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Abstract

Brain circuits undergo substantial structural changes during development, driven by

the formation, stabilization, and elimination of synapses. Synaptic connections con-

tinue to undergo experience-dependent structural rearrangements throughout life,

which are postulated to underlie learning and memory. Astrocytes, a major glial cell

type in the brain, are physically in contact with synaptic circuits through their struc-

tural ensheathment of synapses. Astrocytes strongly contribute to the remodeling of

synaptic structures in healthy and diseased central nervous systems by regulating

synaptic connectivity and behaviors. However, whether structural plasticity of astro-

cytes is involved in their critical functions at the synapse is unknown. This review will

discuss the emerging evidence linking astrocytic structural plasticity to synaptic cir-

cuit remodeling and regulation of behaviors. Moreover, we will survey possible

molecular and cellular mechanisms regulating the structural plasticity of astrocytes

and their non-cell-autonomous effects on neuronal plasticity. Finally, we will discuss

how astrocyte morphological changes in different physiological states and disease

conditions contribute to neuronal circuit function and dysfunction.
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1 | INTRODUCTION

Most synaptic connections in our brains are established during

development and remodeled throughout life to adapt to changing

circumstances (Molliver et al., 1973; Peter, 1979; Tierney &

Nelson, 2009). Indeed, synapses undergo functional and structural

changes, influenced by hardwired genetic plans, environmental fac-

tors, and experiences (Citri & Malenka, 2008; Ho et al., 2011;

Mansvelder et al., 2019). A large body of work in neuroscience has

focused on understanding how synaptic circuits are formed and

remodeled via neuronal communication (Lu et al., 2009). However,

neuronal processes which build synapses are highly integrated within

a network of astrocytes (Eroglu & Barres, 2010; Haydon &

Nedergaard, 2015; Nagai et al., 2021; Perez-Catalan et al., 2021;

Ventura & Harris, 1999).

Astrocytes, a major glial cell type in the brain, are highly complex

cells that infiltrate the surrounding neuronal processes and synapses,

collectively referred to as the neuropil (Bushong et al., 2002). Impor-

tantly, astrocytes actively control neuronal function by instructing

synapse formation, plasticity, and remodeling (Allen & Eroglu, 2017;

Baldwin & Eroglu, 2017; Chung et al., 2015). These essential functions

of astrocytes at the synapse are intimately linked to their complex

morphology, which is evolutionarily conserved (Oberheim et al., 2006;

Stork et al., 2014). Remarkably, as the brain size and complexity of

neuronal networks increased, so did the size and elaboration of astro-

cytes (Oberheim et al., 2006, 2009). For example, a single mouse
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astrocyte can interact with 100,000 synapses, whereas a human

astrocyte is around three times larger and interacts with 2 million syn-

apses (Bushong et al., 2002).

The fine perisynaptic astrocyte processes (PAPs) physically contact

and ensheath pre- and postsynaptic specializations to form a tripartite

synapses (Araque et al., 1999). The close interaction of PAPs with synap-

ses is critical for regulation of synapse function through several mecha-

nisms, including but not limited to gliotransmitter release and extracellular

glutamate clearance (Allen, 2014; Chung et al., 2015). Furthermore, astro-

cytes undergo both gross and fine scale structural changes that may

be playing important roles in neural circuit physiology and animal

behavior (Allen, 2014; Arizono et al., 2021; Bernardinelli, Muller, &

Nikonenko, 2014; Kleim et al., 2007; Santello et al., 2019). Gross morpho-

logical changes in astrocytes are also a hallmark of reactivity seen in many

neurological diseases (Schiweck et al., 2018; Zhou et al., 2019). In this

review, will discuss our current understanding of both gross and fine scale

astrocyte structural plasticity and they may direct neural circuit function

in health and disease.

2 | EXPERIENCE-DEPENDENT ASTROCYTE
STRUCTURAL PLASTICITY

2.1 | Sensory experiences strongly impact
astrocyte morphological complexity

Synaptic circuits undergo substantial structural changes during devel-

opment, which are strongly influenced by sensory experiences

(Lendvai et al., 2000). Much of the research in this area utilized devel-

oping visual system circuits as their model. Visual experiences shape

the connectivity of the brain circuits at the level of individual synapses

by facilitating either their stabilization or elimination (Li et al., 2010;

Ribic et al., 2019; Tropea et al., 2010). Astrocytes also play pivotal

roles in synaptic remodeling in the developing visual system. Several

astrocyte-to-neuron signaling pathways have been identified to take

part in sensory experience-dependent remodeling of synapses during

critical periods of plasticity via the secretion of synapse-modulating

proteins (Blanco-Suarez et al., 2018; Singh et al., 2016). Moreover, a

recent study found that increasing the expression of connexin 30, a

gap junction protein, causes closing of the critical period of plasticity

in the mouse visual cortex by inhibiting an extracellular matrix-

degrading enzyme. The stabilization of the extracellular matrix, in turn,

induces stabilization and maturation of inhibitory circuits and reduces

visual circuit plasticity (Ribot et al., 2021). Importantly, manipulation

of visual experiences, either in development or in adult, causes gene

expression changes both in neurons and astrocytes of the visual cor-

tex (Farhy-Tselnicker et al., 2021; Hrvatin et al., 2018).

Sensory experiences not only affect astrocytic gene expression

and extracellular matrix remodeling but also change astrocyte mor-

phological complexity. There is an increase in astrocytic process elab-

oration and neuropil infiltration in the mouse visual cortex during

development. The peak of astrocyte morphogenesis coincides with

the period following eye-opening, marking the onset of visual

experience. This phenomenon occurs concurrently with increased

neuronal glutamatergic synapses (Morel et al., 2014; Stogsdill

et al., 2017). When astrocyte-to-neuron crosstalk is prevented, either

by genetic deletion of the metabotropic glutamate receptor

5 (mGluR5) or the cell-adhesion molecule neuroligin 2 (NL2) only in

astrocytes, astrocytic elaboration is significantly reduced (Morel

et al., 2014; Stogsdill et al., 2017). Interestingly, these astrocytic

manipulations also impact synapse formation and synaptic activity,

revealing the interdependent nature of astrocyte morphogenesis and

synaptogenesis (Stogsdill et al., 2017).

It is important to note that sensory-dependent astrocyte plasticity

is not restricted to development. In adult rats, monocular deprivation

transiently increases the volume of the cortex on the contralateral

side of the open eye. It is estimated that 71%–74% of the macro-

scopic tissue swelling is due to changes in astrocyte complexity with a

50% increase in territory volume (Figure 1a) (Schmidt et al., 2021).

These changes in adult astrocyte morphology happen within a time

course of days and weeks. Therefore, it is proposed to be a part of an

experience-dependent adaptation program of synaptic circuits.

Other forms of sensory experience also impact cortical astrocyte

morphology. For example, whisker stimulation increases the expres-

sion levels of astrocytic glutamate transporters GLT-1 and GLAST and

astrocytic coverage of excitatory synapses in the mouse barrel cortex

(Bernardinelli, Randall, et al., 2014; Genoud et al., 2006). Altogether,

these findings link sensory experience-dependent changes in synaptic

circuits to astrocyte morphogenesis during development and adult-

hood. However, these studies also present new questions: How are

experience-dependent changes in astrocyte and neuronal morphology

interlinked? Is it just a structural adaptation of astrocytes to the remo-

deling occurring at neuronal synapses, or do these structural changes

in astrocytes have functional consequences on the synapses? Impor-

tantly, how dynamic are astrocyte-neuron interactions at the synaptic

sites?

One of the earliest reports about astrocyte process motility

around synapses was made by Hirrlinger and colleagues (Hirrlinger

et al., 2004). Utilizing an acute slice preparation, they described the

structural changes of astrocytes around synapses within the

brainstem through confocal and two-photon microscopy. Two modes

of motility were described: 1) gliding of thin lamellipodia-like pro-

cesses along the neuronal surface and 2) filopodia-like structures

extending from primary or secondary processes into the surrounding

neuropil for several minutes. Since then, the anatomical descriptions

of astrocytic processes around synapses have reached unprecedented

details thanks to the development of super-resolution microscopy

techniques, like Stimulated Emission Depletion (STED) (Arizono

et al., 2021; Arizono & Nägerl, 2022). Studies using STED showed that

thin astrocytic processes are organized in reticular structures. In these

structures, there are bulbous “nodes” which are estimated to be the

predominant form of PAPs (Arizono et al., 2020). These nodes contain

most of the spontaneous Ca2+ signals which are observed within

astrocytes, showing that PAPs possess the machinery for Ca2+ signal-

ing and activation of downstream pathways (Arizono et al., 2020).

Indeed, several studies found correlations between Ca2+ transients
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within PAPs and experience-dependent PAP motility. For example,

time-lapse imaging of PAPs in the sensory barrel cortex revealed that

whisker stimulation increases PAP motility within 5–10 minutes from

stimulus onset, resulting in an increased spine coverage by astrocytes

and higher spine stability (Figure 1a). Similar results were also

obtained by inducing long-term synaptic potentiation (LTP),

(Bernardinelli, Randall, et al., 2014; Perez-Alvarez et al., 2014). LTP

and long-term depression (LTD) of synapses are two widely accepted

cellular correlates of learning and memory. These cellular processes

cause structural and functional changes at synapses, such as spine

enlargement/shrinkage and surface delivery of neurotransmitter

receptors (Collingridge et al., 2010; Fukazawa et al., 2003;

Harris, 2020). It is interesting that astrocyte structure also responds

to neuronal LTP. PAP motility is mediated by mGluRs, whose activa-

tion induces Ca2+ elevation in the PAPs. Applying a mGluR antagonist,

an astrocyte-specific calcium chelator (BAPTA-AM), or knocking out

the IP3-receptor type 2 (IP3R2) blocked Ca2+ activity in PAPs and

decreased their motility. On the contrary, the induction of Ca2+ fluc-

tuations by activation of exogenous Gq-coupled receptors caused an

increase in PAP motility (Bernardinelli, Randall, et al., 2014; Perez-

Alvarez et al., 2014).

What is the molecular link between Ca2+ transients and motility

of PAPs? One possible mechanism is protein phosphorylation, which

is known to induce cytoskeletal reorganization and focal adhesion

molecule turnover (Giannone & Sheetz, 2006; Lavialle et al., 2011;

Niwa et al., 2002; Webb et al., 2004). Neuronal LTP was shown to

drive PAP withdrawal through a cellular mechanism that involves the

Na+-K+-2Cl� cotransporter (NKCC1)-cofilin-1 pathway. NKCC1

induces the phosphorylation of cofilin-1, which regulates actin poly-

merization. When phosphorylation of cofilin-1 was inhibited, so was

LTP-induced PAP shrinkage (Henneberger et al., 2020). However, the

mechanisms activating NKCC1 during LTP are not known. Protein

phosphorylation events can be initiated by the interaction between a

neurotransmitter/neuromodulator (e.g., glutamate) and a G-protein

coupled receptor (GPCR, e.g., mGluR) on the PAP membranes. GPCR-

mediated secondary messengers can trigger kinase activity. In the sup-

rachiasmatic nucleus, such a mechanism occurs. It has been observed

that the phosphorylated form of the actin-binding protein, ezrin, is

compartmentalized to the PAPs together with mGluR3 and mGluR5.

The application of siRNA or dominant-negative ezrin inhibits PAP

motility (Lavialle et al., 2011). However, a direct link between astro-

cytic calcium transients in PAPs and phosphorylation of cytoskeleton-

binding proteins have not been shown.

Protein phosphorylation in astrocytes upon Ca2+ fluctuations could

be IP3R2-dependent or independent. The most studied form of Ca2+

activity in PAPs is the IP3R2-dependent calcium release. This mechanism

is triggered by GPCR activation and induces Ca2+ release from the

endoplasmic reticulum (ER) (Srinivasan et al., 2015). IP3R2-dependent

Ca2+ release activates the protein kinase C (PKC) which could cause

cytoskeletal rearrangements. Some Ca2+ transients in PAPs are

IP3R2-independent (Sherwood et al., 2017; Stobart et al., 2018). Interest-

ingly, IP3R2-independent Ca2+ fluctuations are detected in the juxtaposi-

tion of mitochondria location within the fine astrocytic processes

(Agarwal et al., 2017). Therefore, IP3R2-independent Ca2+ transients

could indicate mitochondrial activity within PAPs. Mitochondria is neces-

sary to supply ATP/GTP as part of the Ca2+-calmodulin phosphorylation

cascade and may be necessary to fuel PAP motility. The presence of

these two types of Ca2+ activity indicates that different intracellular path-

ways mediate cytoskeletal changes and regulate PAP movement in astro-

cytes (Figure 1b). Alternatively, protein phosphorylation is the upstream

controller of both Ca2+ transients and cytoskeletal changes. Indeed, cyclic

AMP (cAMP), a secondary messenger mediating the activation of protein

kinase A (PKA), modulates a subgroup of Ca2+ oscillations during astro-

cyte hypertrophy (Ujita et al., 2017). Even though these PKA-dependent

Ca2+ fluctuations and morphological changes were interpreted as a

F IGURE 1 Sensory experience-dependent astrocyte plasticity.
(A) Sensory experience such as whisker stimulation and visual
experience after eye-opening drives cortical astrocyte hypertrophy
and increase astrocyte process elaboration. (B) The activation GPCRs
induces the release of Ca2+ in PAPs from intracellular stores such as
the ER and mitochondria. Increased Ca2+ activity can trigger
phosphorylation events that cause cytoskeletal reorganization and
facilitate PAP elongation and withdrawal. PAP withdrawal may
enhance the spillover of neurotransmitters such as glutamate, which
may activate nearby synapses to promote LTP induction. Based on
Bernardinelli, Randall, et al. (2014) and Perez-Alvarez et al. (2014)
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hallmark of reactive astrocytes, these signaling events could also occur in

other non-pathological circumstances and modulate astrocyte structural

plasticity. In agreement with such a possibility, in vitro experiments

showed that an analog of the cAMP can induce actin filament formation

and the emergence of astrocytic processes (Baorto et al., 1992). Several

other cellular pathways involving, for example, neurotrophin receptors

and Rho GTPases (i.e. RhoA, Rac1, and Cdc42) have been shown to play

roles in astrocyte morphogenesis and morphological changes (Holt

et al., 2019; Zeug et al., 2018). However, most of these studies were con-

ducted in vitro and ex vivo preparations. Nevertheless, they represent

exciting starting points for future in vivo studies. Investigation of specific

cellular pathways that control PAP dynamics and the causal links between

PAP motility, astrocyte Ca2+ activity, and cytoskeletal rearrangements are

poised to be fruitful future directions.

2.2 | Astrocyte structural plasticity occurs during
cognitive functions

One of the most fascinating cognitive functions of the brain is its ability

to learn new skills and memorize environmental features and events.

How astrocytes are involved in these brain functions has only recently

been explored, with several studies reporting astrocytes' functional role

in controlling cognition and behavior (Nagai et al., 2021; Oliveira

et al., 2015; Santello et al., 2019). However, whether astrocytic struc-

tural changes are involved in regulating behavior is unclear. Here we

will summarize some of the studies suggesting a possible link between

astrocyte structure and cognitive function.

In the rodent cerebral cortex, learning new motor skills is linked to

gross astrocyte morphological changes (hypertrophy), which increases the

entire cell volume and the number of branches. However, such structural

changes are not observed when mice simply repeat what they have

already learned (Kleim et al., 2007). These findings suggested that astro-

cyte structural changes could occur under specific circumstances that

induce synaptic plasticity. Therefore, to investigate behavioral conse-

quences of the astrocyte structural changes, researchers focused on

linking astrocyte structural plasticity to LTP/LTD, learning, and memory

formation. One of the earliest descriptions of astrocytes' structural

response to LTP was reported in the rodent hippocampus by Wenzel and

colleagues (Wenzel et al., 1991). Astrocytes significantly increase their

ramification and coverage of synapses 8 h following LTP induction. These

observations have been confirmed and extended by another study

showing that LTP induces enlargement of spine volume and increased

coverage of pre- and post-synaptic structures by astrocytes in an NMDA-

dependent manner (Lushnikova et al., 2009). These studies based their

structural analyses utilizing transmission electron microscopy (TEM). The

chemical fixation process involved in this technique might affect the mor-

phology of both synapses and PAPs (Korogod et al., 2015), signifying the

need for other methods, such as expansion microscopy and super resolu-

tion microscopy, to validate and interpret TEM studies in the future.

Because PAPs and synapses are in close contact LTP-induced

structural changes in neurons are likely to impact astrocyte morphol-

ogy. In agreement with this, neuronal LTP triggers dynamic extension

and retraction of PAPs and neuronal spines until a new stable configu-

ration is established (Bernardinelli, Randall, et al., 2014; Haber

et al., 2006; Perez-Alvarez et al., 2014). However, if and how astro-

cytic structural changes regulate LTP is still unclear. One proposed

mechanism involves regulation of neurotransmitter diffusion via mod-

ulation of astrocytic coverage of synapses. For instance, glutamate

release in the hippocampus and dopamine release in the striatum can

activate nearby synapses through extrasynaptic diffusion of neuro-

transmitters (Rice & Cragg, 2008; Rusakov & Kullmann, 1998). This

mechanism can result in co-activation of nearby synapses thus facili-

tate the establishment of LTP. Experimental and modeling studies of

extracellular diffusion of glutamate showed that astrocytes, through

extension or withdrawal of their processes from synapses, control the

rate of diffusion of the neurotransmitters to nearby synapses

(Figure 2a) (Gavrilov et al., 2018; Kinney et al., 2013; McCauley

et al., 2020; Ventura & Harris, 1999; Zheng et al., 2008). This mecha-

nism is dependent on spine/synapse size. Indeed, smaller spines show

a higher coverage by astrocytic processes than larger ones (Herde

et al., 2020; Medvedev et al., 2014; Witcher et al., 2007, 2010), mak-

ing the latter more protected by extrasynaptic glutamate diffusion

because the glutamate uptake by the astrocytic glutamate transporter

GLT-1 is more efficient (Herde et al., 2020).

Another mechanism, mediated by the NKCC1-cofilin 1 pathway,

enhances synaptic crosstalk upon LTP induction, by initiating the

withdrawal of PAPs to allow glutamate spillover (Henneberger

et al., 2020). This structural rearrangement permits the NMDAR-

dependent activation of neighboring synapses (Figure 2a). Such phe-

nomena could have relevant repercussions not only on synaptic

potentiation but also learning and memory processes (McCauley

et al., 2020). For example, associative learning in the lateral amygdala

(LA) induces synaptic plasticity and morphological changes. Serial

section TEM reconstructions showed that, after fear conditioning,

there are increased numbers of synapses without astrocytic coverage.

This effect was specific for larger synapses; whereas, smaller synapses

had higher astrocytic coverage (Ostroff et al., 2014). Moreover, acti-

vation of the Ras-related C3 botulinum toxin substrate 1 (Rac-1) in

cultured astrocytes induces astrocyte structural changes, and in vivo,

Rac-1 activation in astrocytes within the basolateral amygdala (BLA)

during fear-conditioning attenuates fear memory formation (Liao

et al., 2017). These findings suggest that astrocyte morphology not

only changes with circuit activity and sensory-motor experience but

could also regulates synaptic potentiation and innate, reflexive

behaviors.

Insights into the role of astrocytes in behavioral control and mem-

ory formation come from functional studies in the hippocampus and

prefrontal cortex. These two brain areas are indirectly connected, but

show highly synchronized activity that supports cognitive task perfor-

mance and remote memory consolidation (Doron & Goshen, 2018;

Gordon, 2011; Preston & Eichenbaum, 2013). It has been shown that

blockage of D-Serine, a NMDAR co-agonist, secretion by astrocytes

in a dominant negative SNARE (dnSNARE) mouse model triggers a

critical desynchronization of theta oscillation between the hippocam-

pus and the prefrontal cortex, which impair spatial and long-term
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memory (Sardinha et al., 2017). This mechanism is possibly linked to

the activation of astrocytic type-1 cannabinoid receptors which are

necessary to induce D-Serine secretion to drive LTP and memory con-

solidation (Robin et al., 2018). Moreover, astrocyte-specific expression

of tetanus neurotoxin in the hippocampus significantly reduces the

gamma oscillations induced by the cholinergic agonist carbachol (Lee

et al., 2014).

Studies investigating fear-conditioning based learning in mice

found that increasing intracellular calcium in hippocampal astrocytes,

through the activation of GPCRs, have different effects on memory

formation. Using Designer Receptors Exclusively Activated by

Designer Drugs (DREADDs), it was shown that Gq or Gs activation

have opposing effects (enhancement and impairment, respectively) on

recent memory formation (Adamsky et al., 2018; Orr et al., 2015). In

contrast, Gi activation impairs remote memory recall (Kol et al., 2020)

(Figure 2b). Similar impairments of remote memory formation have

been observed in studies in which NMDAR-dependent LTD was

altered due to astrocyte depletion of p38a MAPK or IP3R2 in mice

(Navarrete et al., 2019; Pinto-Duarte et al., 2019). In addition, within

the medial prefrontal cortex, an increase in astrocyte Ca2+ activity

through optogenetic activation of a light-gated GPCR, melanopsin,

enhances cortical activity and improve performance, decision-making

and working memory (Mederos et al., 2019, 2021).

Although these studies point toward the role of astrocytes in the

control of animal behavior, there is not yet enough evidence for a

causal link between behavioral control and astrocytes' structural plas-

ticity. Even the effect of manipulating astrocytic Rac-1 on fear

memory formation (Liao et al., 2017) could be independent of Rac1's

role in regulating PAP morphology. Thus, further research is needed

to uncover the mechanisms that underlie the relationship between

astrocyte morphology and behavioral control.

3 | PHYSIOLOGICAL STATES AFFECT
ASTROCYTE STRUCTURAL PLASTICITY

In addition to sensory experiences and synaptic plasticity, physiologi-

cal states such as lactation, dehydration, starvation, and sleep strongly

affect astrocyte structure and synapse ensheathment. A well-

established example of a role for astrocyte structure in physiological

states comes from studies in the murine paraventricular (PVN) and

supraoptic (SON) nuclei of the hypothalamus. Substantial structural

and functional plasticity happens in the PVN and SON of female mice

which are lactating. These changes are driven by both neuron–neuron

and neuron-astrocytes contacts (Chapman et al., 1986). The synthesis

and release of oxytocin (OT) in these brain regions are pivotal for reg-

ulating lactation, and OT secretion depends on the electrical activity

of magnocellular neurons (Oliet & Bonfardin, 2010). Astrocyte PAPs

are retracted in the SON of lactating or dehydrated rats to regulate

neuronal activity (Boudaba et al., 2003; Oliet, 2002). Several mecha-

nisms have been described to regulate the activity of magnocellular

neurons via astrocytic structural changes: 1) Excess of presynaptic

glutamate release causes PAP withdrawal during lactation. This retrac-

tion facilitates extracellular diffusion of glutamate, which acts on

F IGURE 2 A possible link between astrocyte structural plasticity and GPCR activation during learning and memory formation. (A) Astrocytes
processes may regulate neurotransmitter diffusion within the extracellular space through synapse coverage. By ensheathing synapses, astrocyte
processes may prevent glutamate spillover and prevent trans-synaptic activation, which could facilitate LTP (Henneberger et al., 2020; Herde
et al., 2020; Ventura & Harris, 1999; Zheng et al., 2008). (B) During fear conditioning studies in which mice learn to associate a tone with a foot
shock, activated GPCRs have different effects on memory formation. Gq enhances, and Gs impairs the formation of recent memories. However,
the activation of Gi reduces remote memory recall (Adamsky et al., 2018; Kol et al., 2020; Orr et al., 2015).
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presynaptic mGluRs triggering a negative-feedback process to reduce

presynaptic glutamate release and OT activity (Oliet, 2002; Oliet

et al., 2001; Oliet & Bonfardin, 2010). 2) PAP withdrawal, due to glu-

tamate release, causes the activation of kainate receptors (KARs) on

GABAergic presynaptic terminals. During lactation, KAR activation

leads to the inhibition of GABAergic transmission. This disinhibition

facilitates post-synaptic activation even when glutamate release is

reduced (Oliet, 2002; Oliet & Bonfardin, 2010). 3) Astrocytes inhibit

neuronal activity by releasing taurine, a gliotransmitter that activates

glycinergic receptors and induces membrane hyperpolarization. PAP

withdrawal reduces taurine's effect on synapses (Oliet, 2002). 4) Prox-

imity of PAPs to neurons in the SON facilitates post-synaptic activa-

tion by releasing NMDAR co-agonist D-Serine (Oliet &

Bonfardin, 2010; Panatier et al., 2006). Thus, PAP withdrawal during

lactation impairs NMDAR activation. During lactation, all these mech-

anisms act as a filter to limit the influence of external factors on OT-

mediated neuromodulation and ensure that only the information

about the need for milk production is passed through.

A recent study showed that within the central nucleus of the amyg-

dala (CeA), a morphologically distinct sub-population of OT receptor-

expressing astrocytes can communicate through gap junctions upon OT

release to promote positive emotional states (Wahis et al., 2021). This

mechanism causes an increase in astrocytic calcium activity likely trigger-

ing the release of D-Serine. D-Serine increases the excitability of the

interneurons in the centrolateral nucleus, enhancing the inhibition within

the centromedial nucleus of the amygdala (Wahis et al., 2021).

Starvation also has strong impacts on astrocyte morphology. In a

model of physical activity-based anorexia, brain volume is reduced primar-

ily due to a reduction in the number of astrocytes and their processes in

the cerebral cortex and the corpus callosum (Frintrop et al., 2019). These

changes in astrocyte numbers and gross morphology were caused by

starvation, because refeeding was enough to recover the glial fibrillary

acidic protein (GFAP) positive area. Two other studies support these

observations in which astrocyte morphological changes were linked to

food intake and calorie-restricted diet. In mice after only 12 h, a high-fat

diet can induce an increase in astrocyte elaboration in the solitary tract of

the brainstem dorsal vagal complex (MacDonald et al., 2020). Whereas a

calorie-restricted diet increases synapse ensheathment by hippocampal

astrocytes, limiting glutamate spillover and enhancing LTP (Popov

et al., 2020). These studies indicate that astrocytes respond to physiologi-

cal states like lactation, hunger, and thirst, strongly impacting the function

of the neuroendocrine system. Further research is needed to address the

causal relationship between the astrocytes' structural plasticity and their

roles in controlling the functionality of distant organs and glands through

the neuroendocrine system.

3.1 | Circadian and sleep-related astrocyte
structural plasticity

In most mammals, circadian rhythm, which operates on a 24-h period,

regulates physiology and behavior (Reppert & Weaver, 2002). Neuro-

nal populations in the suprachiasmatic nucleus (SCN) have primarily

been studied and established to control the circadian clock in a

cell-autonomous manner (Brancaccio et al., 2014; Liu et al., 2007;

Maywood et al., 2011). However, even pure astrocyte cultures rhyth-

mically express clock genes, period circadian protein homolog 1 and

2 (Per 1 and Per2) in a 24-h period (Prolo et al., 2005). Interestingly, in

SCN astrocytes, the intermediate filament protein GFAP expression

fluctuates with circadian rhythm (Monique & Servière, 1993; Santos

et al., 2005). Several studies pointed out a role for astrocytes in SCN

circadian function (Prosser et al., 1994; Shinohara et al., 2000; Van

Den Pal et al., 1992). Astrocytes were also shown to actively partici-

pate in circadian pace-making through an anti-phasic Ca2+ activity

complimentary to neuronal Ca2+ events ex vivo in SCN slices (Bran-

caccio et al., 2017). In rodent SCN astrocytes, Ca2+ activity peaks dur-

ing circadian nighttime and when there is a phasic release of

glutamate into the extracellular space. In contrast, neuronal Ca2+

activity in the SCN peaks during circadian daytime (Brancaccio

et al., 2017). Interfering with astrocytic gliotransmitter release or

pharmacological inhibition of NR2C subunit of the NMDARs in the

dorsal SCN neurons suppressed circadian oscillations (Brancaccio

et al., 2017). More recently, Brancaccio and colleagues also found that

astrocyte-neuron communication in the SCN controls the circadian

rhythm via regulation of SCN neuron gene expression (Brancaccio

et al., 2019).

The SCN is essential in controlling circadian rhythm across the

whole CNS by coordinating the activity of subordinate circadian oscil-

lators in other brain regions, such as the hippocampus (Guilding &

Piggins, 2007). Several genes and proteins associated with synaptic

excitability exhibit circadian fluctuations in the hippocampus (Barnes

et al., 1977; Debski et al., 2020). For example, the expression of the

clock gene, Per2, is significantly increased in the CA1 pyramidal cell

layer (CA1-PC), stratum radiatum (s.r.), and the SCN in the dark

(D) phase of the circadian rhythm compared to the light (L) phase

(McCauley et al., 2020). Interestingly, McCauley and colleagues found

hippocampal astrocytes to also undergo structural plasticity during

the L and D phase of the circadian rhythm (McCauley et al., 2020).

Coinciding with circadian dependent gene expression changes in CA1,

astrocytic coverage of post-synaptic densities declines during the D

phase of the circadian cycle. Astrocytic clearance of extracellular glu-

tamate is also slower during the D phase, which impacts the temporal

summation of AMPA receptor-mediated excitatory postsynaptic cur-

rents (EPSCs) (McCauley et al., 2020). These structural changes, com-

bined with a reduction in the cell surface expression of NMDARs on

CA1-PCs, lead to a reduction in LTP at the Schaffer collateral synap-

ses in the D phase (McCauley et al., 2020). This difference in LTP

magnitude based on L and D circadian phases may impact cognitive

processes that are sensitive to high-frequency hippocampal activity

(McCauley et al., 2020). Astrocyte structural plasticity also plays a role

in facilitating LTP in the L phase; however, the precise mechanism is

not yet clear and requires further studies.

A fundamental and essential physiological state that characterizes

half of our daily life is sleep. The sleep–wake cycle is regulated by the

circadian rhythm (Moore & Eichler, 1972; Saper et al., 2005). Albeit

poorly understood, the mechanisms controlling sleep have also been

1472 LAWAL ET AL.



traditionally viewed as primarily neuronal. However, this view is

changing, because astrocytes strongly modulate sleep homeostasis

through the release of adenosine, and the disruption of this astrocyte-

to-synapse communication causes cognitive impairments, such as

memory deficits (Florian et al., 2011; Halassa et al., 2009). Astrocyte

structural plasticity has also long been proposed to play a critical role

in regulating sleep. Over a century ago, Santiago Ram�on y Cajal postu-

lated that astrocytes extend their processes into the synaptic cleft to

reduce synaptic transmission during sleep and retract their processes

during wakefulness. Current evidence reveal changes in astrocyte

morphology during sleep and wake, but not as dramatic as Cajal ini-

tially proposed. For example, cortical astrocytes undergo molecular

and structural changes during the sleep–wake cycle. These changes

are postulated to play a role in neuronal synchronization and glycogen

turnover at synapses. During wake periods, mouse cortical astrocytes

upregulate genes involved in cell process elongation and extend their

processes closer to the synaptic cleft (Bellesi et al., 2015). Bellesi et al.

performed serial block face scanning electron microscopical (SBF-

SEM) analyses of PAP dynamics in the layer II of the prefrontal cortex

of wake, sleep, sleep-deprived (SD), and chronic sleep-restricted (CSR)

mice. PAPs were closer to the synaptic cleft in the spontaneously

wake mice during the D-phase of the circadian rhythm. A similar con-

figuration was also seen in the extended wake groups (SD and CSR)

but during the L-phase (Bellesi et al., 2015) (Figure 3). This finding

suggests that wake increases PAP-synapse interactions independent

of the circadian clock. It is possible that the sleep–wake cycle impacts

astrocyte structural plasticity in the cortex more readily compared to

the hippocampus, where the effect of circadian rhythm dominates

PAP-synapse interactions (McCauley et al., 2020). The increased

astrocyte coverage of the neuropil during the wake cycle might reflect

the need for glutamate clearance (Bellesi et al., 2015).

Bellesi et al. found that the opposite occurs during sleep. Reduc-

tion of astrocyte processes around the synaptic cleft promote neuro-

nal synchronization potentially through glutamate spillover (Bellesi

et al., 2015). Indeed, glutamate transporter 1 (GLT-1), which is essen-

tial for glutamate removal from synapses, is highly expressed in astro-

cyte processes in the neuropil (Minelli et al., 2001; Rothstein

et al., 1994), and GLT-1-dependent glutamate clearance is modulated

by neuronal activity (Armbruster et al., 2016). This model is also in line

with the fact that an increase in extracellular glutamate, triggered

using optogenetics, is sufficient to drive a switch to the slow-oscilla-

tion-dominated state in the mouse cortex, which is vital for sleep and

memory (Poskanzer & Yuste, 2016). Astrocytes may also extend their

processes into the neuropil during the wake cycle to position the gly-

cogen granules, abundant within PAPs, closer to the synaptic cleft

(Bellesi et al., 2018). This energy source could be significant in meet-

ing the metabolic demands of neurons during wake (de Tredern

et al., 2021; Díaz-García et al., 2017). However, prolonged coverage

F IGURE 3 PAP plasticity during the sleep–wake cycle. Astrocyte processes are closer to the synaptic cleft during wake and sleep deprivation.
In addition to increased synaptic contact, PAPs in chronic sleep-restricted mice also increase their coverage of the neuropil (Not shown). In
contrast, PAPs make less contact with the synaptic cleft during sleep (Bellesi et al., 2015). This is proposed to play a role in increased glutamate
spillover during sleep. The resulting trans-synaptic activation may play a role in the synchronization that is important for generating slow-wave
oscillations required for sleep and cognition.
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of the synaptic cleft by the astrocytic processes through sleep depri-

vation can promote astrocytic phagocytosis of presynaptic compo-

nents (Bellesi et al., 2017).

There is a possibility that the PAP dynamics during sleep are regu-

lated by astrocyte Ca2+ transients. Bojarskaite et al. found that astrocytic

Ca2+ transients occur with higher frequency within the neuropil during

sleep–wake transitions (Bojarskaite et al., 2020). There is a reduction in

overall astrocyte Ca2+ activity during sleep; however, Ca2+ transients dur-

ing sleep are more frequent in the astrocytic processes than the soma

(Bojarskaite et al., 2020). The Ca2+ signaling within PAPs may facilitate

their retraction from the neuropil during sleep (Bellesi et al., 2015;

Bernardinelli, Randall, et al., 2014; Perez-Alvarez et al., 2014). Interest-

ingly, astrocytic Ca2+ transients can also regulate non-rapid eye move-

ment (NREM) sleep features, which are important for memory

consolidation (Vaidyanathan et al., 2021). Chemogenetic activation of

astrocytic Gi-GPCR to drive Ca2+ activity in astrocytes increases slow-

wave activity (SWA), an oscillatory pattern of cortical neural activity dur-

ing NREM sleep. This Gi-driven increase in SWA regulates sleep depth

but not duration (Vaidyanathan et al., 2021). Surprisingly, activation of the

Gq-GPCR through chemogenetics suppressed Ca2+ transients in astro-

cytes and disrupted sleep–wake transitions, thereby leading to increased

sleep duration (Vaidyanathan et al., 2021). However, it is still unclear

whether astrocytic Gq-signaling specifically regulates sleep–wake transi-

tions or whether suppressing Ca2+ in astrocytes through other means

would also produce a similar result. Furthermore, a link between Ca2+

transients and structural changes in astrocytic processes during sleep–

wake cycles remains to be established.

4 | ASTROCYTE STRUCTURAL PLASTICITY
IN AGING AND DISEASE

Studies that evaluated astrocyte structural plasticity in aging, injury, and

disease have primarily focused on astrogliosis, a term that describes the

morphological, transcriptional, and functional changes associated with

“reactive astrocytes” (Ben Haim et al., 2015; Guttenplan et al., 2020,

2021; Liddelow & Barres, 2017; Sofroniew, 2020; Zhou et al., 2019).

The phenotypes that describe reactive astrocytes are diverse and

dependent on the pathological context (Escartin et al., 2021;

Liddelow & Barres, 2017). However, across all pathological conditions

that lead to astrogliosis, there is a common theme: reactive astrocytes

change their morphology, increase the expression of cytoskeletal pro-

teins such as GFAP and vimentin, secrete inflammatory factors, and

proliferate (Figure 4) (Ben Haim et al., 2015). A major morphological

hallmark of reactive astrocytes is hypertrophy (Figure 4) (Zhou

et al., 2019). Hypertrophic astrocytes have enlarged cell bodies and

elongated major processes with increased thickness (Bardehle

et al., 2013). These hypertrophic phenotypes are often characterized

through the enhanced immunoreactivity of GFAP, an intermediate fila-

ment protein that is upregulated in reactive astrocytes (Wilhelmsson

et al., 2004). GFAP and vimentin, another intermediate filament protein,

play critical roles in astrocyte reactivity, glial-scar formation, and hyper-

trophy (Liu et al., 2014; Pekny et al., 1999; Wilhelmsson et al., 2004).

The absence of GFAP and vimentin significantly reduces astrocytic pro-

cess hypertrophy (Wilhelmsson et al., 2004). Visualization of GFAP

immunostaining in reactive astrocytes demonstrates cytoskeletal reor-

ganization during astrogliosis but does not necessarily indicate cellular

hypertrophy. Some studies addressing this knowledge gap have utilized

cell-filling dyes to investigate the actual three-dimensional morphology

of reactive astrocytes (Bardehle et al., 2013; Wilhelmsson et al., 2006).

They found that in response to a lesion, astrocytes became reactive.

The number and the thickness of the main processes protruding from

the soma were increased. The total volume accessed by reactive astro-

cytes and their territorial domains remained unchanged even though

GFAP-labeling indicated elongated processes. This observation suggests

that changes in GFAP immunoreactivity may not fully reflect the

changes in astrocyte morphology. Live-imaging of astrocytes in

response to a cortical lesion demonstrated that while a subset of reac-

tive astrocytes displayed the phenotype observed in Wilhelmsson

et al. (2006), there were also two other subsets, one with elongated

processes directed toward the lesion site, and another with proliferative

markers, which are localized to juxtavascular space (Bardehle

et al., 2013). Furthermore, in mouse models of epilepsy, cortical astro-

cytes lose their non-overlapping domain organization due to astrogliosis

(Oberheim et al., 2008) (Figure 4). All these observations suggest that

the structural plasticity of reactive astrocytes is heterogeneous, prompt-

ing the question of the role of these different subsets in response to

pathology and maintenance of homeostasis.

The functional consequences of astrocyte reactivity are complex.

Astrogliosis has been shown to both exacerbate ongoing pathology and

promote homeostasis. For example, proliferating and hypertrophic reac-

tive astrocytes form a cellular barrier (also known as glial scar) around a

traumatic injury site in the CNS to protect surrounding healthy tissues

(Bush et al., 1999; Faulkner et al., 2004). This barrier limits the infiltration

of inflammatory cells, decreasing tissue damage, and providing trophic

support to regenerating axons (Figure 4) (Anderson et al., 2016; Bush

et al., 1999; Faulkner et al., 2004; Sofroniew, 2009). Ablation of reactive

astrocytes post-injury in hippocampal CA1 exacerbated neuronal loss

(Bush et al., 1999). This mechanism may be due to the increased sensitiv-

ity of CA1 pyramidal neurons to excitotoxicity as a result of disrupted glu-

tamate uptake by astrocytes (Rothstein et al., 1996). In mice lacking

GFAP and Vimentin (GFAP�/�Vim�/�), hypertrophy of astrocytic pro-

cesses in response to injury was remarkably reduced compared to

WT. This effect was accompanied by a more dramatic loss of synaptic

proteins and axon degeneration in GFAP�/�Vim�/� mice around the

injury site (Wilhelmsson et al., 2004). However, 14-days post-injury,

GFAP�/�Vim�/� had completely restored the number of synaptic pro-

teins to a level comparable to the uninjured side, while the WT experi-

enced marginal recovery (Wilhelmsson et al., 2004). Taken together,

these data suggest that astrocyte hypertrophy and formation of glial-scar

prevents neuronal and synapse damage shortly after injury but they may

also limit synapse recovery and axon regeneration in the long term (Bush

et al., 1999; Silver & Miller, 2004; Wilhelmsson et al., 2004). However,

many questions remain regarding the mechanisms that define and drive

astrocyte reactivity in different CNS pathologies and how structural

changes in reactive astrocytes impact neuronal function.
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Reactivity is also associated with massive alterations in gene expres-

sion profiles of astrocytes (Anderson et al., 2016; Hasel et al., 2021;

Liddelow & Barres, 2017; Orre et al., 2014; Sofroniew, 2009; Zamanian

et al., 2012). There is no consensus of genes altered in reactive astrocytes

across all pathologies, indicating differences in mechanisms that drive dif-

ferent diseases. However, genes such as inwardly rectifying potassium

channel subunit Kir4.1, and glutamate transporter GLT-1, are down-

regulated or dysfunctional in reactive astrocytes (Nwaobi et al., 2016;

Sheldon & Robinson, 2007). For example, in Huntington's disease

(HD) mouse models, astrocytes reduce Kir4.1 expression, increasing

extracellular potassium (K+) levels. The reconstitution of Kir4.1 expression

was sufficient to decrease the hyperexcitability of striatal medium spiny

neurons and improve HD-associated motor deficit (Tong et al., 2014).

Also, reduced GLT-1 expression has been demonstrated in reactive astro-

cytes of the human neocortex following traumatic brain injury

(Landeghem et al., 2006). Loss of astrocytic GLT-1 may impair glutamate

clearance, promote excitotoxicity, and cause neuronal death. Indeed,

knockdown of GLT-1 in astrocytes exacerbates neuronal damage in a rat

model of traumatic brain injury and cerebral ischemia (Rao, Dogan,

Bowen, et al., 2001; Rao, Dogan, Todd, et al., 2001). It is plausible that

hypertrophy of reactive astrocytes in these pathological states is a com-

pensatory mechanism to localize the essential channels and transporters

next to synapses.

Aging is a common risk factor for many neurological diseases par-

ticularly neurodegeneration (Hou et al., 2019). Therefore, it is neces-

sary to investigate astrocytic changes during aging as it may be

protective or contribute to disease pathology. During aging, structural

and transcriptional changes occur in astrocytes and these changes dif-

fer between brain regions (Boisvert et al., 2018; Clarke et al., 2018;

O'Callaghan & Miller, 1991; Rodríguez et al., 2014). For example, in

the striatum and hippocampus, astrocytes increase their expression of

GFAP and become more hypertrophic with aging. In contrast, astro-

cytes in the entorhinal cortex are less hypertrophic in the aged mice

(Bondi et al., 2021; Rodríguez et al., 2014). Interestingly, hippocampal

and striatal but not cortical astrocytes upregulate genes which are also

abundant in reactive astrocytes (Clarke et al., 2018). The increased

expression of these reactive astrocyte markers in the striatum and

hippocampus suggests that these brain regions are more vulnerable to

pathology during aging. However, how these differences in astrocyte

hypertrophy across brain regions contribute to circuit function and

dysfunction during aging is still largely unknown.

One of the earliest pieces of evidence of astrocyte reactivity, as

indicated by GFAP immunostaining, was in the brains of Alzheimer's

disease (AD) patients (Bignami et al., 1972). Indeed, astrocytes near

amyloid-beta plaques increase their GFAP expression and become

hypertrophic (Vijayan et al., 1991), and in some cases display altered

water and potassium channel expression (Wilcock et al., 2009). A

study by Jo et al. found plaque-associated hypertrophic astrocytes to

have aberrant GABA release in the dentate gyrus of AD mouse model

(Jo et al., 2014). This dysfunction strongly inhibited synaptic transmis-

sion by decreasing spike probability at a specific synaptic connection

within the hippocampus, resulting in a learning and memory deficit (Jo

et al., 2014). Plaque-associated hypertrophic astrocytes with extended

processes may also engulf dystrophic neurites in the hippocampus of

AD mouse model and AD patients (Gomez-Arboledas et al., 2018). In

certain AD mouse models, astrocytes within the hippocampus and the

entorhinal cortex, which are not associated with plaques, undergo

cytoskeletal atrophy (Olabarria et al., 2010). One study found that

astrocyte hypertrophy and atrophy can be prevented through envi-

ronmental enrichment in an AD mouse model (Beauquis et al., 2013).

F IGURE 4 Injury and disease change
astrocyte morphology. In a healthy brain,
astrocytes extend their processes but
maintain non-overlapping domains. In
contrast, astrocytes undergo astrogliosis
during injury, which is characterized by
hypertrophy and the formation of glia-
scar around the site of injury to protect
healthy tissues around the injury site

(Bush et al., 1999; Faulkner et al., 2004).
Astrocytes have increased and thicker
primary processes in chronic disease but
still maintain their domains. However, the
non-overlapping domain structure is
disrupted in epileptic brains (Oberheim
et al., 2008).
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However, the mechanisms through which AD-related astrocyte mor-

phological changes occur and the impact of these changes on neuro-

nal function and behavior are unknown and require further studies.

Morphological changes in astrocytes have also been implicated in

other neurodegenerative diseases. For example, in post-mortem brain

tissues of patients, astrocytes bordering multiple sclerosis (MS) lesions

are hypertrophic (Black et al., 2010). In the SOD1 transgenic mouse

model of Amyotrophic Lateral Sclerosis (ALS), reactive and hypertro-

phic astrocytes upregulate GFAP expression in the spinal cord. Addi-

tionally, a subset of these astrocytes surrounding spinal motor

neurons had unusual spheroid-shaped cell bodies that were positive

for the active form of caspase-3, which would later cleave GFAP

(Rossi et al., 2008). Post-mortem tissues from Huntington's disease

(HD) patients show increased hypertrophy in astrocytes which contain

mutant huntingtin (mHtt) aggregates (Faideau et al., 2010). Interest-

ingly, astrocyte reactivity in ALS and HD is linked to alteration in

potassium channel expression and function (Kaiser et al., 2006; Tong

et al., 2014), suggesting a potential target for therapeutics.

Though much focus has been on how pathology impacts astrocyte

morphology, there is mounting evidence that impairment in astrocyte

structural plasticity can causally disrupt circuit formation and function

and drive disease pathogenesis. In Alexander disease (AxD), a heterozy-

gous mutation in GFAP causes hypertrophy and accumulation of cyto-

plasmic protein inclusions called Rosenthal fibers within astrocytes

(Messing et al., 2012). These astrocytes activate the mTOR pathway

(Tang et al., 2008), display impaired gap junction coupling (Olabarria

et al., 2015), and lose GLT-1 (Tian et al., 2010). The loss of GLT-1 in

these hypertrophic astrocytes is proposed to be the driver of neuronal

loss in AxD due to glutamate-induced excitotoxicity (Tian et al., 2010).

Cell adhesion molecules which bridge PAPs and synapses are crit-

ical for the interdependent development and function of astrocytes

and neurons. For example, loss of neuroligin family cell adhesion mol-

ecules impair astrocyte morphogenesis. Specifically, the depletion of

astrocytic neuroligin-2 has been demonstrated to not only reduce

astrocyte morphological complexity but also alter neuronal excitation/

inhibition balance (Stogsdill et al., 2017). Mutations in neuroligins and

their interacting partners, neurexins, are implicated in schizophrenia

(Sun et al., 2011). Interestingly, the expression of genes encoding for

these adhesion molecules were downregulated in human induced plu-

ripotent stem cell (hIPSC)-derived astrocytes from schizophrenia

patients which were grafted to wild-type mouse brains (Windrem

et al., 2017). Grafted patient astrocytes had impaired morphologies

and caused neuronal dysfunction (Windrem et al., 2017). Another

disease-linked cell adhesion protein HepaCAM is highly enriched in

astrocytes (Baldwin et al., 2021; Sofroniew, 2021). HepaCAM point

mutations cause megalencephalic leukoencephalopathy with subcorti-

cal cysts (MLC), a disorder that presents with intellectual disability,

autism and epilepsy in humans (L�opez-Hernández et al., 2011). Loss of

HepaCAM function in astrocytes alone strongly impairs astrocyte

morphogenesis by disrupting gap junction coupling. These changes in

astrocytes are sufficient to strongly impact synaptic function by

dysregulating excitatory and inhibitory synaptic strengths in the

mouse cortex (Baldwin et al., 2021). Taken together these studies

reveal the importance of bi-directional structural and functional cou-

pling between astrocyte and neuron networks in establishing and

maintaining brain homeostasis.

5 | CONCLUSIONS AND FUTURE
DIRECTIONS

For a long time, astrocytes were thought to be the mere support cells

for neurons and synapses. However, for the last three decades, neuro-

scientists began to recognize the importance of astrocytes in brain cir-

cuit formation and regulation. Still, the roles astrocytes play in

information processing and behavioral control capabilities of brain cir-

cuits are largely unknown. This review summarizes some of the stud-

ies investigating the relationship between astrocytic structure and

function, focusing on its impacts on neuronal activity and plasticity

under physiological and disease states. A common theme underlying

these findings is that, at synapses, astrocytes monitor, respond, and

regulate glutamate release and post-synaptic activity. Withdrawal and

extension of PAPs in response to glutamate can enhance post-

synaptic responses, inhibit trans-synaptic activation, and inhibit fur-

ther glutamate release. However, how astrocyte structural plasticity

change upon release of other neurotransmitters (such as GABA, dopa-

mine, somatostatin, serotonin, acetylcholine, etc.) is not known. Are all

astrocytes responding in the same way to neurotransmitters, or is

there regional heterogeneity in their structural plasticity? These ques-

tions remain to be answered.

We also lack information about the specific pathways utilized to

reorganize the cytoskeleton of PAPs, to regulate the release of

gliotransmitters and synaptogenic factors, and to promote the uptake

of ions and neurotransmitters from the extracellular space. Neuro-

transmitter mediated GPCR signaling in astrocytes could induce the

observed structural changes. So far GPCR signaling within astrocytes

were mostly performed by using overexpression of exogenous

designer GPCRs to induce dramatic intracellular calcium elevations.

The endogenous GPCR-signaling within PAPs is poorly understood.

Future experiments to understand the molecular pathways regulating

astrocytes' structural and functional responses are needed.

In the disease context, the cellular mechanisms observed in reactive

astrocytes largely overlap with the experience-dependent or physiological

state-driven changes in astrocytes. However, reactive astrocytes differ in

the magnitude of the observed structural changes. In brain injury or neu-

rodegeneration, astrocyte hypertrophy goes beyond a threshold that cau-

ses massive changes in gene expression profile, overexpression of GFAP

and vimentin, and even disruption of astrocyte territories. Because of

their relevance to disease, these cellular mechanisms have received much

attention, but we are still far from understanding their function and utility.

What is the threshold between physiological astrocyte plasticity and

astrocyte reactivity? How can astrocytes regulate the magnitude of their

structural responses? Addressing these unanswered questions may

reveal new mechanisms regulating astrocyte structural plasticity. These

insights have the potential to pinpoint the causes of and discover new

treatments for brain diseases.
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