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Abstract

Background: The gastric pathogen Helicobacter pylori is extraordinary in its genetic diversity, the differences between
strains from well-separated human populations, and the range of diseases that infection promotes.

Principal Findings: Housekeeping gene sequences from H. pylori from residents of an Amerindian village in the Peruvian
Amazon, Shimaa, were related to, but not intermingled with, those from Asia. This suggests descent of Shimaa strains from
H. pylori that had infected the people who migrated from Asia into The Americas some 15,000+ years ago. In contrast,
European type sequences predominated in strains from Amerindian Lima shantytown residents, but with some 12%
Amerindian or East Asian-like admixture, which indicates displacement of ancestral purely Amerindian strains by those of
hybrid or European ancestry. The genome of one Shimaa village strain, Shi470, was sequenced completely. Its SNP pattern
was more Asian- than European-like genome-wide, indicating a purely Amerind ancestry. Among its unusual features were
two cagA virulence genes, each distinct from those known from elsewhere; and a novel allele of gene hp0519, whose
encoded protein is postulated to interact with host tissue. More generally, however, the Shi470 genome is similar in gene
content and organization to those of strains from industrialized countries.

Conclusions: Our data indicate that Shimaa village H. pylori descend from Asian strains brought to The Americas many
millennia ago; and that Amerind strains are less fit than, and were substantially displaced by, hybrid or European strains in
less isolated communities. Genome comparisons of H. pylori from Amerindian and other communities should help elucidate
evolutionary forces that have shaped pathogen populations in The Americas and worldwide.
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Introduction

The history of European conquests in The Americas illustrates

the potentially huge impact that contact between once-separate

human populations can have on public health if one population

has not experienced pathogens that are common in the other.

More than 80% of indigenous Amerindians died in the decades

after initial European contact from viral diseases such as smallpox,

measles and influenza that probably had been endemic in Europe

and Asia for millennia but absent from pre-Columbian Amerin-

dian populations [1–4]. We hypothesize that encounters between

invading Europeans and resident Amerindians also affected

populations of other less lethal pathogens. This view is tested

here with isolates of Helicobacter pylori, a genetically diverse bacterial

pathogen that chronically infects the stomachs of billions of people

worldwide. H. pylori infection is particularly common in developing

countries, and its modes of transmission and carriage differ

markedly from those of the viruses listed above [5,6].

H. pylori is implicated in stomach and duodenal ulcers and

gastric cancer, and also in iron deficiency anemia and increased

susceptibility to other gastrointestinal pathogens, although most

infections are asymptomatic [7–9]. In addition, it has been

suggested that some H. pylori infections are beneficial, helping

protect against illnesses such as esophageal reflux disease, cancer

of the cardia and esophagus, and tuberculosis [9,10], although this

idea is controversial [11]. The broad range of H. pylori infection
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outcomes is likely to stem from genetic differences among strains,

along with differences in genotypes, physiologies and environ-

ments of their human hosts.

Residents of developing countries tend to be infected repeatedly

throughout their lives with new H. pylori strains, often transmitted

from unrelated people and other households in the community.

Much of this inter-household transmission is likely to stem from

deficiencies in sanitary infrastructure that underlie the generally

high infectious disease burden among the very poor worldwide. In

contrast, new H. pylori infection has become much less common in

industrialized societies, and when it occurs at all, usually involves

transmission from adult to child within the same family [5,6,12–

14].

Analyses of representative housekeeping gene sequences have

shown that independent H. pylori isolates from most communities

are readily distinguished from one another; and that different sets

of genotypes predominate in strains from well separated human

populations, such as those of Western Europe, Eastern Asia and

Sub-Saharan Africa [15,16]. Much of this diversity can be

ascribed to high rates of mutation and inter-strain recombination

[17,18]. Also important are H. pylori’s preferentially local

transmission [5,6,12,13], and the isolation by distance of ancient

human populations [19] and thereby of the H. pylori they carry.

Localized transmission diminishes gene flow between separate

populations and thereby fosters divergence by random genetic

drift and adaptation to local conditions. The striking geographic

differences among H. pylori genotypes had initially suggested that

H. pylori DNA sequences be used to help elucidate human

ancestries and ancient migrations [20–22], although the thousands

of informative human DNA polymorphisms identified in recent

years now provide the principal markers for such ancestry studies

[23,24].

Latin American H. pylori strains provide an intriguing and

important exception to the usual correlation between human and

H. pylori ancestries. Early studies had identified insertion/deletion

motifs that distinguished European and Asian strains, and showed

that most strains from residents of a Lima (Peru) shantytown

contained the European, not the Asian, motif [25]. In confirma-

tion, the sequences of representative housekeeping genes also

indicated that shantytown strains were mostly European-like [26].

These findings were noteworthy because the shantytown residents

are predominantly Amerindian, the descendants of ancient people

who probably migrated into The Americas from Asia via a Bering

Straits land bridge some 15,000 or more years ago [23]. One

explanation for the unexpected predominance of European-type

sequences in shantytown H. pylori assumed that pre-Columbian

Amerindians were H. pylori-free [25]. An alternative model holds

that H. pylori were widespread among all ancient peoples, but that

Amerind strains were less fit than, and were displaced by those of

Europeans [27]. Support for this second model came from

occasional findings of Asian-like DNA sequences in some Latin

American strains [26,27; results presented below], although there

is a possibility that some Asian-like sequences derive from strains

of more recent East Asian immigrants (large numbers came to

Latin America starting in the mid-1800s) [28,29].

With this background, we analyzed H. pylori from residents of

the remote Peruvian Amazonian village of Shimaa. Here we show

that gene sequences of Shimaa strains fall into a unique

phylogenetic cluster, related to, but distinct from those from East

Asia; and report the finished genome sequence of a representative

Shimaa strain (Shi470). This is complemented by the recently

released genome sequence of a strain from a Venezuelan

Amerindian [30]. Analyses of H. pylori strains from remote and

urban communities should help elucidate evolutionary forces that

operated on pathogen populations in The Americas pre- and post-

conquest, and more generally, reveal how encounters between

long-separated human populations can affect microbial popula-

tions, genome evolution and human disease.

Results

Distinctiveness and genetic diversity of Shimaa strains
To obtain H. pylori likely to be of the purely Amerind type,

strains were cultured from gastric biopsies from 44 residents of

Shimaa, a 600-member village in the remote Peruvian Amazon.

Analyses of concatenated sequences from six housekeeping genes

placed each Shimaa strain in a discrete phylogenetic cluster,

related to, but not intermingled with, strains from Japan. In

contrast, the concatenated sequences from Peruvian shantytown

strains were mostly intermingled with those from Spanish strains

(Fig. 1A). The concatenated sequence data from individual strains

are detailed in a neighbor-joining tree in Fig. S1. Trees generated

using individual gene sequences (Figs. S2, S3, S4, S5, S6, S7)

revealed a hybrid ancestry in 12 of the 33 shantytown strains,

partly Amerind or Asian and partly European. On average ,12%

of alleles from shantytown strains seemed non-European (Figs S2,

S3, S4, S5, S6, S7). This implies gene transfer and recombination

between European and other lineages.

The distinctiveness of Shimaa strains is indicated quantitatively

by relatively high values for FST, the proportion of total genetic

variance in a subpopulation relative to total genetic variance [31]

(0.27–0.44) (Fig. 1B). This high FST indicates extensive genetic

divergence, attributable to geographic isolation and a lack of gene

flow between Shimaa and other populations. In contrast, a low

FST value was obtained in comparison of urban Peruvian vs.

Spanish strains (0.024), in accord with recent derivation of most

shantytown and Spanish strain sequences from the same ancestral

gene pool – i.e., the substantial displacement of Amerind by mostly

European strains in urban Peruvians, noted above.

Figs S2, S3, S4, S5, S6, S7 also show graphically that many

Shimaa strains contain identical or nearly identical alleles of any

given housekeeping gene, and that such identities are rare in H.

pylori strains from larger, less isolated communities. Low Shimaa

strain genetic diversity is further illustrated by median nucleotide

sequence divergence per site (Fig. 2): 1.3% among Shimaa strains,

vs. 1.8% among Japanese, and 3.2% and 3.9% in Spanish and

urban Peruvian strains, respectively. The low diversity of Shimaa

strains suggests a small effective population size (Ne) [31], which

could reflect relatively few founders, a low mutation rate, and/or

the village’s small size (only 600 people) and a resultant tendency

to lose individual lineages.

Colonization and virulence genes
PCR indicated that each of the 44 Shimaa strains contained an

s1 (potentially toxigenic) allele of the vacuolating cytotoxin (vacA)

gene and a cagA gene. DNA sequencing identified two main

clusters of alleles of the vacA middle region, the region that

determines cell type specificity of toxin action [32]: 29 ‘‘m1b’’ type

and 13 ‘‘m2’’ type; and also two ‘‘m1b/m2’’ recombinants (Fig. S8).

Also found by PCR in each strain were genes babA and sabA,

whose encoded proteins mediate adherence to the LewisB

(branched fucose) and sialylated glycan receptors, respectively;

and babB, which is babA-related but does not appear to mediate

adherence [33,34]. babC and sabB adhesin genes were not found in

any Shimaa strain, and hopZ, which is implicated in adherence to

cultured mammalian cells (receptor unknown) [35], was found in

just 18 of the 44 Shimaa strains, not in the other 26.

H. pylori from Peruvian Amerindians

PLoS ONE | www.plosone.org 2 November | Volume 5 | Issue 11 | e15076



PCR and DNA sequencing indicated that the Shimaa alleles of

gene hp0519 (also postulated to affect host tissue structure or

function [36]) differed markedly from those in other populations

(#72% and 86% amino acid and DNA sequence level identities,

respectively). The majority of base substitution differences were

non-synonymous (dN/dS = 19.6) (Fig. 3), which implies a history

of selection for changes in protein sequence. hp0519 belongs to a

multigene family whose encoded proteins are secreted and contain

motifs resembling those found in ‘‘Sel1’’ eukaryotic regulatory

proteins; the one family member examined to date, hcpA, was

found to help regulate host immune responses to infection [36–

38]. The ,280 codon hp0519 gene seems to have been fragmented

in the genome-sequenced Venezuelan Amerindian strain v225d

(genes hpv225_0514 and hpv225_0515, 94 and 59 codons,

respectively; Accession CP001582). Although hp0519’s biological

role is not known, the divergence seen in Shimaa strains is

reminiscent of that seen previously in Japanese strains (Fig. 3),

which had been ascribed to adaptive evolution in the once-isolated

Japanese island population [36]. Perhaps equivalent evolutionary

forces operated on hp0519 in isolated Amerindian populations.

Transposable elements
Five members of the 2 kb IS605 family have been found in H.

pylori populations (IS605 through ISHp609), generally at frequen-

cies that vary geographically [39–42]. PCR tests identified IS607

in 32 of the 44 Shimaa strains and ISHp608 in 13 of them (each of

which also contained IS607), but not the other three family

members. Two ISHp608 variants are known: type 1, which is

widespread in strains from Europe, Africa and South Asia; and

type 2, found previously only in strains from The Americas

(Peruvian shantytown, Alaska Native). ISHp608 seemed to be rare

in or absent from East Asian H. pylori populations [41]. The

Shimaa ISHp608 elements were type 2 (for sequence relationships,

Fig. S9), further indicating that this element is a useful marker for

Amerind H. pylori lineages. Also found in many Shimaa strains

were ‘‘plasticity zone’’ (‘‘TnPZ’’) transposons [43], some of whose

genes are virulence-associated in certain human populations

[44,45].

DNA transformation
Representative Shimaa strains were tested for transformability

with genomic DNAs from derivatives of strains 26695 and X47

that contained a cat (chloramphenicol resistance) gene in place of

the non-essential rdxA nitroreductase gene [46]. Only two Camr

transformant colonies were obtained from the five Shimaa strains

tested (one each from strains Shi18 and Shi216), whereas .5,000

transformants were obtained in parallel using control strain X47 as

a recipient. Furthermore no Shimaa strain transformants were

obtained using genomic DNAs from 26695 derivatives containing

cat in place of the ureA-ureB (urease) genes or an aphA (kanamycin

Figure 1. Genetic differentiation between H. pylori populations from Shimaa village, Japan, Spain and urban Peruvian shantytowns.
A. An UPGMA tree was reconstructed using pairwise FST comparisons. FST values were calculated using sequences in a concatenated dataset of six
housekeeping genes (,3.5 Kb), as detailed in neighbor joining trees of Figs. S1, S2, S3, S4, S5, S6, S7. Circle diameters are proportional to the
nucleotide diversity per site for each population. Bar scale = genetic distance measured in FST units. These analyses showed that Spanish, Japanese
and Shimaa populations have diverged extensively, which we ascribe to geographic distance and a lack of gene flow between H. pylori populations.
In contrast, no such extensive divergence between Spanish and urban (shantytown) Peruvian populations was detected; this is depicted with
overlapping circles. B. Pairwise FST comparisons between populations. A low FST value, signifying lack of genetic differentiation, was seen only in
Spanish vs. urban Peruvian strains. Asterisks indicate that all observed FST values were statistically significant, as determined by the permutation test
done with 1000 replicates; see Tables S1, S2, S3, S4, S5, S6, S7, S8, S9 for details).
doi:10.1371/journal.pone.0015076.g001

H. pylori from Peruvian Amerindians
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resistance) gene in place of the rdxA-related frxA gene. Electropo-

ration, which bypasses the need for early steps in competence was

also attempted, with no better success. Analysis of Shi470’s

genome sequence (below) indicated that this strain contains all

genes known to be needed for DNA transformation (Table S1)

[47]. PCR tests of the few recovered transformants showed

replacement of the resident intact rdxA gene by the DrdxA-cat allele,

indicating homologous recombination, not cat insertion into an

ectopic site.

We also tested if Shimaa strains could be transformed more

efficiently with DNAs from closely related strains. First, genomic

DNA from the Shi18 DrdxA-cat strain described above yielded

,10,000 Camr transformants of its isogenic wild type parent and

60 Camr transformants of the distinct Shimaa village strain

Shi470. Second, genomic DNA from a Shi470 DrdxA-cat

transformant yielded ,10,000 new Camr transformants of its

isogenic wild type parent (vs. only ,60 obtained using DNA from

strain Shi18 DrdxA-cat). In another test, Shi470 was transformed

efficiently with genomic DNA from a streptomycin resistant (rpsL-

point mutant) derivative of strain 26695; ,1,000 Strr transfor-

mants were obtained. This high Strr yield may reflect a need for

only small patches of donor DNA (,100 bp) for point mutant

allele transformation.

Thirty-one putative restriction modification systems were iden-

tified in the Shi470 genome sequence (see below), usually by specific

methylase signatures, in accord with the great abundance of such

gene clusters in other H. pylori strains (http://tools.neb.com/

,vincze/genomes/). Some restriction-modification genes are

strain-specific, and so these results suggest that restriction-

modification systems of Shimaa strains could be functionally distinct

from those of foreign strains, and could interfere with acquisition of

gene sized DNA segments from them [48]. Alternatively, Shimaa

strains might possess an aggressive DNA mismatch repair system

that destroys incipient transformants made with divergent DNAs,

much as is seen in Salmonella-E. coli crosses [49].

Shimaa strain genome sequence
The features of Shimaa vs. Lima shantytown H. pylori described

above suggested that European or hybrid (European-Amerindian,

-Asian) strains were more fit than ancestral Amerindian strains.

Given that multiple H. pylori strains from ethnic Europeans have

been genome-sequenced, we elected to sequence the genome of a

representative Shimaa village strain, Shi470, thereby to better

evaluate the basis of fitness differences among strains and also gain

more general insights into H. pylori genome evolution. Shi470 was

cultured from an antrum biopsy of a 24-year old female with

moderate chronic gastritis, mild to moderate glandular atrophy,

and no detected intestinal metaplasia (Fig. S10). It was sequenced

using 454 FLX technology, resulting in average read lengths of

276 bp, 71-fold coverage, and 50 large (.500 bp) contigs

(Table 1). All contigs were connected and gaps filled (Materials

and Methods). The Shi470 genome sequence was deposited in the

NCBI database, annotated by NCBI pipeline staff (Accession

CP001072), and released in May 2008.

The Shi470 genome is plasmid-free and consists of a single

circular chromosome, 1,608 kb in length (Fig. 4, Table 2). It is

similar to other fully sequenced H. pylori chromosomes in size

(range = 1,569 kb–1,678 kb; see Fig. 5 legend), G+C content, and

GC skew. Like many strains, it contains three clusters of Type IV

secretion genes: one in the cag pathogenicity island (cag PAI),

needed to deliver the CagA virulence protein and proinflamma-

tory peptidoglycan fragments to host tissues [51,52]; a second

needed for DNA transformation [47]; and a third in the TnPZ

transposon that is postulated to mediate DNA transfer during

conjugation and/or delivery of effector proteins to host tissues

[43]. Blastn and Blastx analyses identified only ,3 kb that were

present in the each of the other eight genomes that had been fully

sequenced and released by May 2010 but that were absent from

Shi470. Conversely only ,5 kb (13 orfs) in Shi470 were absent

from each of these other strains. These results imply that Amerind

H. pylori have not undergone massive gene loss.

Figure 2. Differences among H. pylori populations in sequence diversity. The nucleotide (Nt) diversity per site (with Jukes-Cantor correction)
was calculated for the six housekeeping genes (Fig. 1) and also for hp0519 (Fig. 3), and is presented as a Box and Whisker plot for each population,
showing the minimum, maximum, median and first and third quartiles. P-values were calculated using the T-test with 2-tails, assuming two samples
with unequal variances.
doi:10.1371/journal.pone.0015076.g002
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PLoS ONE | www.plosone.org 4 November | Volume 5 | Issue 11 | e15076



BlastN, BlastX analyses of sequential 1 kb segments and

neighbor joining phylogenetic tree construction also showed that

nearly all of the Shi470 genome is more closely related to

corresponding segments of Venezuelan Amazonian strain v225d

and/or Korean strain genomes (51, 52) than to those of European

strains (Only two 1 kb segments clustered more closely in neighbor

Figure 3. Neighbor joining phylogenetic tree of DNA sequences of gene hp0519. The full hp0519 length (831 bp for most Shimaa strains)
was used for each strain included in this tree. This tree shows massive separation of Shimaa hp0519 alleles from those from elsewhere. The
distinctiveness of Japanese alleles relative to Korean and European alleles had been documented previously [36]. The origins of H. pylori strains are
coded by color and first letters of strain names: Shimaa, green (Shi); Japan, red (J); Korea, pink (K); Spain, blue (S); Peruvian shantytown, black (P).
Genome sequenced reference strains from ethnic Europeans are indicated with unfilled circles (B38, P12, HpAG1, G27, 26695, J99). Bar scale indicates
0.02 nucleotide substitutions per site.
doi:10.1371/journal.pone.0015076.g003

H. pylori from Peruvian Amerindians
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joining trees with corresponding segments from any fully

sequenced European strain than with v225d or 51 or 52; data

not shown). Thus, we conclude that there has been little if any

admixture of European type sequences in the Shi470 genome,

despite occasional contacts between Shimaa villagers and people

from elsewhere (e.g., health ministry personnel) – that the Shi470

genome is predominantly or entirely of the Amerind lineage.

Similarly, we found that nearly all of the Venezuelan Amazonian

strain v225d genome was more closely related to corresponding

segments in Shi470 and/or Korean than European strain

genomes.

Chromosome alignment showed a generally good conservation

of overall gene order among H. pylori strains, although each

individual strain could be distinguished from the others by a few

small insertion/deletions (indels), and/or one or two larger

rearrangements (Fig. 5). Most indels correspond to insertion

sequences, restriction-modification genes and/or duplicate outer

membrane protein genes or other repetitive DNAs. The most

common major chromosome rearrangement involves a segment of

some 450 kb in Shi470 that contains the terminus of chromosome

replication, the cag PAI and this strain’s TnPZ transposon. This

segment is in the same orientation in three other strains (51 and 52

from Korea, B38 from France) and in the opposite orientation in

six others including Venezuelan strain v225d (Fig. 5). Genome

comparisons identified inverted repeats of 108/111 bp at the ends

of this segment in Shi470, recombination in which would invert

the segment relative to the rest of the chromosome. A further PCR

test, however, indicated that this segment is in the same orientation

in each of the 44 Shimaa strains, which implies that inversion is

infrequent in this population.

Shi470’s cagPAI
Shi470 contains a full set of cag pathogenicity island (PAI) genes

with ,95% average protein level identity (98% similarity) to those

Table 1. Shi470 genome sequencing raw statistics.

Parameter Value

Average length of reads 276 bp

Coverage 71x

Number of contigs 65

Number of large contigs* 50

Number of bases 1,590,229 bp

Large contig bases 1,585,841 bp

Average size of large contigs 79,742 bp

*: a ‘‘large’’ contig is $500 bp long.
doi:10.1371/journal.pone.0015076.t001

Figure 4. Organization of H. pylori strain Shi470 genome. The tracks from outside in represent: 1. Forward CDS (pink); 2. Reverse CDS (yellow);
3. rRNA (dark green); 4. tRNA (black); 5. Mobile elements: cag pathogenicity island (red bar), TnPZ plasticity zone transposon (green bar), mini IS605
(green), and mini IS606 (blue); 6. %GC plot (below and above average regions); and 7. GC skew [(GC)/(G+C)]. The locations of the replication origin (nt
position 0) and terminus (dif site [50], near nt position ,668325) are circled. The circular map was drawn using DNAPLOTTER (www.Sanger.ac.uk).
doi:10.1371/journal.pone.0015076.g004

H. pylori from Peruvian Amerindians
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Figure 5. Comparison of chromosomal gene content and gene order in Shi470 and other sequenced H. pylori genomes. Complete
chromosomal sequences of all H. pylori strains available in public databases by June 15, 2010 are compared using the Genome Alignment
Visualization program (MAUVE; http://asap.ahabs.wisc.edu/mauve/). These strains, origins and genome accession numbers are: SHI470, Amerindian
Shimaa villager, Peruvian Amazon, NC_010698; B38, France, NC_012973; 51, Korea CP000012.1; 52, Korea, CP001680.1; v225d, Amerindian, Piaroa,
Venezuelan Amazon, CP001582; P12, Germany, NC_011498; J99, ethnic European, Tennessee USA, NC_000921; G27, Italy, NC_011333; HPAG1,
Sweden, NC_008086; 26695, United Kingdom, NC_000915. Each horizontal panel contains a scale of strain genome sequence coordinates in base
pairs, a series of colored blocks designating chromosome segments that aligned without internal rearrangement to segments in other strain
chromosomes (connected by lines), and the strain designation. The relative orientations of DNA segments in the various strains are indicated by their
positions above or below the genome center lines. Regions shown in white lack detectable homology among input chromosomes. The
chromosomes of these ten strains show similar homology patterns, although with some rearrangements. The most prominent rearrangement
involves a segment centered on the terminus of chromosome replication [50] that is in one orientation in Shi470 and three other strains, and in the
reverse orientation in the other six strains. This segment is 450 kb long in Shi470, with endpoints likely to be in 108/111 bp inverted repeats between
Shi470 nucleotide coordinates 465337–465447 and 915692–915582.
doi:10.1371/journal.pone.0015076.g005

H. pylori from Peruvian Amerindians
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in reference strain cag PAIs, and also a second copy of a 4 kb, cagA

and cagB-containing fragment inserted within the cag PAI (between

cag14 and cag15) (Fig. 6). PCR with flanking primers indicated that

14 of the other 43 Shimaa strains also contained this insertion; an

equivalent cagA-cagB segment insertion was found in Venezuelan

strain v225d [30]. Thus, this duplication/insertion may be

widespread in Amazonian Amerindian strains, but it is not

universal.

The proteins encoded by Shi470’s two cagA genes differ

markedly from one another (83% identity in 1059 shared

positions) although they are more closely related to each other

than to CagA proteins from other H. pylori strains. Of particular

note are their tyrosine phosphorylation motifs (glutamic acid,

proline, isoleucine, tyrosine, alanine; ‘‘EPIYA’’), designated ‘‘A’’,

‘‘B’’ and ‘‘C’’ or ‘‘D’’ in prototype CagA proteins based on

flanking amino acid sequences, and also the nearby ‘‘dimeriza-

tion’’ or ‘‘CRPIA’’ (‘‘conserved repeat responsible for phosphor-

ylation-independent activity’’) motifs [53–56]. These various

motifs interact with different constellations of cellular regulatory

proteins, which, in turn, affect several competing regulatory

subcircuits and epithelial tissue parameters. Shi470’s normally

placed cagA gene (hpsh_04145) encodes potentially functional A-

like, degenerate B-like, and chimaeric D/C-like motifs, whereas

the duplicate and transposed cagA (hpsh_04215) gene’s product

lacks A and B motifs, and contains two EPIYA motifs that each

seem C-like although distinct from one another (Fig. 7). The two

Shi470 CagA proteins also differ from prototype CagA proteins in

their CRPIA motifs.

A direct repeat of 31 bp flanks the cag PAI in most cag+ strains,

is present once at the ‘‘empty site’’ in strains that lack the PAI, and

may serve as a recombination substrate for cag PAI insertion or

excision. In Shi470, the cag PAI left end’s repeat is replaced by a

110 bp remnant of IS606. This same replacement was also found

in each of the other 43 Shimaa strains, which implies that the cag

PAI should be stably maintained (not readily excised) in this

population. Interestingly, all Shimaa strains contained motifs at

the right end of the cag PAI of the type previously designated ‘‘III’’,

a type previously found to be abundant only in Indian H. pylori

strains [25].

Shi470’s vacuolating cytotoxin (vacA) gene (1287 codons) is of

the s1 m1 type, and most closely related to vacA of Venezuelan

strain v225d, but diverges markedly from it near the site at which

mature VacA protein is cleaved from the C terminal autotran-

sporter segment (Shi470 residues 830–863) [32]. The generality of

this divergence and its functional importance, if any, have not yet

been tested.

OMP families
Shi470 resembles other H. pylori strains in its large repertoire of

outer membrane protein (omp) genes (Table S2). Prominent among

them are the adhesin genes babA and sabA, which are specific for

the LewisB (branched fucose) and inflammation-associated sialyl

LewisX glycan receptors, respectively [33,34]; and other genes

also implicated in adherence to various target cells and tissues

(although by as yet unknown mechanisms) (hopZ, alpA, alpB, oipA

and horB) (Table S2). However, sabA and hopZ, and also fecA2 and

frpB3, which encode outer membrane proteins that contribute to

uptake of iron or other essential metals, are pseudogenes in Shi470

– due, in each case, to nonsense or frameshift mutations. Missing

from Shi470’s repertoire are the adhesin-related babC and sabB

genes, and homA, a member of the hom outer membrane protein

gene family that is associated with benign infection in some

populations [57].

Remnant and vestigial IS elements
An IS606 remnant (1376 bp of the ,1967 bp element; lacking

orfA transposase gene) occurs in Shi470 between the ftsZ gene

(hpsh_05170, cell division) and an ion channel gene (hpsh_05200).

This same remnant was found by PCR in 32 of the other 43

Shimaa village strains (and also in Venezuelan Amerindian strain

v225d), in each case at the same location. In addition, six and eight

copies of mini-IS606 and mini-IS605, respectively, were found in

the Shi470 genome – each containing some 100–150 bp from

each end of the corresponding ,2 kb full length elements (Fig.

S11). The left end of each element was next to chromosomal

sequences matching inferred target sites for insertion of full-length

counterparts: 59TTTAA or 59TTTAAA for IS605, and 59TTAT

for IS606 [39]. Each mini-IS element differed from others in the

same group by some 10–20% in sequence, due to base substitution

and small insertion/deletion mutation differences (Fig. S10). It is

not known if any of these mini-IS elements have significant

functional roles, e.g., through effects on expression of other

chromosomal genes.

Metronidazole (Mtz) resistance
Shi470 is Mtz resistant (forms colonies on agar with 32 mg Mtz/

ml, in contrast to only ,1-2 mg Mtz/ml for susceptible strains)

[46]. Its rdxA (hpsh_05025) and frxA (hpsh_03650) nitroreductase

genes, which are responsible for conversion of Mtz from prodrug

to bactericidal agent, each contained null mutations, as is typical of

Mtzr strains [46]. Twenty of 39 other Shimaa village strains tested

also were resistant to at least 16 mg Mtz/ml, and half of them

contained nonsense, frameshift or deletion (null) rdxA gene

mutations; other cases of resistance were likely due to missense

mutations in these genes. The frequent occurrence of resistance to

Mtz in Shimaa strains may reflect sporadic provision of this drug

to villagers by the Peruvian Health Ministry for use against

parasitic infections and other illnesses.

Discussion

The Asian-related sequences of Shimaa village H. pylori (Fig. 1;

Figs S1, S2, S3, S4, S5, S6, S7) suggest that these bacteria descend

from strains of the ancestral Amerindians who migrated into The

Americas some 15,000 or more years ago. Although residents of

Lima shantytowns are also of predominantly Amerindian ancestry

their H. pylori strains seem mostly European, with some Amerind

and/or Asian admixture. This suggests displacement of original

Table 2. General features of Shi470 genome sequence.

Feature Value

Genome size (bp) 1,608,548

G+C content 38%

% coding 88%

Genes 1648

Protein coding 1569

Structural RNAs 42

23S-5S rRNA units 2

vacA s1b, m1b

Genomic islands cag PAI, TnPZ

IS elements remnant IS606, miniIS605, miniIS606

Plasmids none

doi:10.1371/journal.pone.0015076.t002
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Amerind type strains by predominantly European or hybrid

strains, presumably because they were more fit. Displacement of

ancestral Amerind strain types was also invoked to explain similar

results from studies of H. pylori from Venezuela and Colombia

[30].

Just a few alleles of any given gene predominated among

Shimaa H. pylori strains. This contrasts with the rarity of identical

alleles in independent isolates from most other populations

(illustrated in Fig. S2, S3, S4, S5, S6, S7, S8, S9) [15,16]. The

Shimaa strains’ low genetic diversity can be ascribed to (i) descent

from small numbers of ancestral H. pylori lineages, due in turn to

the relatively few people who migrated to Beringia and ultimately

into The Amazon long ago [23]; (ii) the small size and remoteness

of Shimaa village; and (iii) conditions that facilitate H. pylori

transmission between households and sporadic loss (replacement)

of individual strains [5,6,12,13].

It is with this background that we sequenced the genome of

Shimaa village strain Shi470. Our analyses indicate that it is quite

purely Amerindian, that all but possibly a few kb of its 1.6 mb

genome are more closely related to corresponding sequences in the

genomes of the other available Amerindian strain genome (v225d)

and/or the two Korean strains (51, 52) than to those of strains

from ethnic Europeans. We conclude that Shi470, and also the

Venezuelan Amazonian strain v225d, are of the ancient Amerind

lineage, and anticipate that their two genome sequences should be

a valuable resource for further analyses of H. pylori genome

evolution in Native peoples of The Americas. More generally, all

sequenced H. pylori genomes seem similar in their content of

conserved and strain-specific genes (Fig. 5). This indicates that

perceived lower fitness of Amerind strains is not likely to be due to

wholesale gene loss during the millennia that they were isolated

from those of Eurasia and Africa. Shi470 contains the two most

prominent DNA segments found to be strain-specific, to be

missing from significant numbers of strains in at least some

populations: (i) the disease-associated cag pathogenicity island

[53,54]; and (ii) a TnPZ (plasticity zone) transposon, some of

whose genes also have been implicated in virulence [44,45]. Also

prominent in Shi470 is a 450 kb segment that contains the

terminus of chromosome replication and that is likely to be

invertible: this segment is in Shi470’s orientation in three other

genome-sequenced strains, and in the opposite orientation in six

others, including Amerind strain v225d. Inverted repeats of

,100–200 bp at this segment’s endpoints suggest that inversion

could occur by RecA-mediated homologous recombination, but

the uniformity of this segment’s orientation among Shimaa strains

suggests that inversion is rare, at least in this population.

Multiple genetic determinants are each likely to contribute to

the apparent difference in fitness between Amerind and European

or hybrid strains, as is the case with many quantitative traits in

diverse organisms [58]. Among likely contributors are genes whose

products interact directly with host cells. In particular, Shi470’s

two CagA proteins are unusual in their sets of EPIYA tyrosine

phosphorylation and CRPIA motifs, which likely affect cytoskel-

etal and tissue structure, the induction of proliferative and

proinflammatory responses, and the potency of H. pylori’s VacA

cytotoxin (and thereby, potentially VacA-regulated traits such as

tissue leakiness, apoptosis, and immune responses) [32,59–61].

This possibility has also been discussed in studies of Amerindian

strain v225d [30]. Far less is known about hp0519, a member of a

multigene family whose encoded and secreted proteins contain

Figure 6. Gene duplication and translocation in Shi470 cag PAI. Shi470’s cag PAI is similar to that of other H. pylori strains (here represented
by 26695), except for a second copy of a segment containing a divergent cagA gene (hpsh_04215), cagB and part of cag25 inserted between cag14
(hpsh_04240) and cag15 (hpsh_04210). The alleles of these cagA genes (hpsh_04145, normal location; hpsh_04215, transplaced copy) are more closely
related to one another (81% and 83% protein level identities) than either is to cagA of strains from elsewhere (e.g, 79% and 77% protein level
identities of hpsh_04145 to cagA of Japanese strains, and European reference strain 26695. Similarly, the transplaced cagA gene hpsh_04215 exhibits
71% and 68% protein level identities with cagA of representative Japanese strains and 26695. In contrast, the cagB alleles (hpsh_4150, hpsh_4225)
exhibit 100% protein and 99% DNA level identities to each other. The NCBI pipeline had annotated five additional CDS in the Shi470 cag PAI (in black,
hpsh_04220, hpsh_4235, hpsh_4245, hpsh_4250 and hpsh_4290 with sizes of 32, 31, 60, 45 and 44 codons). Each has DNA level homology with
sequences that were considered to be intergenic regions in other strains. The DNA sequences of two (hpsh_04235 and hpsh_04250) are well matched
to sequences found in Japanese cag PAIs, whereas those of the others are matched to sequences found in cag PAIs in strains from around the world.
doi:10.1371/journal.pone.0015076.g006
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motifs characteristic of the Sel1 family of eukaryotic regulatory

proteins. However, Shimaa strain hp0519 alleles are also highly

divergent from those of other populations, with most DNA

sequence differences affecting the encoded protein’s amino acid

sequence (dN/dS = 19.6) (Fig. 6). This is reminiscent of the

intense selection for amino acid change seen previously in alleles

from the Japanese islands, and which was ascribed to selection for

adaptation to local conditions [34]. Future studies will test if

Hp0519 protein, like at least one other Sel1-like family protein

(HcpA [37]), interacts with a host component during infection;

and also if the strength or specificity of this interaction is affected

by sequences that distinguish the Shimaa Hp0519 proteins from

those of other populations.

One formal explanation for the proposed substantial displace-

ment of Amerind by European or hybrid strains invokes

differences in direct competitive ability. For example, Amerind

strains might have lost vigor due to genetic drift (chance mutation,

fortuitous fixation of deleterious alleles) during migrations of small

founder populations from Asia into Beringia and ultimately into

the Americas [23]. Or, less vigorous strains might have been less

debilitating to their hosts during their migrations or residence in

harsh (e.g. Arctic) environments; those that least impaired human

survival would have enjoyed the best chances of transmission from

adults to their infants, and thus persistence in these small human

populations. In accord with these lower in vivo fitness explana-

tions, Shimaa village strains grew more slowly than most

shantytown isolates under our standard in vitro culture conditions

(BHI blood agar; microaerobic atmosphere). In either explanation,

the apparently low efficiency of transformation of Shimaa strains

with DNAs from unrelated strains might reflect a relative inability

to acquire foreign (e.g., European) DNA during human infection,

which, in turn, might make Amerindian strains less able than

European strains to adapt to variable host conditions, and thus less

fit. This scenario would explain why European type sequences

predominate in most strains from Lima shantytown residents. A

third explanation emerges from the idea [9,10], although

controversial [11], that some H. pylori infections may be beneficial;

indications that H. pylori infection can affect innate immune

responses [62,63]; and at least partial protection by innate

immune mechanisms against many viral infections [64,65]. We

can imagine that the types of innate immune responses stimulated

by European or hybrid strains contributed more effectively than

Figure 7. Host factor interaction motifs near C termini of Shi470 CagA proteins. A. Alignments of regions containing EPIYA (tyrosine
phosphorylation) and CRPIA (conserved repeat responsible for phosphorylation independent activity) motifs in Shi470’s two CagA proteins [products
of hpsh_04145 (normal position) and hpsh_04215 (transplaced)]. Sequences from Shi470 proteins are compared with those of the most common
prototype European and East Asian ‘‘A’’, ‘‘B’’, ‘‘C’’ and ‘‘D’’ EPIYA motifs described in [53]. B. The CRPIA motif sequences shown are from the following
sources: 1) The only CRPIA motif in hpsh_04145 and the second of the two CRPIA motifs in hpsh_04215; 2) The first of the two CRPIA motifs in
hpsh_04215; 3) Generic Western and East Asian motifs, as described [55,56]. Black and orange, amino acid identity and divergence in Shi470 vs. most
common Western or East Asian motifs, respectively. Segments designated motifs A, B and D/C are contiguous in CagA protein HPSH_04145. Similarly,
segments designated C* and C** are contiguous in CagA protein HPSH_04215.
doi:10.1371/journal.pone.0015076.g007
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did the responses elicited by purely Amerind type strains to human

survival – variously during the new epidemics that accompanied

the European conquest, or in modern urban shantytowns.

In conclusion, the characteristics of Amerind strains from the

remote Amazonian village, Shimaa, suggest descent from strains

carried to the Americas by ancestral Amerindians many thousands

of years ago, and substantial displacement by strains of European

or hybrid ancestry. The distinctive features we found in

Amerindian strain Shi470 include novel alleles of the cagA

virulence gene and hp0519, genes that may each affect bacterial-

host interactions. Hypotheses for the displacement of Amerind by

European strains that merit testing include differences in fitness

per se, vs. selection for H. pylori genotypes that contribute to

human host survival, variously during ancestral migrations, during

the colonial period or in modern shantytowns.

Materials and Methods

Ethics Statement
Forty-four H. pylori strains studied here were cultured in May

2006 from gastric biopsy specimens from residents of the village of

Shimaa in the remote Peruvian Amazon who were symptomatic

and had accepted an offer of diagnostic endoscopy, as also

described in ref. [43]. Endoscopy was preceded by explanations

and discussions of the procedure, risks and anticipated uses of the

biopsies – first with the village chief, and then with villagers. These

discussions and explanations were carried out in Spanish, and also

in the native Machiguenga language of this village, with the aid of

a Spanish-Machiguenga interpreter, and in the presence of their

trusted physician (in residence for two years) from the Peruvian

Ministry of Health. Strains from Lima region shanty towns (San

Juan de Miraflores and Puente Piedra) were similarly cultured

from gastric biopsies, also obtained after equivalent discussions in

Spanish. All endoscopies were performed with informed consent

(written or verbal, depending on participant’s literacy) for bacterial

culture and genetic analyses, as described here, under protocols

approved by the Human Studies Committees of Johns Hopkins

University (Baltimore, MD, USA), of AB Prisma and of

Universidad Peruana Cayetano Heredia (Lima, Peru). These

three institutional review board committees had, in particular,

approved the endoscopy procedure, the written and verbal

informed consent procedures, and the bacterial culture and

genetic (DNA sequence) analysis experiments. Other H. pylori

strains used here were from the Berg lab collection, and had been

kindly provided by Drs. Teresa Alarcon and Manuel Lopez Brea

(Spain) and Teruko Nakazawa (Japan) from their collections.

General bacteriologic, molecular and histologic methods
H. pylori was grown on brain heart infusion agar (Difco)

containing 7% horse blood and 0.4% isovitalex in a microaerobic

(5% O2, 10% CO2) atmosphere following standard protocols

[25,43]. Chromosomal DNA for genome sequencing and routine

PCR was isolated using the QIAamp DNA Mini kit (Qiagen,

Chatsworth, CA). Genomic DNA of higher molecular weight,

needed for efficient direct chromosomal sequencing was isolated

using hexadecyltrimethylammonium [40]. PCR amplification,

product purification, and capillary DNA sequencing, both of

PCR products, and directly from chromosomal DNA, were

carried out as described [42,43]. DNA sequence editing and

analysis were performed with programs in Vector NTI (Informax,

Bethesda, MD); programs and data in H. pylori genome sequence

databases, and Blast homology search programs (http://www.

ncbi.nlm.nih.gov/blast/blast.cgi). Unrooted trees were construct-

ed by Neighbor-Joining (Mega 3.1, http://www.megasoftware.

net/). Gastric pathology was scored on antrum and corpus biopsies

that had been fixed in pH 7.2 buffered formalin, embedded in

paraffin, sectioned, stained with hematoxylin/eosin and graded

histologically as described [66].

Genome sequencing
Genomic DNA prepared using a Qiagen kit from a low passage

single colony isolate was sequenced using 454 FLX technology by

the 454 Corporation. An average read length of 276 nts and 71x

coverage was achieved. The sequences were arranged in 50 major

contigs of at least 500 bp (average 79.7 kb). Contigs were aligned

using the fully sequenced J99 and 26695 reference genomes.

Closure of gaps and connection of contigs into the final finished

genome sequence was done manually by PCR to identify

connections, capillary sequencing PCR products and directly

from genomic DNAs [43]. Approximately 20 kb of additional

sequence were determined in this way. Genome annotation was

carried out by NCBI using their Automated Pipeline (http://www.

ncbi.nlm.nih.gov/Genbank/genomesubmit.html). Left unchanged

was the Pipeline gene annotation format, in which sequential orfs

were counted in fives, to allow later insertion of additional orfs in

series when needed. Eight sites of frameshifts in repetitive

sequences (where 454 technology is most prone to base counting

errors) in genes of known function were resequenced manually. In

only one of the eight cases was an error found, and this manual

resequencing allowed restoration of the gene to its active form.

These operations resulted in the single circular genome sequence

depicted in Fig. 3 and reported in NCBI accession CP001072.

Table 1 summarizes the raw sequencing statistics.

DNA sequence analysis and comparison
Genomic DNA sequences were analyzed using Personal Blast

Navigator PLAN (http://bioinfo.noble.org/plan/), Genome

Alignment Visualization MAUVE 2.2.0 (http://asap.ahabs.wisc.

edu/mauve/, Genome Evolution Laboratory, Genome Center of

Wisconsin) and NCBI BLAST (http://blast.ncbi.nlm.nih.gov/

Blast.cgi). Neighbor Joining trees of H. pylori from selected

populations were created by Molecular Evolutionary Genetics

Analysis (MEGA, version 3.1; http://www.megasoftware.net/);

the DNA sequence polymorphism (DnaSP, http://www.ub.es/

dnasp/) program was used to convert sequences from Fasta to

Mega format.

GenBank Accessions
Individual gene sequences were PCR amplified and sequenced

with primers listed in Table S3. The GenBank Accession numbers

of DNAs from Shimaa and other H. pylori populations sequenced

specifically for this study are as follows: atpA, GU045831-GU-

045915; cysS, GU045916-GU045987; glm, GU045988-GU046-

066; glr (murI), GU046067-GU046139; ppa, GU046140-GU046-

225; recA, GU046226-GU046307; hp0519, GU064397-GU0644-

40; vacAm1, GU064441- GU064486; vacAm2, GU064487- GU06-

4499; vacAs1, GU064500-GU064527; and IS607, GU064528-

GU064554. Other sequences used in to determine genetic

relatedness of H. pylori from Shimaa and Lima shantytown

residents described here are found in GenBank under the strain

names shown in Figs. S1, S2, S3, S4, S5, S6, S7 (Spanish (‘‘S’’)

strains are listed with a ‘‘HUP-B’’ prefix; and Peruvian strains with

a single ‘‘P’’ prefix are designated ‘‘PS’’ in GenBank).

Supporting Information

Figure S1 Neighbor-Joining tree of concatenated sequences

from six housekeeping genes.
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H. pylori from four populations were analyzed: remote Peruvian

Amazon village of Shimaa (44 strains, in green circles), Japan (18

strains, in red diamonds), Spain (20 strains, in blue triangles) and

from Amerindians from shantytowns in urban (Lima) Peru (18

strains, in black squares) were compared by concatenated

evolutionary tree of six housekeeping genes (3354 bp in total):

atpA (849 bp), recA (606 bp), glmM (ureC, 555 bp), ppa (339 bp), cysS

(504 bp) and glr (murI) (501 bp). Arrow designates Shi470, whose

complete genome sequence is reported here. Open circles identify

sequences from other reference fully sequenced genomes (v225d,

Venezuela (Amerindian); 51, Korea; 52, Korea; 26695, UK; G27,

Italy; HPAG1, Sweden; J99, US (Caucasian); B38, France).

(TIF)

Figure S2 Neighbor joining tree of sequences from glmM gene

(strain 26695 hp0075 homolog). Color coding as in Fig. S1

(TIF)

Figure S3 Neighbor joining tree of sequences from recA gene

(strain 26695 hp0153 homolog). Color coding as in Fig. S1

(TIF)

Figure S4 Neighbor joining tree of sequences from glr (murI)

gene (strain 26695 hp0549 homolog). Color coding as in Fig. S1

(TIF)

Figure S5 Neighbor joining tree of sequences from ppa gene

(strain 26695 hp0620 homolog). Color coding as in Fig. S1

(TIF)

Figure S6 Neighbor joining tree of sequences from cysA gene

(strain 26695 hp0886 homolog). Color coding as in Fig. S1

(TIF)

Figure S7 Neighbor joining tree of sequences from atpA gene

(strain 26695 hp1134 homolog). Color coding as in Fig. S1

(TIF)

Figure S8 Neighbor joining tree of the vacA gene mid region,

which determines cell type specificity of VacA toxin action. This

shows that Shimaa vacA alleles are most related to but distinct from

those of Japan, and that some Peruvian shantytown strain vacA m1

alleles are closely related to those of Shimaa strains whereas others

are intermingled with those from Spain; and that Shimaa vacA m2

alleles are related to but distinct from those of Okinawa (few if any

vacA m2 alleles have been found in Japanese main island or

Peruvian shantytown strains).

(TIF)

Figure S9 Neighbor joining tree of IS607 and ISHp608

sequences found in Shimaa vs. other strains. The IS607 tree was

generated from a central 770 bp segment containing 146 of the

orfA transposase gene’s 217 codons, 71 of accessory gene orfB’s 419

codons. Similarly, the ISHp608 tree was generated from a 654 bp

segment containing 88 codons of the 155 codon orfA transposase

gene and 101 codons from the 382 codon orfB gene.

(TIF)

Figure S10 Hematoxylin and eosin stained antrum biopsy

sections of Shi470 infected and uninfected Peruvians.

A. Gastric biopsy from antrum of Shimaa villager naturally infected

with Shi470. Evident here are chronic active antral gastritis with

moderate activity (multiple polymorphic neutrophils seen at higher

magnification) and moderate chronic inflammation (I) of the lamina

propria (LP) extending down to muscularis mucosa (M). Moderate

hyperplasia of epithelial cells is seen along the columnar epithelium (E)

extending throughout the gastric pits (P). There is moderate glandular

atrophy (A) with partial replacement of deep glands with fibrous tissue

in areas where the gastric glands (G) should be extending down to the

muscularis mucosa. A primary lymphoid follicle is also present as seen

by the spherical mass of chronic inflammatory cells (F). Glandular

secretions are seen along epithelial surface (X).

B. Antrum biopsy section of uninfected antrum from Lima resident.

Seen here is uninfected gastric mucosa with columnar epithelial cells

(E) and supporting lamina propria (LP) extending down to the start of

the muscularis mucosa. The lamina propria of this individual is

populated primarily with mesenchymal cells and a few sparse

lymphocytes. The stomach antrum contains tightly packed branching

tubular glands that open up into irregularly shaped gastric pits (P). The

mucus secreting cells of the deep glands play a role in protecting the

intestinal mucosa. Note that these glands (G) extend the entirety of the

gastric mucosa reaching to the muscularis mucosa at their deepest

point. Glandular secretions are seen along the epithelial surface (X).

(TIF)

Figure S11 Sequence alignment of mini-IS605 and mini-IS606

elements found in Shi470 genome, relative to those in reference

strains. Chromosomal sequences adjacent to mini IS element left

ends, positions of left end, and mini-IS orientation [clockwise (c) or

counter clockwise (cc)] are indicated.

(TIF)

Table S1 Shi470 genes involved in natural transformation

(PDF)

Table S2 Outer membrane protein genes in Shi470

(PDF)

Table S3 Primers used for analysis of Shimaa village strains

(PDF)
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