2) that showed 
a slight increase in the frequencies of these populations over time in responders versus nonresponders.

Although it is not evident why nonresponders underwent depletion of  cluster 12 cells and responders 
did not, it is possible that these cells expressed higher levels of  CD2 in nonresponders than in responders, 
making the cells more prone to depletion by alefacept. The maintenance of  gated CD57+ and GZMB+ 
TEM cells in placebo-treated subjects (Figure 2) suggests that the reduction seen in these populations is spe-
cific to alefacept treatment as opposed to natural disease progression. Further experimentation is needed 
to clarify the phenotypic or functional differences that might have contributed to differential depletion of  
cluster 12 cells between response groups in this trial.

Recent studies have identified subtypes of TEX cells defined by their differentiation state and their prolif-
erative and functional abilities. Precursor exhausted cells retain their proliferative potential, whereas terminally 
exhausted cells have lost their ability to divide, as well as all functional capability. In addition to loss of function 
and proliferative capacity, the trajectory from a precursor to terminally exhausted state is characterized by 
changes in surface marker and transcription factor expression, including increased expression of PD-1 and 
decreased expression of activation receptors. The PD-1+ T cells defined here resemble the stem-like (51), pre-
cursor (52) or progenitor (53) exhausted cells identified by others, in that they are hypoproliferative and PD-1hi, 
but appear to retain some activation-associated functions. The CD57+ T cells defined here, however, do not 
clearly fall along previously described trajectories, as neither CD57 nor iKIRs are present in T or NK cells in 
mice (54), where much of the fundamental work on exhaustion has been done. The expression of cytotoxic 
markers by CD57+iKIR+ T cells may indicate that they represent a distinct lineage of exhausted-like cells.

PD-1/PD-L1 ligation inhibits TCR signaling by preferentially dephosphorylating CD28 (55, 56). The 
PD-1+ T cells in this study maintained a high level of  CD28 gene expression and, thus, would be expect-
ed to remain sensitive to inhibition by PD-1/PD-L1 signaling. In contrast, upregulation of  iKIRs on the 
CD57+CD28– cells could reflect an alternative, CD28-independent inhibitory mechanism. In other studies, 
upregulation of  NKRs, including iKIRs, was observed in CD8+ T cells following loss of  CD28, and these 
receptors were shown to provide a costimulatory signal to prolong CD8+ T cell survival and function (41). 
The CD57+ T cells described here could represent a terminally exhausted phenotype deriving directly from 
the PD-1+ T cells after they have lost CD28 expression. The functional consequences of  these CD57+, postex-
haustion cells on disease and outcome could be determined by the quality (i.e., inhibitory or activating) of  
NKR upregulation that occurs following loss of  CD28. Inhibitory KIR expression, as observed here, would 
contribute to an inhibitory and, thus, potentially protective immune state for autoimmune disease.

The reciprocal expression pattern of  PDCD1 and iKIRs in CD8+ T cells has been noted previously. 
Duraiswamy et al. (57) described the striking observation that KIRs and killer cell lectin–like receptor (KLRs) 
were completely downregulated on PD-1hi cells. Boelen et al. (58) discussed similarities between the iKIR-
HLA receptor-ligand system and the PD-1–programmed death ligand 1/2 system. Both iKIR and PD-1 are 
inhibitory receptors that block proximal TCR signaling and are upregulated in the context of  chronic viral 
infection and on tumor-infiltrating lymphocytes. Our results support these previous studies and extend them 
into the realm of  therapies for T1D — and perhaps other autoimmune diseases.

iKIRs can affect T cell responses indirectly through NK cells or directly via expression on CD8+ T cells (58). 
Recent evidence shows that functional engagement of iKIRs by their MHC ligands enhances clinical CD8+ T 
cell responses against HIV-1, HCV, and HTLV-1 viral infections (58). Other studies have shown a role for KIRs 
and IRs in EBV infections, such that in later stages of persistent infection, protective immunity to EBV may be 
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reduced due to the preferential accumulation of hyporesponsive EBV-specific CD8+ T cells (59). These findings 
are consistent with our demonstration of expanded EBV-specific TCRs in CD57+CD8+ T cells, although in auto-
immunity, hyporesponsiveness is clinically beneficial. It is important to note that our observations were made at 
the transcriptome level and that a fuller understanding of the functional implications of iKIRS in autoimmune 
disease progression will require additional experimentation with the protein products of these genes.

The statistical comparisons in this study were limited by small sample sizes, particularly in the analysis 
of  discretized response (responder/nonresponder) where only 6–9 subjects were available per group at 
posttreatment time points. Future studies would benefit from a larger sample size to confirm and further 
characterize the role of  exhausted or exhausted-like CD8+ T cells in T1D immunotherapy response.

Taken together, these studies support an association between IR-expression, hypoproliferative CD8+ 
T cells, and favorable outcome in T1D trials of immunomodulatory agents, although the mechanisms and 
molecular targets of initial immune perturbation differ with each agent used. This study also provides evidence 
that inhibitory NKR expression on hypoproliferative CD8+ T cells may be protective against the autoimmune 
response in T1D. Alefacept and other T1D therapies may therefore drive self-reactive T cells to a more exhaust-
ed state by promoting one or more differentiation pathway, thereby preventing further β cell destruction.

Methods
Study design and patients. T1DAL was a phase-2, randomized, placebo controlled, double-blind clinical trial 
conducted at 14 clinical centers in the United States with a 9-month treatment period and 15 months of  fol-
low-up. Eligible participants were 12–35 years of  age at the time of  screening; < 100 days from diagnosis at 
the time of  enrollment; positive for at least 1 diabetes-associated autoantibody (insulin, GAD-65, IA-2, ZnT8, 
or ICA); and had peak-stimulated C-peptide of  > 0.2 nmol/L during a mixed meal tolerance test (MMTT) 
(11, 15). All subjects gave informed consent prior to enrollment in the trial. Eligible subjects were randomly 
assigned 2:1 to alefacept (33 patients) or placebo (16 patients). Participants received 15 mg alefacept (Ame-
vive, Astellas) or equivalent volume of  saline (placebo) i.m. weekly for 12 weeks and, after a 12-week pause, 
12 additional weekly doses of  alefacept or placebo. Participants underwent a 4-hour MMTT at screening, 
at 52 weeks, and at 104 weeks; a 2-hour MMTT at 24 and 78 weeks; and intensive diabetes management 
throughout. Additional participant and outcome data from the T1DAL trial are available online at (https://
www.itntrialshare.org/T1DAL.url). PBMCs were collected from 30 alefacept-treated and 12 placebo-treated 
patients at weeks 0, 11, 24, 35, 52, 78, and 104 for flow cytometry and at weeks 0, 24, 35, 52, and 104 for 
RNA-seq and CyTOF (Figure 1A), followed by functional studies on selected samples. Responders were 
defined as participants that maintained or increased their baseline 4-hour C-peptide AUC (n = 9). Nonre-
sponders were defined as participants that had greater than 40% loss of  their 4-hour baseline C-peptide AUC 
values at 2 years (n = 9), consistent with prior ITN studies (15, 60).

Flow cytometry immunophenotyping. Flow cytometry analysis was run on 39 subjects (responders = 7, 
nonresponders = 9, partial responders = 11, and placebo = 12) from 7 visits (weeks 0, 11, 24, 35, 52, 78, 
and 104). Cryopreserved PBMCs from all subjects were thawed, incubated with FcX Block and stained 
with X-trial T and NK cell flow cytometry panels used in previously reported ITN studies (22, 43, 61) 
(Supplemental Table 3). Instrument standardization was performed using 8 peak rainbow calibration beads 
(Spherotech) adjusting photomultiplier tube (PMT) voltages for consistent seventh-peak mean fluorescence 
intensities. All samples from the same subject were run on the same day, and an internal control arm from 
the same subject was run each week. An average of  580,000 live lymphocyte events were collected per sam-
ple on a BD Fortessa using Diva software, and data were analyzed using FlowJo Mac Version 9.4 (Tree Star 
Inc). Gated populations with < 100 events were excluded from analysis.

T cell proliferation assay. Cryopreserved PBMCs from 4 alefacept-treated subjects at weeks 52 or 104 
were thawed and sorted into nonnaive (CD45RA–), PD-1+, and KLRG1+TIGIT+ nonnaive CD8+ T cells 
and labeled with cell trace violet (Thermo Fisher Scientific). The labeled cells were mixed back with unla-
beled autologous PBMC and stimulated in vitro with plate-bound anti-CD3 and anti-CD28 mAbs for 3 
days (Supplemental Table 5). Proliferation was measured by Ki67 expression within all CD8 populations. 
Representative plots for CD8 populations and the gating strategy for Ki67 are shown in Supplemental Fig-
ure 12. The staining panels for sorting and proliferation are shown in Supplemental Tables 4 and 5. Flow 
acquisition and analysis was performed as described above.

RNA-seq. Out of  33 alefacept-treated subjects, 3 were lost to follow-up by week 104. Samples from the 
remaining 30 treated subjects (weeks 0, 24, 35, 52, and 104) were analyzed by RNA-seq. Bulk CD8+ T cells 
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were FAC sorted and analyzed by RNA-seq as previously described (22). Low-quality libraries (median CV 
of coverage > 0.9, total reads < 5 million) were excluded, leaving 26 subjects with libraries available from 
downstream analysis (Supplemental Table 1). Counts were then normalized and log2 transformed, followed 
by batch correction using the limma R package (62). Five placebo subjects were included in the week 104 
RNA-seq analysis, and the 3 placebo samples that remained after quality control (QC) filtering were included 
in the WGCNA analysis to maximize the sample size for module detection. The top 5000 most variable genes 
(ranked by coefficient of  variation) were used to generate WGCNA modules using the blockwiseModules func-
tion from the WGCNA R package (34, 63). WGCNA was run with a soft thresholding power of  5, a signed 
network, a minimum module size of  50, and a clustering dendrogram cut height of  0.30. Module eigengenes 
were calculated using the moduleEigengenes function in the WGCNA R package (34, 63), and Pearson’s cor-
relation was calculated between these eigengenes and other parameters, including clinical outcomes, CyTOF 
marker levels, and CyTOF cluster frequencies. GO analysis was performed using the goana function in the 
limma R package (62). String-db (https://string-db.org/) was used to find connected gene networks, and 
Cytoscape was used for gene network visualization (64).

Sequences of  rearranged TCR chains, which include nontemplated nucleotides in the CDR3 junction, 
not present in the reference genome, were identified from genome-independent (de novo) assemblies of  
overlapping DNA segments (38, 65). Pilot spike-in experiments showed that rearranged TCRs could be reas-
sembled from high-abundance clonotypes in bulk RNA-seq T cell profiles, but not from monocyte profiles.

Mass cytometry (CyTOF) staining and analysis. Thawed cryopreserved PBMC were stained for viability using 
cisplatin (Enzo Life Sciences) prior to staining with a surface antibody cocktail (Supplemental Table 6). Samples 
were then washed, fixed using the Maxpar Nuclear Antigen Staining Buffer (Fluidigm), and stained with an 
intracellular mAb cocktail. Samples were stored with 125 nM MaxPar Intercalator-Ir (Fluidigm) in Fix and 
Perm Buffer (Fluidigm) at 4°C overnight or up to 1 week prior to acquisition. For acquisition, cells were resus-
pended (0.5 × 106/mL) in cold ultrapure water containing one-fifth EQ Four Element Calibration Beads (Flui-
digm) and were acquired at a rate of 300–500 events/second on a CyTOF1.5, with upgrades (Fluidigm) running 
CyTOF software version 6.0.626 and using a Super Sampler system (Victorian Airship & Scientific Apparatus). 
Files were converted to .FCS and then randomized and normalized for EQ bead intensity using the CyTOF 
software. FlowJo software (version 10.4) was used to manually gate and export FCS files of CD8+ T cells.

Gated CD8+ T cells were analyzed in R using the Cytofkit and flowCore packages (66). Events were 
down-sampled to include the same number of  events from each subject at each time point, and they were 
then combined for all downstream analyses. Intensity values were arcsinh-transformed with a cofactor of  
5 prior to analysis. Markers that were used for preliminary gating and those with a high CV were exclud-
ed from dimensionality reduction and clustering. The full set of  markers used to generate t-SNE plots 
and clusters was: CCR7, CD38, CXCR3, CD27, CD45RA, CD45RO, CD57, CD25, TIGIT, EOMES, 
T-BET, CD95, HELIOS, KLRG1, TIM3, PD-1, CD122, 24B, CD161, CD127, and NKG2D. Rpheno-
graph (67) was used to generate clusters from downsampled files.

Statistics. Longitudinal flow cytometry and RNA-seq data were analyzed by repeated-measures 1-way 
ANOVA. Group comparisons were made by comparing their least square means at each visit. Mann-Whitney 
U test was used for comparison between 2 distinct groups, and within-group comparisons were performed by 
Wilcoxon signed-rank test. C-peptide slopes were calculated by fitting a random effects linear model over all 
visits per subject as previously described (68).

Group comparisons of  C-peptide data at primary endpoint were analyzed by fitting an ANCOVA mod-
el with change from baseline as the outcome and baseline value as a covariate. FDR or Bonferroni correc-
tion were applied where appropriate to adjust for multiple comparisons for statistical tests. All comparisons 
required the level of  significance to be kept at α = 0.05 for 2-sided tests. SAS version 9.4 was used for all 
data analyses, and graphs were produced in R (https://www.R-project.org). Data sets for these analyses 
are accessible through TrialShare, a public website managed by the ITN (https://www.itntrialshare.org/
T1DAL.url), and the GEO Repository (accession GSE158292). Code and data files used in figures are 
deposited at GitHub (https://github.com/BenaroyaResearch/Diggins_Serti_Linsley_JCI_Insight_2020; 
commit ID 918a8972f9a87842a4385966491320a9f5afd184).

To determine correlations between gene expression and the frequency (percentage) of specific cell types iden-
tified by CyTOF, Pearson’s correlation values were calculated between blue module eigengene values and cell-type 
frequencies from Rphenograph. Student’s asymptotic 2-tailed t tests were then used to calculate the significance 
of the correlations. A P value less than 0.05 was considered significant. Data are presented as mean ± SEM.
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