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Abstract
Objective: This study aimed to develop a novel multi-stage self-supervised learning model tailored for the accurate classification of optical 
coherence tomography (OCT) images in ophthalmology reducing reliance on costly labeled datasets while maintaining high diagnostic accuracy.
Materials and Methods: A private dataset of 2719 OCT images from 493 patients was employed, along with 3 public datasets comprising 
84 484 images from 4686 patients, 3231 images from 45 patients, and 572 images. Extensive internal, external, and clinical validation were per-
formed to assess model performance. Grad-CAM was employed for qualitative analysis to interpret the model’s decisions by highlighting rele-
vant areas. Subsampling analyses evaluated the model’s robustness with varying labeled data availability.
Results: The proposed model outperformed conventional supervised or self-supervised learning-based models, achieving state-of-the-art 
results across 3 public datasets. In a clinical validation, the model exhibited up to 17.50% higher accuracy and 17.53% higher macro F-1 score 
than a supervised learning-based model under limited training data.
Discussion: The model’s robustness in OCT image classification underscores the potential of the multi-stage self-supervised learning to 
address challenges associated with limited labeled data. The availability of source codes and pre-trained models promotes the use of this model 
in a variety of clinical settings, facilitating broader adoption.
Conclusion: This model offers a promising solution for advancing OCT image classification, achieving high accuracy while reducing the cost of 
extensive expert annotation and potentially streamlining clinical workflows, thereby supporting more efficient patient management.
Key words: optical coherence tomography; deep learning; self-supervised learning; pre-trained model. 

Introduction
Optical coherence tomography (OCT) plays a pivotal role in 
medical diagnostics, particularly in ophthalmology, for 
obtaining high-resolution, cross-sectional images of eye tis-
sues. This noninvasive imaging technique enables ophthal-
mologists to visualize and assess the retina and optic nerve,1

thus aiding in the early detection and accurate diagnosis of 
ocular diseases, such as age-related macular degeneration 
(AMD), drusen, and diabetic macular edema (DME). Early 
detection is of paramount importance for the prevention of 
vision loss and the preservation of visual acuity.2,3 As of 
2020, approximately 196 million individuals globally were 
affected by AMD, with a projected increase to 288 million by 
2040. This highlights the significant global burden of disease 
and the necessity for early detection.4–6

OCT enables clinicians to identify subtle disease progres-
sion signs. However, the intricate nature of OCT images 
necessitates manual assessment by skilled ophthalmologists, 
which can result in significant levels of fatigue and subjectiv-
ity. Consequently, developing an automated, precise, and 
efficient OCT image classification system is imperative. The 
integration of artificial intelligence in medical imaging has 
enhanced efficiency, as evidenced by reductions in diagnostic 
time, clinician workload, and healthcare costs.7–9

Deep learning models have demonstrated efficacy in image 
classification problems, autonomously extracting features 
and analyzing intricate relationships from high-resolution 
images.10–14 Numerous deep learning models for OCT image 
classification have been introduced to seize its outstanding 
performance.15–17 Lee et al15 achieved 87.63% accuracy by 
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training the model based on the VGG16 using 101 002 OCT 
images with 2 labels (normal and AMD). Li et al16 achieved 
97.30% accuracy by training the model based on the ResNet- 
50 using 21 357 OCT images with 4 labels (normal, choroi-
dal neovascularization [CNV], DME, and drusen). Kamran 
et al17 achieved 99.34% accuracy by training the model 
based on the ResNet-50 using 84 484 OCT images. However, 
these methods necessitate a substantial number of OCT 
images, incurring high labeling costs. Consequently, the effec-
tiveness of these models depends on the data quality and 
quantity.

Self-supervised learning techniques have been proposed for 
the effective training of deep learning models with limited 
data.18–21 Among the various self-supervised learning meth-
ods, the contrastive self-supervised learning approaches, such 
as SimCLR,21 MOCO,20 and SwAV22 are widely utilized. 
This approach involves learning representations by contrast-
ing positive data pairs against negative data pairs, which 
drives the model to differentiate between them in the embed-
ding space. In numerous studies, self-supervised contrastive 
learning has consistently demonstrated superior model per-
formance, even in medical fields with limited labeling.23–26

For instance, Soni et al23 employed contrastive learning to 
diagnose heart and lung diseases from digital stethoscope 
data. Similarly, Zhang et al,24 Han et al,25 and Azizi et al26

utilized contrastive learning to diagnose diseases from chest 
radiography data. Most relevantly, Fang et al27 achieved 
superior performance in OCT image classification compared 
with conventional deep learning models by utilizing a self- 
supervised learning scheme. However, the model’s generaliz-
ability is limited because it was only trained and evaluated on 
a single specific OCT dataset.

This study proposes a novel method that employs a self- 
supervised learning approach, augmented by multi-staging 
techniques, to achieve high performance that can be widely 
applicable in practical clinical environments, even when using 
a limited amount of annotated data. Our model incorporates 
a multi-staging approach comprising 2 phases: a self- 
supervised learning phase derived from pre-trained datasets, 
and a fine-tuning phase for use with a private or target data-
set. The model was trained on 2 large public datasets and 
subsequently evaluated on another public dataset or a private 
dataset collected from a tertiary general university hospital. 
Furthermore, the pre-trained model and associated code are 
made available to the public as a user-accessible training 
framework.

Our major contributions are summarized as follows:

� We achieved state-of-the-art performance in OCT image 
classification task by leveraging our proposed multi-stage 
self-supervised learning scheme. 

� The proposed method can decrease the costs of annotat-
ing OCT images while retaining the superior performance 
of the deep learning model. 

� We validated the effectiveness of the model which was 
trained using our proposed method, on both publicly 
available datasets and a dataset collected from a real clini-
cal setting. 

� To the best of our knowledge, this is the first publicly 
available pre-trained OCT image classification model that 
provides a training framework that allows the use of per-
sonal clinical data, thus making it accessible to everyone. 

Methods
This study was planned in accordance with the “Guidelines 
for Developing and Reporting Machine Learning Predictive 
Models in Biomedical Research” statements.28

Data collection, preprocessing, and ethical approval
Two publicly available OCT image datasets were utilized to 
train our model: OCT2017 and Srinivasan2014.29,30 The 
publicly available datasets were employed for self-supervised 
learning, with each dataset corresponding to a specific stage 
of the process. It is notable that the training dataset labels 
were excluded during self-supervised learning training, given 
that only the image data itself was being considered. In addi-
tion, sets of predefined test images were reserved for internal 
validation and comparison of performance with other studies 
(see Figure S1).

Furthermore, 2 additional OCT image datasets were 
employed to validate our approach: a public dataset and a 
private dataset. For external validation of the trained model, 
this study utilizes another small open dataset31 known as 
OCTID. To validate the clinical utility, we constructed a pri-
vate OCT dataset, abbreviated as KNUH-OCT in this study, 
from a clinical tertiary hospital. The OCT images were 
acquired using a Heidelberg Spectralis OCT machine at 
Kyungpook National University Hospital (KNUH). Three 
skilled ophthalmologists (7, 13, and 15 years of experience) 
performed OCT image labeling. Two independent ophthal-
mologists (C.G.Y. and J.R.D.) labeled the OCT images into 4 
categories; in case of inconsistencies, a senior masked retinal 
specialist (Y.K.K.) independently re-evaluated all images and 
adjudicated the discrepancies. For clinical validation, 200 
OCT images were randomly selected, while the remaining 
2519 images were used for training. The acquisition and 
analysis of the private KNUH-OCT dataset have been 
approved by the Institutional Review Board of KNUH (IRB- 
2019-07-022). Table 1 and Method S1 present detailed infor-
mation about the class labels and statistics included in each 
dataset.

The OCT images from the public datasets (OCT2017, Srini-
vasan2014, and OCTID) were resized to 512 × 512 pixels and 
normalized by their respective means and standard deviations. 
Conversely, images from the private KNUH-OCT dataset 
were cropped from 1520 × 596 pixels to 1024 × 496 pixels 
and normalized in a manner analogous to that described 
above. To ensure robust training and enhance the generaliz-
ability of our model, we employed image augmentation techni-
ques such as random resized cropping, random horizontal 
flipping, and Gaussian blurring. A detailed description of the 
image preprocessing is provided in Method S1.

Multi-stage self-supervised learning and model 
training
We propose a novel model-building strategy that considers 
the consistency of OCT image characteristics and the varia-
bility of OCT image quality resulting from different measure-
ment instruments. Since OCT images consistently present the 
patient’s condition in a similar way, we anticipate that a self- 
supervised learning scheme can enhance the model’s perform-
ance by retrieving inherent feature information from multiple 
sources of data and learning from the images themselves. 
During deep learning model training, subtle differences or 
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variances in equipment from various manufacturers and set-
tings could lead to training inefficiencies. In consideration of 
these issues, we developed a multi-stage self-supervised learn-
ing approach and trained a novel deep learning model.

In each stage of our self-supervised learning phase, we 
employed SimCLR according to our previous experiments.32

The stages were divided according to the dataset used. 
SimCLR learns similarities by maximizing the similarity 
between positive pairs, generated from different views of the 
same image, and the dissimilarity between negative pairs, 
generated from different images. It was selected due to its 
demonstrated efficacy in addressing the distinctive attributes 
of OCT images, including the low variance in lesion distribu-
tion and fixed image orientation, by employing a contrastive 
learning scheme. SimCLR has demonstrated superior per-
formance in capturing discriminative features essential for 
differentiating between diseased and non-diseased images. 
The ResNet-5014 architecture was employed as the baseline 
convolutional neural network (CNN) model in this study.

Figure 1 depicts the proposed modeling framework. In 
Stage 1, self-supervised learning was conducted on the 
OCT201729 open dataset, which constituted a large-scale 
OCT image dataset. Subsequently, the CNN model that had 
been trained in Stage 1 was transferred to the CNN model 
that was to be trained in Stage 2. In Stage 2, self-supervised 
learning occurred on the Srinivasan201430 open dataset using 
a CNN model that was initialized with weights transferred 
from Stage 1. Then, the CNN model trained in Stage 2 was 
transferred to the CNN model in Stage 3. Stage 3 is designed 
to be optional, providing users with the flexibility to train the 
CNN model with their own downstream OCT image dataset 
if they so desire. This customization allows the model to be 
tailored to specific clinical environments, thus enhancing its 
suitability for specific clinical applications. Stage 3-1 follows, 
during which the CNN model was fine-tuned using a super-
vised learning scheme with labels. A small subset (20%) 
of labeled images from the training datasets was used for 

fine-tuning in Stage 3-1. Further details regarding the data 
usage in our method are provided in Figure S1.

In all experiments, training was performed on the entire 
training images, and evaluation was performed using isolated 
testing images from each dataset (see Figure S1). The model 
training for all experiments consisted of 100 epochs. When 
transferring the CNN model, we implemented full-weight 
transfer without freezing any layers. Further details about the 
model training can be found in Method S2.

Performance evaluation
To ensure a comprehensive assessment of the models, several 
performance metrics were employed for evaluation. These 
include precision, recall, and F-1 score for each class, in 
addition to accuracy, macro precision, macro recall, and 
macro F-1 score, which are employed to evaluate the models’ 
performance across all classes. Moreover, confusion matrices 
were constructed to assess the model’s strengths and weak-
nesses in each class.

To assess the effects of the multi-stage self-supervised 
learning, we compared model performance through an abla-
tion study involving 4 datasets: 2 open datasets for internal 
validation (OCT2017, Srinivasan2014), 1 open dataset for 
external validation (OCTID), and a private dataset for clini-
cal validation (KNUH-OCT). First, the model was trained 
through a supervised learning scheme. Second, the model was 
trained via self-supervised learning without staging and only 
trained on a single dataset. Finally, the model was trained 
using our proposed multi-stage self-supervised learning 
method. For internal validation, Stage 3 was omitted and 
proceeded directly to Stage 3-1 (fine-tuning) with only 20% 
of the labeled images before evaluation. To comprehensively 
assess the effectiveness of our method, we conducted 2 evalu-
ations. A predefined dataset evaluation was conducted on 
discrete test sets that had been previously partitioned for eval-
uation purposes to facilitate comparison with existing litera-
ture. In order to ensure the robust assessment of model 
stability, a 5-fold cross-validation (5-CV) was performed. In 
addition, to evaluate the statistical difference between models 
trained on different methods, the 5 × 2 cv test33 was 
employed. A P-value of <.001 was deemed to be statistically 
significant.

To evaluate the efficacy of multi-staging, we compared the 
model’s performance with that of baseline and single-stage 
models trained by combining all the data used for self- 
supervised learning into one, without stage distinction. The 
training data were shuffled in this experiment for baseline 
and single-stage model training to ensure robust training.

Furthermore, the performance of the model was also com-
pared based on the order of the datasets used in multi-stage 
training, where each dataset was trained on separate stages in 
ascending and descending order by data size.

Subsampling analyses were conducted to evaluate the effi-
ciency of our framework in a small dataset. For the OCTID 
dataset, we trained our models by reducing the number of 
randomly sampled images from the data from 472 to 120. 
Similarly, for the KNUH-OCT dataset, we trained the models 
by decreasing the number of randomly selected images from 
2519 to 500. These experiments were designed to assess how 
well our proposed model would perform in a small hospital 
with limited data.

Table 1. OCT dataset statistics.

Dataset Class type OCT2017 Srinivasan- 
2014

OCTID KNUH-OCT

Train Normal 26 315 1302 186 525
CNVa 37 205 – – 1028
DMEb 11 348 996 – 458
AMDc – 618 35 –
Drusen 8616 – – 508
MHd – – 82 –
CSRe – – 82 –
DRf – – 87 –

Test Normal 250 105 20 50
CNVa 250 – – 50
DMEb 250 105 – 50
AMDc – 105 20 –
Drusen 250 – – 50
MHd – – 20 –
CSRe – – 20 –
DRf – – 20 –

Total images 84 484 3231 572 2719

a CNV: choroidal neovascularization
b DME: diabetic macular edema
c AMD: age-related macular degeneration
d MH: macular hole
e CSR: central serous retinopathy
f DR: diabetic retinopathy
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Grad-CAM analysis
The qualitative analysis of Gradient-weighted Class Activa-
tion Mapping (Grad-CAM)34 visually examines how effec-
tively our model, trained using multi-stage self-supervised 
learning, focuses on disease-relevant areas compared to the 
supervised learning-based baseline model. We analyzed and 
compared the Grad-CAM results from both the baseline 
model and our model using the diagnosis results of ophthal-
mologists. To facilitate comparison with the Grad-CAM 
heatmaps, 3 ophthalmologists delineated the disease regions 
in red circles. The annotation of the disease regions was sub-
jected to a second review and confirmation by 3 ophthalmol-
ogy specialists, who applied the same labeling rules utilized in 
annotating our private dataset. This clinical analysis enabled 
us to assess whether the regions highlighted by our model 
correspond to those that are clinically important for diagnos-
ing conditions like CNV and DME.

Data and code availability
All data, code, and the pre-trained model are publicly avail-
able except for the KNUH-OCT dataset. Further details 
regarding data availability can be found in the “Data 
Availability” section below.

Results
OCT dataset statistics
Table 1 presents the number of images in each class for the 
training set and test set of the 4 OCT datasets. The 
OCT201729 dataset comprises 84 484 OCT images labeled 
as normal, CNV, DME, and drusen. The Srinivasan201430

dataset comprises 3231 OCT images labeled as normal, 
DME, and AMD, obtained from 45 patients. The OCTID31

dataset consists of 572 OCT images labeled as normal, 
AMD, macular hole (MH), central serous retinopathy (CSR), 
and diabetic retinopathy (DR). All the aforementioned pub-
licly available datasets include each predefined testing data-
set. This testing dataset comprises 1000 images from 633 
patients, 315 images from 3 patients, and 100 images for 
OCT2017, Srinivasan2014, and OCTID, respectively. The 

KNUH-OCT dataset comprises 2719 OCT images labeled as 
normal, CNV, DME, and drusen, from 493 patients. The 
training set comprises 2519 images from 457 patients and the 
test set comprises 200 images from 36 patients. The demo-
graphic information of the KNUH-OCT dataset can be found 
in Table S1.

Performance evaluation
Table 2 presents the results of the predefined dataset evalua-
tion comparing the performance of the proposed model with 
that of previous works, the baseline model, and the single- 
stage self-supervised learning model for each dataset. These 
results demonstrate that our method outperforms the base-
line model across all OCT datasets, achieving higher accu-
racy, macro precision, macro recall, and macro F-1 score. 
Furthermore, our approach demonstrates superior perform-
ance to single-stage self-supervised learning, except for the 
OCT2017 dataset. Notable performance enhancements were 
identified, particularly for small-scale data such as the 
OCTID with an improvement of 22.00% from supervised 
learning. Moreover, our model achieved state-of-the-art per-
formance compared to the base performance of previous 
works.

Figure 2 shows each model’s confusion matrices for the 
KNUH-OCT dataset classification results from predefined 
dataset evaluation. The matrices highlight the superior 
performance of our model compared to the baseline and 
single-stage self-supervised learning models. Confusion 
matrices for the other dataset classification results are 
provided in Figure S2.

Table 3 provides the performance from the 5-CV evalua-
tion. Our method consistently achieved superior performance 
over both the baseline and single-stage self-supervised learn-
ing models, excelling in all performance metrics. P-values for 
comparisons with both the baseline and single-stage self- 
supervised learning models were below .001, indicating stat-
istically significant improvements, except for the OCT2017 
dataset, where our model showed a statistically superior per-
formance to the baseline model. These results highlight the 
robust performance improvement of our method, especially 

Figure 1. Multi-stage self-supervised learning model. The model consists of 3 self-supervised learning stages and 1 fine-tuning stage. In the self- 
supervised learning stage, the model is trained with only the training set images themselves without labels to learn robust feature representations. In the 
fine-tuning stage, the model is fine-tuned with a small subset (20%) of the training dataset with labels to adapt the model to specific tasks. The CNN 
encoder trained in the previous stage is transferred to the CNN encoder of the next stage for continuous learning. Abbreviations: CNN ¼ convolutional 
neural network.
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on smaller datasets. Detailed results of the statistical test can 
be found in Table S4.

Table S2 illustrates the effect of stage distinction in our 
training process using 5-CV evaluation. Note that the base-
line and single-stage self-supervised learning models were 
trained on a merged dataset comprising all available datasets, 

our multi-stage self-supervised learning model utilized dis-
tinct datasets at different stages of the training process. The 
multi-stage model consistently achieved the highest perform-
ance across all datasets, demonstrating its effectiveness. Table 
S3 compares the performance of the models based on the 
order of the datasets used at each stage in the multi-stage 

Table 2. Performance of the multi-stage self-supervised learning (predefined dataset evaluation).

Dataset  
(# classes)

Models Classes Precision Recall F-1  
score

Accuracy Macro  
precision

Macro  
recall

Macro F-1  
score

OCT2017 (4) Best performance of previous 
worksa11

Normal 
CNV 
DME 
Drusen 

100.00 
99.20 
98.81 
99.20 

99.60 
98.80 
99.60 
99.80 

99.80 
99.00 
99.20 
99.20 

99.30 99.30 99.30 99.30

Baseline model 
(Supervised learning) 

Normal 
CNV 
DME 
Drusen 

100.00 
98.80 
98.41 
98.81 

99.20 
98.40 
99.20 
99.60 

99.60 
98.80 
98.80 
99.20 

99.10 99.10 99.10 99.10

Single-stage self-supervised 
learning model

Normal 
CNV 
DME 
Drusen 

100.00 
100.00 
99.60 
100.00 

100.00 
99.60 
100.00 
100.00 

100.00 
99.80 
99.80 
100.00 

99.90 99.90 99.90 99.90

Multi-stage self-supervised 
learning model (our model)

Normal 
CNV 
DME 
Drusen 

100.00 
99.60 
99.60 
100.00 

100.00 
99.60 
99.60 
100.00 

100.00 
99.60 
99.60 
100.00 

99.80 99.80 99.80 99.80

Srinivasan2014 (3) Best performance of previous 
worksa11

Normal 
DME 
AMD 

95.33 
96.17 
94.29 

97.14 
94.29 
94.29 

96.23 
95.19 
94.29 

95.24 95.24 95.24 95.23

Baseline model 
(Supervised learning) 

Normal 
DME 
AMD 

95.33 
97.12 
96.15 

97.14 
96.20 
95.24 

96.23 
96.65 
95.69 

96.19 96.20 96.19 96.19

Single-stage self-supervised 
learning model

Normal 
DME 
AMD 

90.74 
92.23 
90.38 

93.33 
90.48 
89.52 

92.02 
91.35 
89.95 

91.11 91.12 91.11 91.11

Multi-stage self-supervised 
learning model (our model)

Normal 
DME 
AMD 

100.00 
100.00 
100.00 

100.00 
100.00 
100.00 

100.00 
100.00 
100.00 

100.00 100.00 100.00 100.00

OCTID (5) Baseline model 
(Supervised learning) 

Normal 
AMD 
MH 
CSR 
DR 

65.38 
57.89 
77.78 
68.42 
77.78 

85.00 
55.00 
70.00 
65.00 
70.00 

73.91 
56.41 
73.68 
66.67 
73.68 

69.00 69.45 69.00 68.87

Single-stage self-supervised 
learning model

Normal 
AMD 
MH 
CSR 
DR 

58.33 
40.91 
61.11 
58.82 
63.16 

70.00 
45.00 
55.00 
50.00 
60.00 

63.64 
42.86 
57.89 
54.05 
61.54 

56.00 56.47 56.00 56.00

Multi-stage self-supervised 
learning model (our model)

Normal 
AMD 
MH 
CSR 
DR 

90.91 
84.21 
94.74 
90.48 
94.74 

100.00 
80.00 
90.00 
95.00 
90.00 

95.24 
82.05 
92.31 
92.68 
92.31 

91.00 91.01 91.00 90.92

KNUH-OCT (4) Baseline model 
(Supervised learning) 

Normal 
CNV 
DME 
Drusen 

94.12 
90.38 
93.75 
93.88 

96.00 
94.00 
90.00 
92.00 

95.05 
92.16 
91.84 
92.93 

93.00 93.03 93.00 92.99

Single-stage self-supervised 
learning model

Normal 
CNV 
DME 
Drusen 

86.54 
81.13 
82.98 
85.42 

90.00 
86.00 
78.00 
82.00 

88.24 
83.50 
80.41 
83.67 

84.00 84.02 84.00 83.95

Multi-stage self-supervised 
learning model (our model)

Normal 
CNV 
DME 
Drusen 

100.00 
96.08 
95.92 
96.00 

100.00 
98.00 
94.00 
96.00 

100.00 
97.03 
94.95 
96.00 

97.00 97.00 97.00 96.99

a The model was retrained using the author’s source code to prevent dataset leakage concerns. See the “Discussion” section for the details.
Abbreviations: CNV ¼ choroidal neovascularization; DME ¼ diabetic macular edema; AMD ¼ age-related macular degeneration; MH ¼ macular hole; CSR 
¼ central serous retinopathy; DR ¼ diabetic retinopathy.
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training. The results show that the multi-stage training with 
descending order by data size outperforms that of the ascend-
ing order across all OCT datasets.

Subsampling analysis
Table 4 presents the results of the subsampling analysis con-
ducted on the OCTID dataset and the KNUH-OCT dataset. 
The accuracy of the model increased steadily as the data size 
grew, from 84.00% to 91.00% for OCTID and 92.00% to 
97.00% for KNUH-OCT. Our model outperformed the 
supervised learning-based baseline model at all training data 
sizes. In the analysis of 120 images from the OCTID dataset, 
our model demonstrated an accuracy of 84.00%, whereas the 
supervised learning-based model exhibited an accuracy of 
only 50.00%. In the analysis of 500 images from the KNUH- 
OCT dataset, our model achieved an accuracy of 92.00%, 
whereas the supervised learning-based model achieved only 
74.50%. Subsampling analysis for OCT2017 and Sriniva-
san2014 datasets are provided in Table S5.

Grad-CAM analysis
Figure 3 displays the Grad-CAM results obtained from the 
supervised learning-based baseline model and our multi-stage 
self-supervised learning model for 4 different types of OCT 
images. The first column shows the original OCT images. 
The second and third columns present the Grad-CAM results 
obtained from the baseline and our proposed models, respec-
tively. In these results, the red-marked heatmap area indicates 
the model’s focus.

In Figure 3(2), the baseline model was unable to focus on 
CNV lesions. Conversely, our model effectively identified 
CNV lesions in both the outer retina and the retinal pigment 
epithelium, as well as the thickened choroidal layer. This fig-
ure illustrates the characteristics of polypoidal choroidal vas-
culopathy, a type of neovascular AMD associated with 
choroidal thickening.35 In Figure 3(3), our model distinctly 
targets the outer retina and choroidal layer in DME lesions. 
DR is marked by choroidal thinning due to ischemia,36 and 
our model accurately reflects this feature, whereas the base-
line model focused on completely different regions. Further-
more, Figure 3(4) confirms that the baseline model focused 
on other regions other than drusen lesions. In contrast, our 

model identified the exact location of drusen bodies, which 
are well-defined hyperreflective deposits located between the 
basal membrane of the retinal pigment epithelium and 
Bruch’s membrane. Grad-CAM results of OCT2017, Sriniva-
san2014, and OCTID datasets are provided in Figure S3.

Discussion
In this study, we propose a multi-stage self-supervised learn-
ing approach that accurately classifies OCT images with lim-
ited data. We trained a model using the proposed method 
and compared its performance with both external and clinical 
validation. Our model outperforms traditional supervised 
learning-based models and the best-performing models in the 
literature. Across the 4 datasets used for evaluation, our 
model demonstrated an improvement in accuracy ranging 
from 0.7% to 22% compared with the conventional super-
vised learning-based model. Our model still showed superior 
performance in the 5-CV evaluation, highlighting its robust-
ness. Remarkably, our models exhibited acceptable perform-
ance even with extremely small-scale OCT datasets. When 
we trained our model using only 20% of the data collected in 
a clinical setting, the supervised learning-based model under-
performed by 18.5% compared to the full data training, 
whereas our model underperformed by only 5%. These find-
ings support the efficacy of the proposed multi-stage learning 
approach. Moreover, our proposed model demonstrated 
superior performance compared to models trained on pooled 
datasets across all datasets. This underscores the efficacy of 
our multi-stage self-supervised learning strategy, which lever-
ages the distinctive attributes of each dataset at different 
stages, rather than relying on a single merged dataset. The 
findings highlight that the enhanced performance of our 
model is a direct consequence of the stage distinction, rather 
than merely the quantity of data utilized for training. We also 
found that the performance is influenced by the order in 
which data are used during multi-stage training. When ini-
tially trained on smaller datasets, the performance decreased 
up to 3%. This finding suggests that transferring the latent 
features of OCT images from large OCT datasets to the next 
stage improves accuracy.

Figure 2. Confusion matrices for the KNUH-OCT dataset classification results. The matrices show the classification performance across 4 classes: 
Normal, choroidal neovascularization (CNV), diabetic macular edema (DME), and drusen. (A) Confusion matrix of the baseline model (conventional 
supervised learning model) on the KNUH-OCT dataset. (B) Confusion matrix of the single-stage self-supervised learning model on the KNUH-OCT 
dataset. (C) Confusion matrix of the multi-stage self-supervised learning model on the KNUH-OCT dataset. Abbreviations: OCT ¼ optical coherence 
tomography.
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Clinical image data, such as OCT, possess unique charac-
teristics that differ from those of general images. First, label-
ing incurs high costs. As clinical experts must manually 
inspect and label each image, obtaining and maintaining the 
large amounts of labeled data required for high-performance 
deep-learning model training are challenging. Second, varia-
bility exists in the clinical environment, such as regarding 
type of machine, settings, and measurer. Finally, owing to 

privacy concerns, hospitals seldom release sensitive clinical 
data, impeding the retention of large data. Consequently, 
most hospitals or users interested in building an OCT classi-
fier typically have access to only small-scale clinical datasets, 
making it difficult to generate a robust deep-learning model.

We developed a method that considers relevant clinical 
data characteristics. Initially, we decreased labeling costs and 
the demand for a large dataset using self-supervised learning. 

Table 4. Subsampling analysis.

Dataset  
(Training data size)

Models Accuracy Macro precision Macro recall Macro F-1 score

OCTID (472) Baseline model (Supervised learning) 69.00 69.45 69.00 68.87
Single-stage self-supervised learning model 56.00 56.47 56.00 56.00
Multi-stage self-supervised learning model (Our model) 91.00 91.01 91.00 90.92

OCTID (237) Baseline model (Supervised learning) 55.00 53.87 55.00 54.60
Single-stage self-supervised learning model 51.00 51.48 51.00 51.10
Multi-stage self-supervised learning model (Our model) 87.00 87.22 87.00 87.07

OCTID (120) Baseline model (Supervised learning) 50.00 49.88 50.00 49.82
Single-stage self-supervised learning model 48.00 48.49 48.00 48.06
Multi-stage self-supervised learning model (Our model) 84.00 84.12 84.00 84.02

KNUH-OCT (2519) Baseline model (Supervised learning) 93.00 93.03 93.00 92.99
Single-stage self-supervised learning model 84.00 84.02 84.00 83.95
Multi-stage self-supervised learning model (Our model) 97.00 97.00 97.00 96.99

KNUH-OCT (1500) Baseline model (Supervised learning) 90.00 90.11 90.00 89.99
Single-stage self-supervised learning model 82.00 81.96 82.00 81.96
Multi-stage self-supervised learning model (Our model) 95.50 95.62 95.50 95.53

KNUH-OCT (500) Baseline model (Supervised learning) 74.50 74.50 74.50 74.48
Single-stage self-supervised learning model 78.50 78.47 78.50 78.48
Multi-stage self-supervised learning model (Our model) 92.00 92.07 92.00 92.01

Figure 3. An example of Grad-CAM results in the KNUH-OCT test set. (A) Original OCT images from the test set, showing different ophthalmic 
conditions. For comparison with the Grad-CAM heatmaps, 3 ophthalmologists have circled the disease areas in red. (B) Grad-CAM heatmaps generated 
by the baseline model, highlighting the regions used for predictions. (C) Grad-CAM heatmaps generated by our model, showing the regions of interest 
that the model focused on for making predictions. Abbreviations: OCT ¼ optical coherence tomography; Grad-CAM ¼ gradient-weighted class activation 
mapping.
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The model acquires knowledge of the OCT images through 
contrastive learning by utilizing 2 open OCT datasets of sig-
nificant sizes. Subsequently, we address the inefficiency of 
training a model owing to OCT image quality variability by 
adopting multi-stage learning. By ensuring that the model 
learns only from a single dataset in a single stage, learning 
inefficiencies that may arise from mixing images of varying 
qualities are avoided. Additionally, we released a pre-trained 
model with large-scale public data and provided a framework 
for users to fine-tune the model according to our methodol-
ogy. This enables each hospital or user to own a superior 
OCT classifier that uses only their small data with minimal 
privacy concerns.

Most previous studies on classifying OCT images used 
supervised learning models that require abundant data and 
labels such as over 10 000 OCT images.15,16,37 Additionally, 
most current studies that trained and assessed deep learning 
models used an undisclosed OCT dataset created by the 
researchers themselves. To ensure a reliable performance 
evaluation of deep learning models, it is essential to test their 
performance using various datasets, such as external or clini-
cal validation datasets.

When evaluating model performance, the testing data 
should be entirely separate from other data, such as training 
or validation data. Unfortunately, we found that the Optic- 
Net,17 the current best-performing model for the OCT2017 
and Srinivasan2014 datasets, had data leakage concerns. Spe-
cifically, the source code they provided utilized the same 
dataset for both validation and testing. Consequently, 
although the model may perform well in a given test dataset, 
its real-world clinical utility can be called into question. An 
accuracy of 99.80% in the OCT2017 dataset and a perfect 
score of 100.00% in the Srinivasan2014 dataset were 
reported; however, after re-training with separate testing 
data, our reproduced results showed a decline in performance 
to 99.30% and 95.24% for each respective dataset.

Our model’s performance was evaluated both reliably and 
objectively. We analyzed the performance internally, exter-
nally, and clinically and confirmed the superiority of the 
model trained using our proposed method. Furthermore, we 
publicly released the codes for transparent replication of our 
results.

The model has significant clinical potential. It enhances 
diagnostic accuracy even with limited data, which is critical 
for precision in resource-constrained environments. This 
automated, reliable classification model facilitates faster diag-
nostics and timely medical interventions, providing valuable 
second opinions and assisting clinicians with challenging con-
ditions. By making our pre-trained models publicly available, 
we enable hospitals to enhance their diagnostic capabilities 
with minimal additional data and training, democratizing 
advanced tools and ensuring broader access.

Our study has some limitations. First, the CNN model per-
formance can be enhanced by optimizing the model architec-
ture and hyperparameters, which were not rigorously 
explored in this study. However, we made all the training 
and testing source codes of our proposed method available, 
enabling users to update the model architecture as desired. 
Second, the scope of our experiments was confined to OCT 
image classification. However, the proposed method has the 
potential to lay the groundwork for expanding its application 
to various modalities and tasks. Third, although we evaluated 
our model externally and clinically, this was a retrospective 

study that requires prospective validation for real-world clini-
cal usage.

Conclusion
We developed and validated a multi-stage self-supervised 
learning model to classify OCT images. This approach allows 
the model to learn inherent features without high labeling 
costs and train efficiently without confusion over image qual-
ity. We believe that our contributions will facilitate the adop-
tion of high-performing OCT classifiers in clinical practice, 
improving patient outcomes.
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