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Abstract

Background

People with HIV infection in the United States are often affected by chronic viral hepatitis.

These coinfected people with either HBV or HCV are at increased risk for serious, life-threat-

ening complications. Coinfections with viral hepatitis may also complicate the delivery of

anti-retroviral therapy (ART) by escalating the risk of drug-related hepatoxicity. According to

the Centers for Disease Control and Prevention (CDC), approximately 10 percent of people

with HIV in the United States also have HBV, and 25 percent also have HCV coinfection.

With the advent of highly active antiretroviral therapy (HAART) and the increased life-expec-

tancy of HIV patients, clinicians are more likely to be confronted with issues related to co-

infection and the management challenges that they present, especially in resource-limited

settings. The purpose of this analysis was to identify geographical clusters of HIV- (HBV/

HCV) co-infection and compared to the geographical clusters of not co-infected using DC,

Department of Health surveillance data. The results of the analysis will be used to target

resources to areas at risk.

Methods

HIV and Hepatitis surveillance data were matched among cases diagnosed between 1980

and 2016. HIV-hepatitis co-infected and the not co-infected spatial clusters were detected

using discrete Poisson model. Kulldorff’s spatial scan statistic method was implemented in

the free software tool called SaTScan which has been widely adopted for detecting disease

cluster. The analysis was conducted by tracts, but for visualization, ease of interpretation

and assist in policy making the tract map was overlaid with the ward map using ArcGIS

10.5.1.

Results

Between 1980 and 2016, there were 12,965 diagnosed cases of HIV, of which 2,316 HIV/

Hepatitis matches were identified. Of the 2316 co-infected people living in DC, 25 percent

(N = 590) of people had HBV, and 75 percent (N = 1,726) had HCV. Out of 12,965
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diagnosed cases, remaining 10,649 did not have any co-infections (not co-infected). IDU

(27.16 percent) and MSM (32.86 percent) were the highest mode of transmission for co-

infected population. African-American were reported 83.64 percent (N = 1,937) among co-

infection population. Three clusters were identified for both co-infected population in DC.

The largest cluster radius for co-infected analysis covers wards 6, 7 and 8 as well as large

parts of 2 and 5 (p < 0.001). Multiple clusters were identified for not co-infected population (p

< 0.001). IDU (n = 450) was the highest mode of transmission for the co-infected clusters.

For all clusters combined of not co-infected population highest mode of transmission were

MSM (n = 2,534). This analysis also showed racial disparity, economic deprivation and lack

of education were prominent in the co-infected clusters.

Conclusion

We identified locations of high risk clusters where enhanced hepatitis and HIV prevention,

treatment, and care can help combat the epidemic. The clusters radius expands into the

neighboring state of Maryland as well. The findings from this analysis will be used to target

area based public health policy and healthcare interventions for HIV-hepatitis. It is recom-

mended based on the analysis that needle exchange programs can successfully control

new HIV infections as well as hepatitis co-infections.

Introduction

Viral Hepatitis is a medical condition characterized by inflammation of the liver triggered by a

virus. Hepatitis B (HBV) and Hepatitis C (HCV) infections are common among people who

are at risk for or living with, HIV. People may get infected with viral hepatitis the same way as

HIV—through sexual contact without a condom and sharing needles to inject drugs [1]. HIV

and hepatitis (B and C) share common transmission routes, which also include maternal and

perinatal[2]. According to the Centers for Disease Control and Prevention (CDC), approxi-

mately 10 percent of people with HIV in the United States also have HBV, and 25 percent also

have HCV coinfection.

Viral hepatitis causes liver-related health issues among people with HIV (co-infected) more

than among those who do not have HIV. Though treatment with antiretroviral therapy (ART)

has improved the health and extended the life expectancy of people with HIV, liver disease—

much of which is hepatitis related non-AIDS-related deaths is common in this population [1].

Coinfection with viral hepatitis may complicate the delivery of ART by escalating the risk of

drug-related hepatoxicity[3]. For these reasons, expert guidelines developed in the United

States and Europe recommend screening all HIV-infected persons for co-infection with hepa-

titis [3].

The estimated prevalence rate of HIV in District of Columbia (DC) being at 1.9 percent

exceeds the World Health Organizations definition of 1 percent for generalized epidemics [4].

District residents aged 40 years and over continue to be disproportionately impacted by HIV.

Approximately 3.7 percent of residents whose current age is 40 to 49 years and 5.2 percent of

residents aged 50 to 59 years living with HIV [4]. With the advent of highly active antiretrovi-

ral therapy (HAART) and the increased life-expectancy of HIV patients, clinicians are more

likely to be confronted with issues related to co-infection and the management challenges that

they present, especially in resource-limited settings [5]. Though HIV and hepatitis coinfections
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have been studied considerably, [6–9] there is a lack of studies that have identified spatial clus-

ters of co-infections in many parts of the United States that bear substantial co-infection bur-

dens such as DC. The majority of HIV studies have focused on the prevalence of morbidity or

premature mortality and often do not take into account the spatial dimension in disease or

risk factors of HIV to identify high-risk areas for public health intervention and healthcare

intervention programs.

Geographical Information Science (GIS), spatial epidemiological and statistical methods

offer a rigorous approach to detect clusters of disease, which can inform public health policy

and targeted interventions [10]. Spatial cluster analysis plays a significant part in public health.

It can assist in finding areas that have unusually high disease occurrence which in turn helps to

evaluate health care availability and health care operations [11]. Confirmed clusters are also

useful to define the areas that are in need of further investigation and potential intervention

[11]. Spatial cluster may be defined as a collection of neighboring entities that are more alike

to each other than to objects external to the cluster [12]. The purpose of the analysis was to

identify spatial clusters of HIV–(HBV/HCV) co-infection in District of Columbia (DC) and

compare them to the high-risk clusters of people who do not have any hepatitis co-infection

(not co-infected).

Data

HIV and hepatitis surveillance data were matched among cases diagnosed between 1980 and

2016. Between 1980 and 2016, there were 12,965 diagnosed cases of HIV, of which 2,316 HIV/

Hepatitis matches were identified. The record linkage was performed here in the surveillance

division of the HIV/AIDS, Hepatitis, STD, and TB Administration (HAHSTA), District of

Columbia Department of Health (DOH). The records were then aggregated by census tracts of

District into counts. Thus the data was de-identified in the process. For this analysis, HIV

cases were defined using the CDC 2014 revised classification system of HIV [13]. The outcome

variables were coded as ‘co-infected’ = 1 and ‘not co-infected’ = 0. An individual with HIV was

categorized as co-infected if he or she had been concomitantly infected with confirmed hepati-

tis case based on the CDC case definition [14–17] and currently residing in DC according to

the last laboratory report. The hepatitis B and hepatitis C co-infections were lumped together

for the analysis owing to their similarities in distribution thus avoids redundancy of analysis.

The characteristics of HIV-infected and co-infected individuals used in this analysis included

sex, age, race, mode of transmission and current HIV care status.

The geographic coordinates associated each case of infection was assigned using Maptitude

Geographic Information System software. Postbox numbers which comprised of a negligible

percentage of the cases were not included as they cannot be geocoded for the lack of physical

addresses. Cases diagnosed at the DC Detention centers were left out of the analysis as they

would lead to spatial bias in the analysis. For homeless cases addresses of the shelters would

also raise the issue of spatial bias were excluded from the analysis. The geocoded cases were

aggregated by census tracts. The shapefile of the census tracts and wards were obtained from

Office of Chief Technology Officer (OCTO), Government of District of Columbia. The data

was obtained from DC Hepatitis registry and Enhanced HIV/AIDS Reporting System

(EHARS) of HAHSTA within the DOH.

Methods

A map of HIV prevalence by census tracts was created for DC by using information on HIV

cases from 1980–2016 (S2 Fig). Descriptive analyses of the HIV and hepatitis were performed

in SPSS (IBM Inc., USA).
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Kulldorff’s spatial scan statistic method was implemented in the free software tool called SaTS-

can [18] which has been widely adopted for detecting disease cluster [19,20]. Kulldorff’s spatial

scan statistic method places a circular scanning window at each of the point locations within an

analysis area. At each of these point locations, the radius of the circle is varied from a size of zero

(i.e., covering only a single point) to 1 km radius. In this manner, the method generates a large

number of distinct circular windows, each including a different set of neighboring points for the

clustering test. The windows that have a significantly high concentration of events are considered

to be ‘spatial clusters.’ The null hypothesis of the Kulldorff’s spatial scan statistic states that the

event is randomly distributed in geographic space and that the expected event count is propor-

tional to the population at risk [11]. We used purely spatial discrete Poisson spatial analysis for

this analysis, and the details of the method and calculation are described in a series of papers [21–

25]. A significant p-value was considered to be<0.01. For the discrete Poisson analysis, a case

(co-infected and not co-infected) and a population (total population in each tract) file were cre-

ated with the tracts as the geographic unit. A coordinates file containing the latitude and longi-

tude at the centroid of each tract was used to define the locations in both analyses.

SaTScan lacks cartographic support for understanding the clusters in a geographic context.

Thus the results were exported into ArcGIS version 10.5.1 (Environmental Systems Research

Institute, Redlands, CA, USA) and mapped for visualization purposes. There are 179 US cen-

sus-defined tracts and eight wards in DC (S1 Fig). The analysis was conducted by tracts, but

for visualization, ease of interpretation and assist in policy making the tract map was overlaid

with the ward shapefile.

Results

Between 1980 and 2016, there were 12,965 diagnosed cases of HIV, of which 2316 HIV/Hepa-

titis (co-infected) matches were identified. Of the 2,316 co-infected people living in DC, 25

percent (N = 590) of people had HBV, and 75 percent (N = 1726) had HCV. Out of 12,965

diagnosed cases, remaining 10,649 did not have any co-infections (not co-infected). 26.51 per-

cent of the co-infected population were females, 72.19 percent were males, and 1.30 percent

were transgender. 84.64 (N = 1,937) percent of the diagnosed co-infected population were

African American followed by white who were 26.51 percent (N = 614). For not co-infected

population the percentages were similar with male (72.12 percent), females (26.12 percent)

and transgender (1.76 percent) (Table 1). The proportions of racial burden among co-infected

and not co-infected people in DC also showed comparable trends. Older population (50–59

and 60+) carried a significant burden of co-infections, for it was not co-infected population

(40–49 and 50–59). Men who have sex (MSM) (32.86 percent) and Injection Drug Users

(IDU) (27.16 percent) followed by heterosexual contact (23.36 percent) was the largest mode

of HIV transmission for the co-infected population. For non-infected population, MSM (46.76

percent) followed by heterosexual contact (28.58 percent) were the largest modes of transmis-

sion of HIV. Over the years diagnosis have increased particularly, with the implementation of

generalized testing efforts across the jurisdictions.

For retained in HIV care and viral suppression status co-infected, and not co-infected pop-

ulation showed comparable proportions (Table 2). Though ever virally suppressed among

coinfected population is 80.79 percent compared to 18.02 percent of not co-infected people.

The HIV care for both co-infected and not co-infected population did not register any differ-

ences based on this descriptive analysis.

Fig 1A and 1B shows the distribution of co-infected cases and not co-infected cases. The

co-infected population show the lowest aggregated cases in wards 2 and 3. The not co-infected

aggregated cases are higher in Central DC as well as in wards 7 and 8.

Detecting spatial clusters of HIV and hepatitis coinfections
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The HIV prevalence (per 10,000) in DC by was mapped (S2 Fig). The showed a higher prev-

alence of HIV infections in Central DC in Wards 1, spreading to wards 2, 5, 6 and some parts

of wards 7 and 8.

The distribution of hepatitis B (HEP B) and C (HEP C) was mapped (S3 Fig). The maps

showed similarity in distribution of co-infections. HEP B and C show similar trends in distri-

bution, with 8–14 number of cases as the comparable. As mentioned earlier in the methods

section, the similarity in distribution lead us to club the cases together instead of conducting a

separate cluster analysis.

The Poisson cluster analysis identified three spatial clusters (Fig 2A) for the co-infected

population. For co-infected cluster characteristics (Table 3), cluster 1 covers primarily large

parts of southern DC including tracts wards 6 and 7 and large parts of 5, 2 and 8 into Maryland

as well with an RR of 2.38 (p< 0.001) (Fig 2A). Cluster 2 located covering a single tract of DC,

at the border of ward 1 and 2 with an RR of 2.16 (p = 0.150). Cluster 3, located in ward 4

Table 1. Comparative characteristics of HIV and hepatitis B or C coinfected (n = 2316) and not co-infected (n = 10649) of individuals by sex, race, age, year of HIV

diagnosis and mode of transmission.

Co-Infected Population Not Co-Infected Population

Number Percent Number Percent

Gender

Female 614 26.51 2782 26.12

Male 1672 72.19 7680 72.12

Transgender 30 1.3 187 1.76

Race

White 230 9.93 2076 16.01

Black 1937 83.64 9671 74.59

Hispanic 97 4.19 884 6.82

Other 52 2.25 334 2.58

Age Group

> = 60 753 32.51 1515 14.23

13–19 0 0 60 0.56

20–24 7 0.3 324 3.04

25–29 45 1.94 863 8.1

30–39 234 10.1 2218 20.83

40–49 382 16.49 2581 24.24

50–59 894 38.6 3063 28.76

Pediatric 1 0.04 22 0.21

Year of Diagnosis

Years before 1996 546 23.58 1390 13.05

1997 to 2002 605 26.12 1959 18.4

2003 to 2015 1165 50.3 7300 68.55

Mode of Transmission

MSM 761 32.86 4980 46.76

IDU 629 27.16 743 6.98

MSM/IDU 140 6.04 277 2.6

Heterosexual contact 541 23.36 3044 28.58

Risk not identified 232 10.02 1471 13.81

Other 4 0.17 6 0.06

Perinatal 9 0.39 128 1.2

Total 2316 10649

https://doi.org/10.1371/journal.pone.0203674.t001
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showed a RR of 1.36 (p = 0.980). Hepatitis B (n = 330) coinfections were highest in cluster 1

followed by cluster 3 (n = 14), while hepatitis C co-infections were highest in cluster 1

(n = 1096) and cluster 3 (n = 36), which demonstrates similarities in their distribution

(Table 3).

The Poisson cluster analysis identified eight clusters (Fig 2B) for the not co-infected popula-

tion. For not co-infected cluster characteristics (Table 3), cluster 1 had the highest RR of

Table 2. Comparative characteristics of HIV and hepatitis B or C coinfected (n = 2316) and not co-infected (n = 10649) of individuals by care pattern.

Co-Infected Population Not Co-Infected Population

Number Percent Number Percent

Retained

No labs 730 31.52 3832 35.98

Retained 484 20.9 1919 18.02

Sporadic 1102 47.58 4898 45.99

In Care

No 730 31.52 3832 35.98

Yes 1586 68.48 6817 64.02

Virally Suppressed

Not Suppressed 203 8.77 918 8.62

Suppressed 1334 57.6 5706 53.58

Unknown 779 33.64 4025 37.8

Ever Virally Suppressed

Not Suppressed 416 17.96 3832 35.98

Suppressed 1871 80.79 1919 18.02

Unknown 29 1.25 4898 45.99

Total 2316 10649

https://doi.org/10.1371/journal.pone.0203674.t002

Fig 1. 1a and 1b. Distribution of co-infected and not co-infections cases in District of Columbia.

https://doi.org/10.1371/journal.pone.0203674.g001
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128.75 (p< 0.001) concentrated in a single census tract of central DC in ward 2. Cluster 3 adja-

cent to cluster 1 had an RR of 3.55 (p< 0.001) also covers single tract in central DC in ward 2.

The lowest RR 1.25 (p< 0.001) was calculated in cluster 6 in ward 1. All of the not co-infected

clusters have a p-value of less than 0.001 (Fig 2B). (Fig 2A and 2B about here).

Discussion

The largest co-infection cluster was located covering tracts of wards 1, 6 and parts of wards 2, 5

and 8 while not coinfected clusters were spread across the district with smaller radiuses. The

co-infected clusters showed higher numbers of IDU as modes of transmission compared to

Fig 2. 2a and 2b Discrete Poisson clusters of co-infected and not co-infected by tracts. (The numbers in the circles shows cluster number).

https://doi.org/10.1371/journal.pone.0203674.g002

Table 3. HIV-hepatitis B or C co-infection and not co-infected clusters with high rates identified by SaTScan discrete Poisson method, District of Columbia.

Co-Infection Clusters

Cluster numbers HIV Observed Cases Expected cases Relative Risk p value

Cluster 1 82 1508 1018 2.38 0

Cluster 2 80 28 13 2.16 0.15

Cluster 3 103 69 51 1.36 0.98

Not Co-Infected Clusters

Cluster 1 151 130 1 128.75 0

Cluster 2 104 1790 979 2 0

Cluster 3 158 275 79 3.55 0

Cluster 4 86 1490 1108 1.4 0

Cluster 5 88 506 365 1.41 0

Cluster 6 93 900 710 1.29 0

Cluster 7 88 158 103 1.55 0.001

Cluster 8 62 150 102 1.48 0.008

https://doi.org/10.1371/journal.pone.0203674.t003
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not-coinfected clusters. Though it is also interesting to note that in terms of distribution of

HEP B and C District of Columbia do not show any variation.

Though steadily decreasing yet injection drug users (IDU) accounts for 11.7 percent of the

living cases of HIV in the District [4]. HIV transmission through IDU disproportionately

affects women and African-Americans, and the problem is most common in DC’s most eco-

nomically disadvantaged areas [26]. It is evident from the analysis (Table 4) that among mode

of transmission, IDUs were highest in co-infection cluster 1 (n = 450) followed by MSM

(n = 386). Compared to not co-infected clusters where MSM (n = 2,534) and heterosexual con-

tact (HET) (n = 1,532) were primary modes of transmission for all clusters combined. District

of Columbia has a local funded needle exchange program which helps keeps new HIV infec-

tions low [27] but its impact on hepatitis remains unknown. Past studies have shown that nee-

dle exchange programs have also proven successful in preventing hepatitis infections in people

who inject drugs [28,29].

From the results, we also found that MSM bears the second largest burden of co-infections.

MSM and long-term partners of persons with chronic infection have been shown to be at

extraordinarily high risk for acquiring Hepatitis and HIV co-infection [30]. CDC funded 1509

program in DC provides comprehensive prevention, care, behavioral health, and social ser-

vices for MSM of color at risk for and living with HIV infection.

To understand the underlying etiology of the co-infected areas, it is important to recognize

the disparity in demographic and economic characteristics. It is also important to evaluate the

spatial disparity of socio-economic characteristic of co-infected people in order to prevent co-

infections and provide effective care. To gauge we selected four indicators of social-determi-

nants of health, black and white population, poverty and high school drop outs to characterize

the clusters also inform population based policies.

The percentage of black population is higher in the tracts that fall in the co-infected cluster

radius (Fig 3A). The co-infected tracts have more than 70 percent of population who are black

or African American while less than 5 percent of the population were white (Fig 3B) in clusters

1 and 3. Previous studies have shown that race plays an essential part in HIV-Hepatitis co-

infection risk [31]. Racial residential segregation leads to racial disparities in health outcomes,

clusters of HIV-Hepatitis co-infections were no different. African-American experience con-

siderably higher levels of residential segregation [32,33]. Despite the lack of supportive legal

statutes, the scale of residential segregation remains exceptionally high for mainly African

Americans in the United States [34]. Though DC has a higher percentage of African American

population, but the residential segregation calls for a change in policies that will have an overall

impact on the health of people living in areas of high co-infections.

Table 4. Cluster characteristics by modes of transmission and types of co-infections.

Co-Infected Clusters Not Co-Infected Clusters

Modes of Transmission Cluster 1 Cluster 2 Cluster 3 Total Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Total

MSM 386 1 13 400 76 648 218 708 215 539 36 94 2534

IDU 450 0 13 463 9 178 4 104 26 38 5 7 371

MSM/IDU 88 0 4 92 4 45 10 51 11 16 3 5 145

HET 363 0 15 378 22 629 14 394 175 196 82 20 1532

RNI 131 0 5 136 17 261 29 218 73 104 29 23 754

Types of HEP

HEP B 330 1 14 345

HEP C 1096 0 36 1132

https://doi.org/10.1371/journal.pone.0203674.t004
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More than 28 percent of the population lives below federal poverty level (FPL) in the tracts

that were located in the co-infected clusters (Fig 3B). Analyzing disease surveillance data

according to area-based poverty measures helps outline residents who are at increased risk for

a disease, a vital step toward recognizing these disparities and targeting prevention measures

[35]. Poverty not only impedes diagnosis but also reduces access to treatment [36,37] and the

impact HIV epidemic has been higher among the economically underprivileged in urban areas

[38].

School education have been one of the strongest predictors of health outcomes. In the past

research has shown compelling evidence which shows that education has an impact peoples’

earning, concurrently it is also being suggested that education wields the strongest impact on

health [39–41]. High school completion is a suitable measure of educational achievement since

its impact on health is well studied, and it is broadly known as the least entry condition for

higher education and well-paid employment [40]. The results from the analysis show that a

large number of tracts in the high-risk co-infected clusters have more than 10 percent who are

high school drop outs, while few tracts demonstrated more than 50 percent of the population

who are high school dropouts.

Fig 3. Percentage distribution of (a) black population, (b) white population in the tracts of District of Columbia, (c) people below federal poverty level (FPL) and (d)

high school dropouts in the tracts of District of Columbia based on American Community Survey (ACS) in coinfected clusters.

https://doi.org/10.1371/journal.pone.0203674.g003
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Economic and social conditions define the extent to which a person possesses the physical,

social and personal resources to identify and achieve health [42]. Examination of the spatial

patterns of HIV-Hepatitis co-infection could provide new understandings about the drivers of

transmission. This understanding is essential as hepatitis can be cured, but may be cost-pro-

hibitive which makes treatment inaccessible [43]. The inaccessibility may stem from various

factors such as racial residential segregation, poverty and lack of education as discussed in the

analysis. The results would probably provide direction to policymakers to ascertain the areas

for optimum prevention and intervention programs.

Apart from the disparity in few of the socio-economic variables mentioned in the analysis

another potential explanation of these geographic difference of the results could be attributed

to the absence of proper prevention funding and lack of active hepatitis surveillance. This

makes it difficult for the local health departments to provide care as well as monitor who need

hepatitis treatment even though the treatment is available. Though World Health Organization

(WHO) stresses expansion in the surveillance of Hepatitis and HIV is vital to aid outline the

epidemiology of coinfection and advise suitable strategies for testing, prevention, care and

treatment to those in need [44].

To summarize this analysis identified the areas of high HIV-Hepatitis co-infections in DC.

The clusters radius expands into the neighboring state of Maryland as well. As of 2016, 10 per-

cent of IDU based HIV infections who were diagnosed in DC have out-migrated [4]. It is

imperative to understand the burden of co-infection among these out-migrated population.

Based on reports published by the Office of Planning, Government of District of Columbia,

Maryland remains the top receiver of out-migration from DC[45]. Collaborative efforts

between the health departments can have a significant effect on the burden of coinfections in

the region. Further, HIV and hepatitis programs which will cater to Black MSM and IDU are

recommended for the high risk clusters.

Further to enhance prevention and reduce the risk of new co-infections it is important to

have active hepatitis surveillance which would help identify the epidemiology of the co-infec-

tion which in turn would further assist prevention and intervention strategies.

Conclusion

In conclusion, this analysis identified significant clusters of co-infection in tracts that can be

considered high risk because of underlying socioeconomic characteristics of the population.

The analysis is a significant contribution which has the potential to drive policies when hepati-

tis does not have any funding for active surveillance and the health departments are directed to

care for patients with medicines which are expensive. The results of this analysis would assist

the DOH to target interventions such as medical assistance, viral suppression measures as well

as suitable prevention methods.

Spatial cluster analysis functions as an essential instrument to outline infectious disease

clusters, which could be neglected by other statistical methods that ignore geographical dimen-

sions[46]. Also, adequate distribution of resources to these clusters can be considered as a

means to attain optimum benefit from any measures that can prevent the spread of hepatitis

infection among the high-risk population of HIV-infected individuals. The analysis is limited

by space and the time dimension that needs to studied as well, particularly concurrent with the

US drug approval timeline. DOH is currently conducting an analysis that uses impact of time

and prevention intervention strategies on the HIV and hepatitis in DC. Future research will

also focus on identifying risk factors that may be associated with clustering of HIV-HBV/HCV

coinfection in these tracts as well as adaptable factors that may help to prevent these infections.
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Supporting information

S1 Fig. The boundary map of district of columbia, delineating wards, neighborhoods and

census tracts. The blue lines demarcate 179 census tracts and the black lines show the 8 wards

of DC.

(TIF)

S2 Fig. HIV prevalence and prevalence in Wards, 2002–2016.

(TIF)

S3 Fig. Aggregated distribution of Hepatitis B and C distribution in the wards of DC. The

cases were aggregated by census tracts and overlaid with the ward map.

(TIF)
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